用户名: 密码: 验证码:
风雪两相流的风洞实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风吹雪对自然环境和社会经济有着很大的影响。在道路运输方面,风吹雪引起能见度下降和道路积雪,阻碍交通甚至引发交通事故,同时影响流域积雪分布;在山区,风吹雪是形成雪崩的重要因素之一,对基础设施和人类生命安全造成危害;风吹雪还对于草原地区雪水当量的输运以及维持冰原地区海—冰质量平衡具有重要的作用。
     目前,风吹雪运动的实验研究中往往采用人造雪,压实雪或者替代材料(如沙粒,种子等),这些颗粒材料与天然雪在物理和力学性质上有很大的差异,并不能真实有效的反映出自然条件下的风吹雪运动特征。一些特征量(受到测量仪器的限制)应用在雪崩等预测模型的数值结果与实际测量结果只能达到定性的关系,在定量上还有一定的差距。针对风雪运动中所关注的一些微观和宏观研究内容,结合我国风致积雪的实际问题,开展了对风雪运动机理的微观和宏观方面一些基础物理量进行实验及定量分析研究,主要工作如下:
     1.利用非接触式测量仪器-颗粒图像测速仪对平坦床面时的风吹雪中雪粒的微观运动进行研究,利用数理统计方法给出了不同风速下空中运动雪粒的速度分布函数的一般形式以及雪粒的平均速度与风速之间的关系。通过对近床面4~10mm范围内的雪粒速度和角度的分析得到风雪运动的重要特征量起跳初速度分布函数的形式和冲击速度分布函数形式以及起跳雪粒与冲击雪粒之间的关系。通过对不同高度处雪粒的速度进行分析后得到雪粒的平均速度廓线和不同粒径的雪粒速度随风速变化的一般函数形式。可由此来确定风吹雪强度随高度的变化情况。
     2.对图像进行处理后得到雪粒粒径分布情况,再利用上述内容的部分结果推导出风雪运动宏观运动的表现形式,如风吹雪结构和单宽输雪率等这些重要的基础研究内容,给出了单宽输雪率随摩阻风速变化的函数形式以及适应的范围,并将分析结果与野外实验结果进行了比较。通过风吹雪结构的变化给出了雪粒跃移运动的平均高度以及与风速之间的函数关系。
     3.针对山区等存在高湍流度条件下的风吹雪运动,对不同湍流度下的风吹雪运动进行研究,以得到湍流度对风雪输运的影响。利用集雪仪测量了不同的湍流度下风吹雪结构的廓线形式,并对单宽输雪率随风速和湍流度的变化情况进行了研究。通过分析风吹雪的水平通量和垂直通量的变化情况,得到雪粒的跃移高度和长度的变化规律以及平均跃移高度和长度的变化情况。
     4.通过对不同沉积时间积雪(新雪和老雪)的起动风速进行测量以及其经过平坦床面时的风吹雪结构进行研究,分析了沉积时间对风吹雪运动的影响,并将实验结果与野外实验结果进行了比较。
     5.针对我国北方存在公路风雪灾害的现象,对公路路基周围雪粒运动特征和风吹雪结构的变化进行研究,给出了一些定量的结果,这将为制定防治公路发生风致积雪的对策提供科学依据。
Drifting snow is a major natural hazard, endangering basic installation and human life in cold regions. Drifting snow can cause snow grains to accumulate on the road to block transportation, reduces visibility, and even lead to fatal traffic accidents. For many snow-covered mountains, redistribution of snow by wind result in irregular deposit, which induce locally increased loading rate in leeward slopes and has a crucial influence on avalanche danger. Furthermore, drifting snow plays a very important role in snow water equivalent of the transport in plains regions and keeping a mass balance of sea-ice in Arctic and Antarctic ice sheet. The research of drifting snow has important significance for economic development and environment protection.
