用户名: 密码: 验证码:
视频序列中运动目标检测与跟踪算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于视频的运动目标检测与跟踪分析一直是计算机视觉领域中最活跃的研究方向之一,它是人机交互、智能监控、机器视觉导航、工业机器人等应用的基础和关键技术。运动目标检测跟踪是利用图像序列中运动目标在颜色、边缘、纹理、时空等方面上的差异,检测出运动物体;提取目标轮廓形状等信息,并获取目标的位置、尺寸、速度等运动状态,进行目标跟踪。然而,由于现实环境中的阴影、光照变化、复杂背景、目标变化、遮挡等影响,使得进行精确并且鲁棒的运动目标检测跟踪非常困难。
     本文对视频序列中运动目标检测和跟踪技术进行了研究和探讨,针对第四代人机交互中运动目标检测跟踪遇到困难提出了一些新的算法,主要内容如下:
     (1)针对阴影对运动目标检测的影响,提出了一种用阴影流和3D马尔可夫随机场后验概率最大化方法(3D MAP-MRF)消除运动阴影的方法,将运动检测和阴影消除一起处理,可在检测结果的同时直接消除阴影。
     1)首先对场景中每个像素建立混合高斯模型,通过一个阴影弱分类器,比较混合高斯模型中的背景高斯和当前帧图像,将可疑的阴影像素分离出来,送到阴影流模型中。在线学习阴影弱分类器分离的可疑的备选阴影像素,建立阴影流模型。2)用混合高斯模型,阴影流模型和前后帧图像一起构建一个三维的马尔可夫随机场模型,并提出一种新的能量函数形式。通过证明构造的能量函数满足F2定理,是“图可表示的”,可以通过图切法得到最优解。3)构建一个与3D MRF对应的3D网络流图,通过动态图切算法,求出图的最小切,即求得马尔可夫随机场的标号组的最大后验概率。从而给每个像素分配一个不同标号达到分割检测运动物体的目的。实验表明算法可以很好地消除运动阴影的同时,得到较精确的运动检测结果。
     (2)针对复杂的动态场景,我们提出了基于累计局部核直方图非参数估计的运动目标检测算法。将像素周围历史的纹理信息通过累计局部核直方图的形式表现出来,实验表明可以有效地在水波纹、树叶晃动等复杂动态场景较鲁棒地提取运动目标。
     该算法首先针对每个像索计算出以其为中心的周围邻域的局部核直方图,然后统计出前N帧对应像素点的累计局部核直方图,以非参数核密度估计的形式,对累计局部核直方图进行非参估计,求得更为精确的非参估计的累计局部核自方图。然后通过与当前帧应像素的局部核直方图进行比较,度量当前像素的局部核直方图和非参估计的累计局部核直方图的距离。通过衡量周围像素局部核直方图的相似性,减少动态纹理,摄像机抖动的影响。该方法可以很好的处理复杂背景中动态纹理的影响,对背景动态变化较大时,也有较好的鲁棒性。
     (3)提出了一种新的码书和纹理特征结合的运动目标检测方法,通过在线学习构建码书纹理背景模型,解决动态纹理、轻微光照变化等问题。
     首先用码书以类似聚类的方式构建每个像素的码书模型,根据码字的颜色和亮度相似性,将背景像素分布用聚类码字的形式表示出来,同时在运动检测过程中不断对码字进行重新排列和剔除,更新码字以反映背景变化。然后用单高斯模型来学习背景像素变化的概率,生成高斯局部二值模式(GLBP)纹理算子,同时在线更新GLBP反映图像空间纹理信息变化。最后融合各个特征将当前帧分割为前景背景两部分。实验表明本算法取得了较好的检测效果。
     (4)针对跟踪目标变化及遮挡问题,提出了一种基于LMSF-MS的改进MeanShift目标跟踪算法,对目标模型进行更新以适应目标变化。用LMS自适应滤波器对核直方图分量进行滤波,在跟踪的同时动态更新目标模型的核函数直方图非零分量,剔除目标模型中已消失的分量,加入目标模型中新出现的分量。使目标模型更能准确地反映目标变化,为模型匹配提供更好的目标模型,跟踪准确,并且速度快。实验表明对于目标有变化、遮挡等情况,跟踪结果准确且鲁棒。
     本文针对目前运动目标检测跟踪中遇到的阴影、动态复杂背景、光照变化,目标变化及遮挡等问题,提出了相应的解决算法,实验证明我们的算法取得了较好的效果。
Moving object detection and tracking is one of the hotest research topic in computer vision field. It is the basic and key technology of human-computer interaction, intelligent control, and visual navigation. Moving object detection is a process of finding motion in image sequences using color, edge, texture, space and other aspects of differences, extracting the shape of object, locating the object's coordinates, size, speed etc., and tracking it. However, in real environment, it is very difficult to detect the moving object accurately and robustly, because of shadow, illumination change, complex background, objective change and occlusion.