     In the existing experimental researches on drifting snow, artificial snow, compacted snow as well as some other materials such as sands, seeds et al. were used to substitute natural snow grains. Because the physical and mechanical properties of those materials are quite different from natural snow, it is inappropriate to reflect the motion characteristics for drifting snow in natural conditions with these substitution materials. Some characteristic physical quantities in the avalanche model were limited by measurement instrument, thus, model predictions just show qualitative relevance with experimental data. There are some quantities differences between the theoretical results and the experimental ones. Motivated by the focus on some microcosmic and macroscopic problems related to the motions of drifting snow, as well as the drifting snow in our country, this dissertation presents experimental studies on some microcosmic and macroscopic characteristic physical quantities in the mechanism of the wind-snow motions. The main topics in this dissertation are as follows:
     1. Researches on the snow grains in drifting snow in the case of flat bed are conducted by Particle Image Velocimetry. Through statistical analyzing, the general form of velocities distribution function for snow particles under various wind speeds as well as the relationship between the mean velocity of snow particles and wind speed have been obtained. The key characteristic quantities-the probability distribution functions of liftoff velocities and impact velocities of particles as well as the relation between liftoff particles and impact ones are revealed by the analysis of the velocities and angles of grains in the height from4mm to10mm. The function relationship between the mean velocity of snow grains and wind speed, the velocity profile in the air versus height are shown by the analysis of particle velocities at different heights. Thus, the varying patterns of erosion intensity of snow drift with height are determined.
     2. The distributions of snow grain size are obtained through analyzing PIV images, and the macroscopic characteristic physical quantities of drifting snow such as drifting snow structures and the snow transport rate can also be derived by above methods. The function relationship between the the snow transport rate and friction velocity is presented and its validity is discussed. These results are compared with the field experimental data. Then, the relations of the mean height of the particles saltation with wind speed are determined based on the variations of drifting snow structures.
     3. For the drifting snow under high turbulent conditions such as in mountains, the drifting snows under different turbulent intensity are studied and the effects of turbulent intensity on the transport of drifting snow are obtained. With the aid of snow gather, vertical profiles of drifting snow under several turbulent intensities are given, and the relations among the snow transport rate and wind speed and turbulent intensity are also discussed. The variations of the saltation height and length of snow particles as well as the mean saltation height and length are given based on the analysis of the horizontal and vertical flux of drifting snow.
     4. Measurements on the threshold wind velocity of snow with different deposition time (fresh snow and old snow) are carried out. Comparing the measurement results with the field experimental data, the structures of drifting snow passing through a flat bed are studied, and the influence of deposition time on drifting snow is discussed.
     5. Aim at the highway snow disaster in north part of China, the movements of snow particles near sub-grade and the variations of drifting snow structure over highway subgrade are analyzed, and some quantitive results are presented. These results will be of benefit to preventing the drifting snow probems in the highway.
引文
[1]Anderson, R.S., Haff, P.K.. Simulation of eolian saltation[J]. Science.1988,241:820-823.
    [2]Anderson, R.S., Hallet, B.. Sendiment transport by wind:toward a general model[J]. Geol Soc Am Bull.1986,97:523-535
    [3]Anderson, R.S., S(?)rensen, M., Willetts, B.B.. A review of recent progress in our understanding of Aeolian sediment transport[J]. Acta. Mechanics.1991, Suppl.l:1-19.
    [4]Andreotti, B., Claudin, P., Pouliquen,O.. Measurements of the aeolian sand transport saturation length[J]. Geomorphology.2010,123:343-348.
    [5]Araoka, K., Maeno, N.. Dynamical behaviour of snow particles in the saltation layer[C]. In Proc.3rd Symp. on Polar Met.& Glaciology. Mem. Narl Ins. Polar Res., Tokyo.1981, 19:253-263.
    [6]Bagnold, R.A.. The physics of blown sand and deseart dunes[M].1941 London, Methuen and Co.