     Video based motion detection and tracking technology has been studied and discussed in this thesis. For some difficulties in the fourth-generation human-computer interaction, we introduced some new algorithms to resolve them. The main contributions of the dissertation are as follows:
     (1) To remove moving shadow, we present a novel approach of moving shadow elimination based on Shadow Flow and maximum a posteriori probability of3D Markov Random Field (3D MAP-MRF) by integrating motion detection and shadow elimination.
     1) Gaussian Mixture Model is built as background model for each pixel. By comparing current pixel and GMM, we classify candidate shadow pixel through a weak shadow classifier and send it to Shadow Flow Model. Which isbuilt through the online learning of candidate shadows coming from weak classifier.2) A3D MRF is constructed of GMM, Shadow Flow and current images. We proved that our new energy function meets F2theorem, so that our model is "graph representable", and can be solved with graph cuts optimally.3)A3D graph is constructed according3D MRF. A dynamic graph cuts algorithm is used to find the min-cut/max-flow, which is equal to the maximum posteriori probability of labels. Each pixel is assigned by "foreground" and "non-foreground" label, and moving object detection with shadow elimination is completed. Experiments show that our algorithm can eliminate the moving shadows and get accurate results.
     (2) For complex dynamic scenes, we present an approach to segment moving objects with nonparametric estimated cumulative local kernel histogram (NPE-CLKH). Texture information of surrounding pixels is integrated into cumulative local kernel histogram. Experiments show that our algorithm can detect motion robustly in complex dynamic scenes containing the rippling water, leaves shaking etc..
     By using the correlation and texture of spatially proximal pixels, a local kernel histogram background model is constructed. Cumulative local kernel histogram of the corresponding pixel of N frames is computed. Then probability distribution of cumulative local kernel histogram is estimated with nonparametric techniques. We employ Bhattacharyya distance to measure the similarity of local kernel histogram between estimated background model pixel by pixel in current frame, and compare CLKH of Neighboring pixel, to reduce the impact of dynamic texture, and camera shaking. Our approach can reduce false detections due to disturbing noise and small motions in dynamic scenes. This approach can deal with complex dynamic texture problem, and get robust results.
     (3) We present a novel texture-based algorithm to detect motion with codebook and Gaussian local binary patterns (GLBP), which can get texture background model on-line, and resolve the problems of complex background, slight illumination changes etc..
     Firstly, a codebook model is constructed in similar manner of pixel clustering. Distribution of background pixels is represented code words cluster according to using the color and brightness similarity between codebook and current pixel. Our algorithm updates the codebook model both in initial step and detection step to deal with changes of background pixels. A single Gaussian model of pixel-wise is used to build the pixel's value change model on-line. A background model based on Gaussian local binary patterns is constructed on-line by applying the correlation and texture of spatially proximal pixels. Finally current image is segmented into two parts, foreground and background by fusing those features. Experiments show that our algorithms achieve good detection results.
     (4) To deal with the issue of target change and occlusion, we propose a novel adaptive model update method for real-time mean shift blob tracking. We use adaptive LMS filter for filtering object kernel histogram and update the vectors of the object kernel histogram dynamically. New bins of target kernel histogram are added, and useless bins are removed. The target kernel histogram can reflect the target changes, and better matchs the target model. Experiments show that our method gets accurate and robust tracking results in the case of target change and occlusion.
     In this thesis, corresponding solutions are proposed to reslove the problems of shadow, dynamic complex scenes, target change and occlusion. Experiments demonstrate that our algorithms achieve good results.
引文
[1]袁保宗,新一代(第四代)人机交互的概念框架特征及关键技术,电子学报,2003年12月第12期,1945-1954.
    [2]Wren, C.R., et al., Pfinder:real-time tracking of the human body. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1997.19(7):780-785.
    [3]Haritaoglu, I., D. Harwood, and L.S. Davis, W4:real-time surveillance of people and their activities. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2000.22(8):809-830.
    [4]Collins. A system for video surveillance and monitoring:VSAM final report. Carnegie Mellon University,. Technical Report:CMU-RI-TR-00-12.2000.
    [5]Weiming, H., et al., A survey on visual surveillance of object morion and behaviors. Systems, Man and Cybernetics, Part C, IEEE Transactions on,2004.34(3):334-352.
    [6]Liang, W., et al., Silhouette analysis-based gait recognition for human identification. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2003.25(12):1505-1518.
    [7]Boghossian. Motion-based machine vision techniques for the management of large crowds. In IEEE 6th International Conference on Electronics, Circuits and systems, Pafos, Cyprus,1999.
    [8]Suma, E.A., et al. FAAST:The Flexible Action and Articulated Skeleton Toolkit. Virtual Reality Conference (VR),2011 IEEE.2011.:247-248.
    [9]Wilson, A.D. Using a depth camera as a touch sensor. ITS'10 ACM International Conference on Interactive Tabletops and Surfaces.2010.
    [10]Sung,J., et al. Human Activity Detection from RGBD Images. AAAI 2011 Workshop: Plan, Activity, and Intent Recognition.2011.
    [11]Li, P., T. Zhang, and A.E.C. Pece, Visual contour tracking based on particle filters. Image and Vision Computing,2003.21(1):111-123.
    [12]Ming-Hsuan, Y. and N. Ahuja. Recognizing hand gesture using motion trajectories. Computer Vision and Pattern Recognition,1999. IEEE Computer Society Conference on.1999. 472 Vol.1.
    [13]Piccardi, M. Background subtraction techniques:a review. Systems, Man and Cybernetics, 2004 IEEE International Conference on.2004.:3099-3104 vol.4.
    [14]McKenna, S.J., et al., Tracking Groups of People. Computer Vision and Image Understanding,2000.80(1):42-56.
    [15]Sun, Y., et al., From GMM to HGMM:An Approach In Moving Object Detection. Computing and Informatics/Computers and Artificial Intelligence,2004.23(3).
    [16]Xu, Z., P. Shi, and I.Y.-H. Gu. An eigenbackground subtraction method using recursive error compensation.7th Pacific-Rim Conference on Multimedia.2006.:779-787.
    [17]Oliver, N.M., B. Rosario, and A.P. Pentland, A Bayesian computer vision system for modeling human interactions. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000.22(8):831-843.
    [18]Stauffer, C. and W.E.L. Grimson, Learning patterns of activity using real-time tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2000.22(8):747-757.
    [19]Power, P.W. and J.A. Schoonees, Understanding Background Mixture Models for Foreground Segmentation. Proceedings Image and Vision Computing New Zealand,2002:261-271.
    [20]Zivkovic, Z. Improved adaptive Gaussian mixture model for background subtraction. Pattern Recognition,2004. ICPR 2004. Proceedings of the 17th International Conference on.2004. 28-31 Vol.2.
    [21]孙运达.多视点非接触式人体运动捕捉的研究.北京交通大学博士学位论文.2006.
    [22]Sun, Y. and B. Yuan, Hierarchical GMM to handle sharp changes in moving object detection. Electronics Letters,2004.40(13):801-802.
    [23]Bouttefroy, P.L.M., et al. On the analysis of background subtraction techniques using Gaussian Mixture Models. Acoustics Speech and Signal Processing (ICASSP),2010 IEEE International Conference on.2010.:4042-4045.
    [24]王永忠等,基于自适应混合高斯模型的时空背景建模.自动化学报,2009.35(4):371-378.