    [7]Bang, B., Nielsen, A., Sundsb(?), P.A.. et al., Computer simulation of wind speed, wind pressure and snow accumulation around buildings (SNOW-SIM) [J]. Energy and Buildings. 1994,21:235-243.
    [8]Bauer, B.O, Davidson-Arnott, R.G.D.. A general framework for modeling sediment supply to coastal dunes including wind angle, beach geometry and fetch effects[J]. Geomorphology. 2003,49:89-108.
    [9]Bauer, B.O., Davidson-Arnott, R.G.D., Hesp P A, et al. Aeolian sediment transport on a beach: surface moisture, wind fetch, and mean transport[J]. Geomorphology.2009,105:106-116.
    [10]Beyers, M., Harms, T.M.. Outdoors modelling of snowdrift at SANAE IV Research Station, Antarctica[J]. Journal of Wind Engineering and Industrial Aerodynamics.2003, 91:829-551-569
    [11]Beyers, M., Waechter, B.. Modeling transient snowdrift development around complex three-dimensional structures[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2008,96:1603-1615.
    [12]Bintanja, R. The contribution of snowdrift sublimation to the surface mass balance of Antarctica[J]. Ann. Glaciol. Soc.1998,27:251-259.
    [13]Bintanja R. Characteristics of snowdrift over a bare ice surface in Antarctuca[J]. Journal of Geophysical Research.2001,106(D):9653-9659
    [14]Bintanja, R.. A new power-law relation for vertical distribution of suspended matter[J]. Boundary-Layer Meteorology.2002,104:305-317.
    [15]Brock B.W, Willis I.C, and Sharp M.J. Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland[J]. Journal of Glaciology. 2006,52:281-297.
    [16]Budd, W.F.. The drifting of non-uniform snow particles. In:Rubin, M.J.(Ed.) Studies in Antarctic Meterology[M]. Antarctic Research Series Vol.9, American Geophysical Union, Washington, DC.1966, pp.59-70.
    [17]Budd, W.F., Dingle, W.R., Radok, U.. The Byrd snow drift project:outline and basic results. Studies in Antarctic Meteorology[J]. Am. Geophys. Union, Antarctic Res. Ser.9:71-134.
    [18]Chamberlain, A.C.. Roughness length of sea, sand, and snow[J]. Boundary-Layer Meteorology.1983,25:405-409.
    [19]Chritin, V., Bolognesi, R., Gubler, H.. FlowCapt:a new acoustic sensor to measure snowdrift and wind velocity for avalanche forcecasting[J]. Cold Regions Science and Technology.1999, 30:25-133.
    [20]Clifton, A., Ruedi, J.D., Lehning, M.. Snow saltation threshold measurements in a drifting-snow wind tunnel[J]. Journal of Glaciology.2006,52(179):585-596.
    [21]Clifton, A., Lehning, M.. Improvement and validation of a snow saltation model using wind tunnel measurements[J]. Earth Surface Processes and Landforms.2008,33(14):2156-2173.
    [22]Creyssels M, Dupont P, Ould el moctar A, et al. Saltating particles in a turbulent boundary layer:experiment and theory[J]. Journal of Fluid Mechanics.2009,625:47-74
    [23]Dong, Z.B., Wang, H.T., Liu, X.P., et al., Velocity profile of a sand cloud blowing over a gravel surface[J]. Geomorphology.2002,45:277-289
    [24]Dong, Z.B., Wang, H.T., Liu, X.P., et al. The blown sand flux over a sandy surface:a wind tunnel investigation on the fetch effect[J]. Geomorphology.2004,57:117-127.
    [25]Doorschot, J., Raderschall, N., Lehning, M.. Measurements and one-dimensional model calculations of snow transport over a mountain ridge[J]. Ann. Glaciol.2001,32:153-158.