    [25]Elgammal, A., D. Harwood, and L. Davis, Non-parametric Model for Background Subtraction. ECCV2000,2000.
    [26]Elgammal, A., et al., Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE,2002.90(7):1151-1163.
    [27]Mittal, A. and N. Paragios. Motion-based background subtraction using adaptive kernel density estimation. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2004.:302-309.
    [28]徐东彬,自适应核密度估计运动检测方法.自动化学报,2009.04(04):51.
    [29]周恩策等,基于时间窗的自适应核密度估计运动检测方法.通信学报,2011.3:106-114.
    [30]Kim, K., et al., Background modeling and subtraction by codebook construction. Image Processing,2004. ICIP'04.2004 International Conference on,2004.5:3061-3064.
    [31]Kim, K., D. Harwood, and L.S. Davis, Background updating for visual surveillance. In Proceedings of the International Symposium on Visual Computing,2005:1-337.
    [32]Kim, K., et al., Real-time Foreground-Background Segmentation using Codebook Model. Real-time Imaging,2005.11(3):167-256.
    [33]Kim, K., D. Harwood, and L.S. Davis, Background Updating for Visual Surveillance. International Symposium on Visual Computing (ISVC),2005. LNCS 3804.
    [34]Kong, Y., et al., Adaptive learning codebook for action recognition. Pattern Recognition Letters,2011.32(8):1178-1186.
    [35]Jing, Z. and S. Sclaroff. Segmenting foreground objects from a dynamic textured background via a robust Kalman filter2003.:44-50 vol.1.
    [36]Shengping, Z., et al. A covariance-based method for dynamic background subtraction. Pattern Recognition,2008. ICPR 2008.19th International Conference on.2008.:1-4.
    [37]Monnet, A., et al. Background modeling and subtraction of dynamic scenes. Computer Vision,2003. Proceedings. Ninth IEEE International Conference on.2003.:1305-1312 vol.2.
    [38]Li, C. and G. Minglun. Realtime background subtraction from dynamic scenes. Computer Vision,2009 IEEE 12th International Conference on.2009.:2066-2073.
    [39]Piccardi, M. and T. Jan. Mean-shift background image modelling. Image Processing,2004. ICIP'04.2004 International Conference on.2004.:3399-3402 Vol.5.
    [40]Piriou, G., P. Bouthemy, and J.F. Yao, Recognition of Dynamic Video Contents With Global Probabilistic Models of Visual Motion. Image Processing, IEEE Transactions on,2006. 15(11):3417-3430.
    [41]Boykov, Y.Y. and M.P. Jolly. Interactive graph cuts for optimal boundary& region segmentation of objects in N-D images. Computer Vision,2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on.2001.:105-112.
    [42]Kim, J., et al. Incorporating Spatial Priors into an Information Theoretic Approach for FMRI Data Analysis. Proc. Medical Image Computing and Computer-Assisted Intervention. 2000.:62-71.
    [43]Greig, D., B. Porteous, and A. Seheult, Exact Maximum A Posteriori Estimation for Binary Images. J. Royal Statistical Soc, Series B,1989.51(2):271-279.
    [44]Boykov, Y., O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2001.23(11):1222-1239.
    [45]Junhwan, K., V. Kolmogorov, and R. Zabih. Visual correspondence using energy minimization and mutual information. Computer Vision,2003. Proceedings. Ninth IEEE International Conference on.2003.:1033-1040 vol.2.
    [46]Kwatra, V., et al. Graphcut Textures:Image and Video Synthesis Using Graph Cuts. SIGGRAPH 2003.2003.:277-286.
    [47]Kolmogorov, V. and R. Zabih. Multi-Camera Scene Reconstruction via Graph Cuts. Proc. European Conf. Computer Vision.2002.:82-96.
    [48]Snow, D., P. Viola, and R. Zabih. Exact voxel occupancy with graph cuts. Computer Vision and Pattern Recognition,2000. Proceedings. IEEE Conference on.2000.:345-352 vol.1.
    [49]Boykov, Y. and D.P. Huttenlocher. A new Bayesian framework for object recognition. Computer Vision and Pattern Recognition,1999. IEEE Computer Society Conference on.1999. 513-523.