    [26]Doorschot J., Lehning M. Equilibrium saltation:mass fluxes, aerodynamic entrainment, and dependence of grain properties [J]. Boundary-layer Meteorology.2002,104:111-130.
    [27]Dover, S.E.. Numerical modeling of blowing snow. Ph D, University of Leeds, Department of Applied Maths.1993.
    [28]Dyunin, AK. Solid flux of snow-bearing air flow. Trudy Transportno-Energeticheskogo Instituta (National Council of Canada. Technical Translation 1102).1963,4:71-83.
    [29]Fo'hn, P. M. B., Snow transport over mountain crests[J]. J. Glaciol.,1980,26:469-480.
    [30]Fryrear, D.W., Saleh, A.. Wind erosion:field length[J]. Solid Science 1996,161:398-404.
    [31]Gauer, P., Blowing and drifting snow in Alpine terrain:A physically-based numerical model and related field measurements, Mitt. Eidg. Inst. Schnee Lawinenforsch.,1999,58:128 pp., Swiss Fed. Inst. for Snow and Avalanche Res. SLF, Davos, Switzerland.
    [32]Gordon, M., Biswas, S., Taylor, P.A., et al., Measurements of drifting and blowing snow at Iqaluit, Nunavut, Canada During the STAR Project[J]. Atmosphere-Ocean.2010,48:81-100.
    [33]Gordon, M., Taylor, P.A. Measurements of blow snow, part I:particle shape, size distribution, velocity, and number flux at Churchill, Manitoba, Canada[J]. Cold Reg. Sci. Technol.2009, 55:63-74.
    [34]Gordon, M,. Savelyev, S.A., Taylor, P.A.. Measurements of blowing snow, part II:mass and number density profiles and saltation height at Franklin Bay, NWT, Canada[J]. Cold Reg. Sci. Tech.2009,55:75-85.
    [35]Gordon, M., Taylor, P.A.. The electric field during blowing snow events[J]. Boundary-Layer Meteorol.2009,130:97-115.
    [36]Greeley, R., Iversen, J.I.. Wind as a geological process[M].Cambridge University Process, Cambridge,1985
    [37]Higa, M., Arakawa, M Maeno, N.. Measurements of restitution coefficients of ice at low temperatures[J]. Planet. Space Sci.,1996,44:917-925.
    [38]Huang, N., Sang, J.B., Han, K.. A numerical simulation of the effects of snow particle shapes on blowing snow development[J]. Journal of Geophysical Research.2011,116:D22206.
    [39]Huang N, Zheng X J. Zhou Y H. et al. Simulation of wind-blowing sand movement and probability density function of liftoff velocities of sand particles[J]. Journal of Geophysical Research-Atmospheres,2006,111, D20201.
    [40]Inoue, J.. Surface drag over the snow Antarctic plateau.1.Factors controlling surface drag over the katabatic wind region[J]. J. Geophys. Res.1989,94:2207-2217.
    [41]Isyumov, N., Mikitiuk, K.. Wind tunnel model tests of snow drifting on a two-level flat roof[J]. Journal of Wind Engineering and Industrial Aerodynamics.1990,36:893-904.
    [42]Iversen, I.D..Comparison of wind-tunnel model and full-scale snow fence drifts[J]. Journal of wind Engineering and Industrial Aerodynamics.1981,8:231-249.
    [43]Jackson, B.S., Carroll, J.J.. Aerodynamic roughness as a function of wind direction over asymmetric surface elements[J].Boundary-Layer Meteorol.1978,14:323-330.
    [44]Judith, J., Doorschot, J.. Field measurements of snow-drift threshold and mass fluxes and related mold simulations[J]. Boundary-layer Meteorology,2004,113(3):347-368.
    [45]Kang, L.Q., Guo, L.J., Gu, Z.M., et al. Wind tunnel experiment investigation of sand velocity in aeolian sand transport[J]. Geomorphology,2008,97:438-450.
    [46]Kang, L.Q., Liu, D.Y.. Numerical investigation of particle velocity distributions in aeolian sand transport[J]. Geomorphology,2010,115:156-171
    [47]Kawamura, R. Sand movement caused by wind.1948,18:24-30.
    [48]Kikuchi, T.. A wind tunnel study of the aerodynamic roughness associated with drifting snow[J], Cold Reg. Sci. Tech.1981,5:107-118.
    [49]Kind RJ. Snowdrifting:A review of modelling methods[J]. Cold Regions Science and Technology.1986,12:217-228.
    [50]Kind RJ, Murray SB. Saltation flow measurements relating to modeling of snowdrifting[J]. Journal of Wind Engineering and Industrial Aerodynamics,1982,10:89-102.
    [51]Kobayashi, D., et al., Measurement of snow-drift using parallel trenches. Low Temperature Science, Ser.A,1969,27:99-106.
    [52]Kobayashi, D.. Studies of snow transport in low-level drifting snow. Contributions from the Insititute of Low Temperature Science A.1972,24:1-58.
    [53]Komarov AA. Some rules on the migration and deposition of snow in Western Siberia and their application to control measures. Trudy Transportno-Energeticheskogo Instituta (National Council of Canada. Technical Translation 1102,1963),4:89-97.
    [54]Kosugi, K., Nishimura, K., Maeno, N.. Studies on the dynamics of saltation in drifting snow. The report of the national research institute for earth science and disaster prevention.1995, 54:111-154.
    [55]Kosugi, K.,Sato, T., Sato,A.. Dependence of drifting snow saltation lengths on snow surface hardness[J]. Cold Reg. Sci.Technol.,2004,39:133-139.
    [56]Kosugi, K., Sato, T., Nemoto, M., et al., Verticle profiles of mass flux for different particle diameters in drifting snow over hard snow surfaces[J]. International Snow Science Worksshop,2008.2008,994-997.
    [57]Latham J. The electrification of snowstorms and sandstorms[J]. Q J Roy Meteorol. Soc.1964, 90:91-95.
    [58]Latham J and Mason B.J. Electric charge transfer associated with temperature gradients in ice[J]. Proc. Roy. Soc. A 1961,260:523-536.
    [59]Latham J and Montagne J. The possible importance of electrical forces in the development of snow cornices[J]. J. Glaciol.1970,9:375-384.
    [60]Latham J and Stow C.D. A laboratory investigation of the electrification of snowstorm[J]. Q J Roy Meteorol.1967,93:55-68.
    [61]Lehning, M., Doorschot, J., Bartelt, P.. A snowdrift index based on SNOWPACK model calculations[J]. Annual of Glaciology,.2000,31:382-386.
    [62]Lehning, M. Doorschot, J. Raderschall, N. et al., Snow engineering. Chapter combining snow drift and SNOWPACK models to estimate snow loading in avalanche slopes, Balkema, pp113-122.
    [63]Lehning, M., J. Doorschot, N. Raderschall, and P. Bartelt, Combining snow drift and SNOWPACK models to estimate snow loading in avalanche slopes, in Snow Engineering-Recent Advances and Developments:Proceedings of the Fourth International Conference, Trondheim, Norway,19-21 June 2000, edited by E. Hjorth-Hansen et al.,2000, pp:113-122,A. A. Balkema, Brookfield, Vt.,
    [64]Li, L., Pomeroy, J.W.. Estimates of threshold wind speeds for snow transport using meteorological data[J]. Journal of Applied Meteorology.1997,36:205-213.
    [65]Liston, G.E., Brown, R.L., Dent, J.D.. A two-dimensional computational model of turbulent atmospheric surface flows with drifting snow[J]. Ann. Glacilo.1993,18:281-286.
    [66]Maeno, N., Naruse, R., Nishimura,K., et al., Wind-tunnel experiments on blowing snow[J]. Ann. Glaciol.,1985,6:63-67.