    [50]Thirion, B., et al. Fusion of color, shading and boundary information for factory pipe segmentation. Computer Vision and Pattern Recognition,2000. Proceedings. IEEE Conference on. 2000.:349-356.
    [51]高随祥,图论与网络流理论2009:高等教育出版社.
    [52]Greig, D., B. Porteous, and A. Seheult, Exact Maximum A Posteriori Estimation for Binary Images. Royal Statistical Soc, Series B,1989.51(2):271-279.
    [53]Boykov, Y., O. Veksler, and R. Zabih. Markov random fields with efficient approximations 1998.:648-655.
    [54]Ishikawa, H., Exact optimization for Markov random fields with convex priors. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2003.25(10):1333-1336.
    [55]Howe, N.R. and A. Deschamps, Better Foreground Segmentation Through Graph Cuts. Technical Reports of Cornell University,2004.
    [56]Sun, J., et al., Background Cut. ECCV2006,2006:628-641.
    [57]Kumar, M.P., P.H.S. Torr, and A. Zisserman, OBJCUT:Efficient Segmentation Using Top-Down and Bottom-Up Cues. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2010.32(3):530-545.
    [58]Kumar, M.P., P.H.S. Ton, and A. Zisserman. OBJ CUT. Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on.2005.:18-25.
    [59]Rother, C., V. Kolmogorov, and A. Blake. GrabCut_Interactive Foreground Extraction using Iterated Graph Cuts. SIGGRAPH04.2004.
    [60]Li, Y., J. Sun, and H.-Y. Shum, Video Object Cut and Paste. SIGGRAPH05,2005.
    [61]高文,陈熙霖,计算机视觉-算法与系统原理1999:清华大学出版社.
    [62]马颂德,张止友,计算机视觉-计算理与算法基础1998:科学出版社.
    [63]Patwardhan, K.A., G. Sapiro, and V. Morellas, Robust Foreground Detection In Video Using Pixel Layers. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2008.30(4): 746-751.
    [64]Sheikh, Y. and M. Shah. Bayesian object detection in dynamic scenes. Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on.2005.:74-79 vol.1.
    [65]Sheikh, Y. and M. Shah, Bayesian modeling of dynamic scenes for object detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2005.27(11):1778-1792.
    [66]http://www.svcl.ucsd.edu/projects/discsaltd/.
    [67]Dashan, G., H. Sunhyoung, and N. Vasconcelos, Discriminant Saliency, the Detection of Suspicious Coincidences, and Applications to Visual Recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2009.31(6):989-1005.
    [68]Dashan, G. and N. Vasconcelos. Discriminant Interest Points are Stable. Computer Vision and Pattern Recognition,2007. CVPR'07. IEEE Conference on.2007.:1-6.
    [69]Itti, L. and P. Baldi. A principled approach to detecting surprising events in video. Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on.2005.:631-637 vol.1.
    [70]Kass, M., A. Witkin, and D. Terzopoulos, Snakes:Active contour models. INTERNATIONAL JOURNAL OF COMPUTER VISION,1988.1(4):321--331.
    [71]Yu, Z., A.K. Jain, and M.P. Dubuisson-Jolly, Object tracking using deformable templates. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2000.22(5):544-549.
    [72]Paragios, N. and R. Deriche, Geodesic active contours and level sets for the detection and tracking of moving objects. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2000. 22(3):266-280.
    [73]Chengkai, W., Y. Baozong, and M. Zhenjiang, A moving object segmentation algorithm for static camera via active contours and GMM Science in China Series F:Information Science,2009, 52(2):322-328.2009.
    [74]Wan, C., B. Yuan, and Z. Miao. A NEW ALGORITHM FOR STATIC CAMERA FOREGROUND SEGMENTATION VIA ACTIVE COUTOURS AND GMM Proceedings of the 19th International Conference on Pattern Recognition, Page(s):1-42008.
    [75]Pan, P. and D. Schonfeld, Dynamic Proposal Variance and Optimal Particle Allocation in Particle Filtering for Video Tracking. Circuits and Systems for Video Technology, IEEE Transactions on,2008.18(9):1268-1279.
    [76]Laska, B.N.M., M. Bolic, and R.A. Goubran, Particle Filter Enhancement of Speech Spectral Amplitudes. Audio, Speech, and Language Processing, IEEE Transactions on,2010.18(8): 2155-2167.
    [77]Givon, D., P. Stinis, and J. Weare, Variance Reduction for Particle Filters of Systems With Time Scale Separation. Signal Processing, IEEE Transactions on,2009.57(2):424-435.
    [78]Movaghati, S., A. Moghaddamjoo, and A. Tavakoli, Road Extraction From Satellite Images Using Particle Filtering and Extended Kalman Filtering. Geoscience and Remote Sensing, IEEE Transactions on,2010.48(7):2807-2817.
    [79]Hammersley, J.M. Poor Man's Monte Carlo J of the Royal Statistical Society B, 1954,16(1):23-38.
    [80]Gordon, N. Novel approach to non-linear and non-Gaussian Bayesian state estimation[J]. Proc of Institute Electric Engineering,1993,140(2):107-113.
    [81]Isard, M. and A. Blake, CONDENSATION—Conditional Density Propagation for Visual Tracking. International Journal of Computer Vision,1998.29(1):5-28.
    [82]Isard, M. and B. A. ICondensation:Unifying low-level and high-level tracking in a stochastic framework.Proc of the Fifth European Conf on Computer Vision[C]. Berlin,1998: 893-908.
    [83]Khan, Z.H., I.Y.H. Gu, and A. Backhouse. Joint particle filters and multi-mode anisotropic mean shift for robust tracking of video objects with partitioned areas. Image Processing (ICIP),2009 16th IEEE International Conference on.2009.:4077-4080.
    [84]Khan, Z.H., I.Y. Gu, and A.G. Backhouse, Robust Visual Object Tracking Using Multi-Mode Anisotropic Mean Shift and Particle Filters. Circuits and Systems for Video Technology, IEEE Transactions on,2011.21(1):74-87.
    [85]Nummiaro. An adaptive color-based particle filter, Image and Vision Computing, 2003,Vol.21(1), pp.99-110.
    [86]Hess, R. and A. Fern. Discriminatively trained particle filters for complex multi-object tracking. Computer Vision and Pattern Recognition,2009. CVPR 2009. IEEE Conference on.2009. 240-247.
    [87]Fukunaga, K. and L. Hostetler, The estimation of the gradient of a density function, with applications in pattern recognition. Information Theory, IEEE Transactions on,1975.21(1):32-40.
    [88]Cheng, Y., Mean shift, mode seeking, and clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1995.17(8):790-799.
    [89]Choe, J.G., S. Joon-Hong, and L. Ju-Jang. Mean-shift tracker with face-adjusted model. Control, Automation and Systems,2008. ICCAS 2008. International Conference on.2008. 816-819.
    [90]Carreira-Perpinan, M.A., Gaussian Mean-Shift Is an EM Algorithm. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2007.29(5):767-776.
    [91]Comaniciu, D., V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean shift. Computer Vision and Pattern Recognition,2000. Proceedings. IEEE Conference on. 2000.:142-149 vol.2.
    [92]Comaniciu, D., V. Ramesh, and P. Meer, Kernel-based object tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2003.25(5):564-577.
    [93]Yizong, C., Mean shift, mode seeking, and clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1995.17(8):790-799.
    [94]Collins, R.T. Mean-shift blob tracking through scale space. Computer Vision and Pattern Recognition,2003. Proceedings.2003 IEEE Computer Society Conference on.2003.:Ⅱ-234-40 vol.2.
    [95]Azghani, M., et al. Intelligent modified mean shift tracking using genetic algorithm. Telecommunications (IST),2010 5th International Symposium on.2010.:806-811.
    [96]Ming-Yi, J., O. Chen-Sen, and C. Hao-Shiu. Mean shift tracking using fuzzy color histogram. Machine Learning and Cybernetics (ICMLC),2010 International Conference on.2010. 2904-2908.
    [97]Huiyu, Z., et al. Can Mean Shift Trackers Perform Better? Signal-Image Technology and Internet-Based Systems (SITIS),2010 Sixth International Conference on.2010.:98-101.