    [67]Maeno, N., Nishimura, K., Sugiura.. Grain size dependence of eolian saltation lengths during snow drifting[J]. Geophysical Research Letters.1995,22:2009-2012.
    [68]Manes, C., Guala, M., Lowe, M., et al., Statistical properties of fresh snow roughness[J]. Water Resources Research.2008,44:w11407.
    [69]Mann G.W., Anderson P.S., Mobbs S.D. Profile measurements of blowing snow at Halley, Antarctica[J] Journal of Geophysical Research,2000,105:24494-24508.
    [70]Meister, R., Influence of strong winds on snow distribution and avalanche activity[J]. Ann. Glaciol.,1989,13:195-201.
    [71]Mellor, M., Optical measurements on snow. CRREL Res. Rep.1965,169.
    [72]Mellor, M. Gauging Antarctic Drift Snow. Oxford:Antarctic Meteorology Pergamon,1996. 347-354.
    [73]Michaux. Naaim-Bouvet, Kosugi et al. Study in a climatic wind tunnel (Cryospheric Environment Simulator) of the influence of the type of grain of snow and of the flow on the formation of a snow-drift. Houille Blanche-Revue Internationale De L Eau,2002,6-7:79-83.
    [74]Mitha, S., Tran, M.Q., Werner, B.T., et al., The grain-bed impact process in aeolian saltation. Acta Mechanica,1986,63:267-278.
    [75]Nalpanis, P Hunt J C R, Barrett C F. Saltating particles over flat beds[J]. Journal of Fluid Mechanics.1993,251:664-685
    [76]Narita, H.. Controlling factors of drifting snow. Memiors of National Insitittte of Polar Research Special Issue.1978,7:81-92.
    [77]Nemoto, M., and Nishimura, K., Direct measurements of shear stress during snow saltation[J]. Boundary-layer Meteorology.2001,100:149-170.
    [78]Nishimura, K., Hunt, J.C.R.. Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer. Journal of Fluid Mechanics[J].2000,417:77-102.
    [79]Nishimura, K., Sugiura, K., Nemoto, M., et al. Measurements and numerical simulations of snow-particle saltation[J]. Annals of Glaciology,1998,26:184-190.
    [80]Nishimura, K., Nemoto, M..Blowing snow at Mizuho station, Antarctica. Philosophical Transaction of the Royal Society A.2005,363:1647-1662.
    [81]Oikawa, S., Tomabechi, T., Ishihara, T.. One-day observations of snowdrifts around a model cube[J]. Journal of Snow Engineering of Japan.1999,15:3-11.
    [82]Okaze, T., Mochida, A., Tominaga, Y.. Wind tunnel investigation of drifting snow development in a boundary layer. Journal of Wind Engineering and Industrial Aerodynamics. 2012,104-106:532-539.
    [83]Oura, H., Ishida, T., Kkobayashi, D., et al. Studies on blowing snow, II. Proceeding of International Conference on Low Temperature Science, Vol.1. In:Physics of snow and ice. Part 2. Oura, H. ed. Sapporo Institute of Low Temperature Science,1967, pp:1099-1117.
    [84]O'Rourke, M., DeGaetano, A., Tokarczyk, J.D.. Snow drifting transport rates from water flume simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics.2004, 92:1245-1264.
    [85]Owen, P.R.. Saltation of uniform grains in air[J]. J. Fluild Mech.1964,606:399-410.
    [86]Pomeroy, J., Gray, D.. Saltation of snow[J]. Water Resour Res.1990,26:1583-1594.
    [87]Pomeroy, J.M., Male, D.H.. Steady-state suspension of snow[J]. J. Hydrol.,1992, 136:275-301.
    [88]Rasussen K. Some aspects of flow over coastal dunes. In:Gimminghan C H, Ritehie W, Willetts B B, et al (Eds). Symposium:Coastal Sand Dunes, Roy al Society of Edinburgh Proceeding.1989.96.