    [98]Stander, J., R. Mech, and J. Ostermann, Detection of moving cast shadows for object segmentation. Multimedia, IEEE Transactions on,1999.1(1):65-76.
    [99]Yoneyama, A., C.H. Yeh, and C.C.J. Kuo. Moving cast shadow elimination for robust vehicle extraction based on 2D joint vehicle/shadow models. Proceedings. IEEE Conference on Advanced Video and Signal Based Surveillance,2003.2003.:229-236.
    [100]Hsieh, J.-W., et al., Shadow elimination for effective moving object detection by Gaussian shadow modeling. Image and Vision Computing,2003.21(6):505-516.
    [101]Salvador, E., A. Cavallaro, and T. Ebrahimi. Shadow identification and classification using invariant color models. ICASSP 2001.2001.:1545-1548.
    [102]Jun-Wei, H., et al. A shadow elimination method for vehicle analysis. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on.2004.:372-375 Vol.4.
    [103]Prati, A., et al., Detecting moving shadows:algorithms and evaluation. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2003.25(7):918-923.
    [104]Horprasert, T., D. Harwood, and L.S. Davis. A statistical approach for real-time robust background subtraction and shadow detection. Proceedings of IEEE ICCV.1999.:1-19.
    [105]Mikic, I., et al. Moving shadow and object detection in traffic scenes. Pattern Recognition, 2000. Proceedings.15th International Conference on.2000.:321-324.
    [106]Cucchiara, R., et al. Improving shadow suppression in moving object detection with HSV color information. Intelligent Transportation Systems,2001. Proceedings.2001 IEEE.2001. 334-339.
    [107]Salvador, E., A. Cavallaro, and T. Ebrahimi, Cast shadow segmentation using invariant color features. Computer Vision and Image Understanding,2004.95(2):238-259.
    [108]Martel-Brisson, N. and A. Zaccarin. Moving cast shadow detection from a Gaussian mixture shadow model. Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on.2005.:643-648.
    [109]Martel-Brisson, N. and A. Zaccarin, Learning and Removing Cast Shadows through a Multidistribution Approach. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2007. 29(7):1133-1146.
    [110]Martel-Brisson, N. and A. Zaccarin. Kernel-based learning of cast shadows from a physical model of light sources and surfaces for low-level segmentation. Computer Vision and Pattern Recognition,2008. CVPR 2008. IEEE Conference on.2008.:1-8.
    [111]Zha, Y., Y. Chu, and D. Bi, A Boosting Discriminative Model for Moving Cast Shadow Detection, in Energy Minimization Methods in Computer Vision and Pattern Recognition2007. p. 253-266.
    [112]Zhang, W., et al., Moving Cast Shadows Detection Using Ratio Edge. Multimedia, IEEE Transactions on,2007.9(6):1202-1214.
    [113]Siala, K., et al. Moving shadow detection with support vector domain description in the color ratios space. Proceedings of the 17th International Conference on Pattern Recognition.2004. 384-387.
    [114]Kai-Tai, S. and T. Jen-Chao, Image-Based Traffic Monitoring With Shadow Suppression. Proceedings of the IEEE,2007.95(2):413-426.
    [115]Choi, J., Y.J. Yoo, and J.Y. Choi, Adaptive shadow estimator for removing shadow of moving object. Computer Vision and Image Understanding,2010.114(9):1017-1029.
    [116]Geman, S. and D. Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1984. PAMI-6(6):721-741.
    [117]Li, S.Z., Markov Random Field Modeling in Computer Vision 2001:Springer-Verlag.
    [118]Liu, Q., S.R. J, and L. Chingchung, An application of MAP-MRF to change detection in image sequence based on mean field theory. Journal on Applied Signal Processing,2005:956-968.
    [119]Kolmogorov, V. and R. Zabin, What energy functions can be minimized via graph cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions on,2004.26(2):147-159.
    [120]Boykov, Y. and V. Kolmogorov. Computing geodesics and minimal surfaces via graph cuts. Computer Vision,2003. Proceedings. Ninth IEEE International Conference on.2003.:26-33 vol.1.
    [121]Dempster, A., N. Laird, and D. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm. J. Royal Statistical Soc. (Series B),1977.39:1-38.
    [122]Herodotou, N., K.N. Plataniotis, and A.N. Venetsanopoulos. A color segmentation scheme for object-based video coding. Advances in Digital Filtering and Signal Processing,1998 IEEE Symposium on.1998.:25-29.
    [123]Blake, A., et al., Interactive Image Segmentation Using an Adaptive GMMRF Model. ECCV2004,2004.
    [124]Ford, L. and D. Fulkerson, Flows in Networks 1962:Princeton Univ. Press.
    [125]Boykov, Y. and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2004.26(9):1124-1137.
    [126]Kohli, P. and P.H.S. Torr, Dynamic Graph Cuts for Efficient Inference in Markov Random Fields. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2007.29(12):2079-2088.
    [127]http://cvrr.ucsd.edu/aton/shadow/.
    [128]Prati, A., et al., Detecting Moving Shadows:Formulation, Algorithms and Evaluation. Technical Report CSD-04-1340, Division of Computer Science, University of California, Berkeley, 2003.
    [129]边肇祺,张学工,模式识别(第3版)2010:清华大学出版社.
    [130]D.W., S., Multivariate density estimation 1992, New York:John Wiley and Sons.
    [131]Rosenblatt, M.,.Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics 1956.27:832-837.
    [132]Parzen, E., On estimation of a probability density function and mode. Annals of Mathematical Statistics,1962.33:1065-1076.
    [133]Glasmachers, T. and C. Igel, Maximum Likelihood Model Selection for 1-Norm Soft Margin SVMs with Multiple Parameters. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2010.32(8):1522-1528.
    [134]Bohyung, H., et al., Sequential Kernel Density Approximation and Its Application to Real-Time Visual Tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2008. 30(7):1186-1197.
    [135]Peng, N.S., J. Yang, and Z. Liu, Mean shift blob tracking with kernel histogram filtering and hypothesis testing. Pattern Recognition Letters,2005.26(5):605-614.
    [136]Kailath, T., The Divergence and Bhattacharyya Distance Measures in Signal Selection. Communications, IEEE Transactions on [legacy, pre-1988],1967.15(1):52-60.
    [137]ftp://ftp.cs.rutgers.edu/pub/elgammal/video.
    [138]Ojala, T., M. Pietikainen, and T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2002.24(7):971-987.
    [139]Ojala, T., M. Pietikainen, and D. Harwood, A comparative study of texture measures with classification based on featured distributions. Pattern Recognition,1996.29(1):51-59.
    [140]Zhao, G. and M. Pietikainen, Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2007.29(6):915-928.
    [141]Ahonen, T., A. Hadid, and M. Pietikainen, Face Description with Local Binary Patterns: Application to Face Recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2006.28(12):2037-2041.
    [142]http://www.nada.kth.se/-hedvig/data.html.
    [143]Nguyen, H.T., M. Worring, and R. van den Boomgaard. Occlusion robust adaptive template tracking2001.:678-683 vol.1.
    [144]Nguyen, H.T. and A.W.M. Smeulders, Fast occluded object tracking by a robust appearance filter. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2004.26(8): 1099-1104.
    [145]Peng, N.-S. and J. Yang, Mean-Shift Blob Tracking with Kernel-Color Distribution Estimate and Adaptive Model Update Criterion, in Statistical Methods in Video Processing2004. p. 83-93.
    [146]张贤达,现代信号处理2002:清华大学出版社.
    [147]陈尚勤,快速自适应信息处理1993:人民邮电出版社.
    [148]Hess, R. http://blogs.oregonstate.edu/hess/.
    [149]Hess, R., Object Tracking with Particle Filtering. course project presentation,2006.
    [150]Doucet, A., N.d. Freitas, and N. Gordon, Sequential Monte Carlo Methods in Practice2001:Springer.
    [151]Perez, P., et al. Color-Based Probabilistic Tracking. ECCV.2002.:661-675.
    [152]http://www.ces.clemson.edu/-stb/research/headtracker/.
    [153]http://pets2002.visualsurveillance.org/.
    [154]http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700