    [89]Rasmussen KR. S(?)rensen M. Vertical variation of particle speed and flux density in aeolian saltation:measurement and modeling[J]. Journal of Geophysical Research,2008, 113:F02S12.
    [90]Ronald, D., Tabler., Controlling blowing and drifting snow with snow fences and road design. Niwot. Colorado. America. Tabler and Associates.2003.
    [91]Sant'Anna, F.D.M., Taylor D.A.. Snow drifts on flat roofs:wind tunnel tests and field measurements. Journal of Wind Engineering and Industrial Aerodynamics.1990,34:223-250.
    [92]Sato, T., Kimura, T.. Field test of a new snow-particle counter (SPC) system[J]. Ann. Glaciol. 1993,18:149-154.
    [93]Sato, T., Kosugi, K., Sato, A.. Saltation-layer structure of drifting snow observed in wind tunnel[J]. Ann. Glaciol.2001,32:203-208.
    [94]Sato T., Kosugi K., Mochizuki S., Nemoto M. Wind speed dependences of fracture and accumulation of snowflakes on snow surface. Cold Regions Science and Technology.2008, 51:229-239.
    [95]Satoh, K., Takahashi, S.. Threshold wind velocity for snow drifting as a function of terminal fall velocity [J]. Bulletin of Glaciolgical Research.2006,23:13-21.
    [96]Schimidt, R.A.. A system that measures blowing snow. U.S. Dep. Agreic. For. Serv. Res. Pap RM-194.1977,80p
    [97]Schmidt, R.A.. Threshold wind-speeds and elastic impact in snow transport[J]. Journal of Glaciology.1980,26(94):453-467.
    [98]Schmidt, R.A.. Estimates of threshold wind speed from particle sizes in blowing snow[J]. Cold Regions Science and Technology.1981,4:187-193.
    [99]Schmidt, R.A.. Vertical profiles of wind speed, snow concentration, and humidity in blowing snow[J]. Boundary-layer Meteorology.1982,23:223-246.
    [100]Schmidt, R.A.. Measuring particle size and snowfall intensity in drifting snow[J]. Cold Regions Science and Technology.1984,9:121-129.
    [101]Schmidt, R.A.. Transport Rate of Drifting Snow and the Mean Wind Speed Profile[J]. Boundary-Layer Meteorology,1986,34:213-241.
    [102]Schmidt D.S, and Dent J.D. Measurements of the electric field gradient in a blizzard. Proceedings of International Snow Science Workshop, October 30-November 3,1994, Snowbird, UT, USA, pp197-202.
    [103]Schmidt D.S, Schmidt R.A, and Dent J.D. Electrostatic force on saltating sand[J]. J. Geophys.Res.1998,103(D8):8997-9001.
    [104]Schmidt, D.S., Schmidt, R.A., Dent, J.D.. Electrostatic force in blowing snow[J]. Boundary-Layer Meteorology.1999,93:29-45.
    [105]Schneiderbauer, S., Tschachler, T., Fischbacher, J., et al., Computational fluid dynamic (CFD) simulation of snowdrift in alpine environments, including a local weather model for operational avalanche warning[J]. Annals of Glaciology.2008,48:150-158.
    [106]Schweizer, J., Jamieson, J.B., Schneebeli, M.. Snow avalanche formation[J]. Reviews of Geophysics.2003,41(4), doi:10.1029/2002RG000123.
    [107]Shao, Y.P. Raupach, M.R.. The overshoot and equilibration of saltation[J]. Journal of Geophysical Research,1992,97:20559-20564.
    [108]Sharp, R.P.. Wind-driven sand in Coachella Valley, Valifornia[J]. Geologival Society of America Bulletin,1964,75:785-804
    [109]Shiotani, M.. An observation on the vertical distribution of snow drift density[J]. Seppyo. 1953,15:6-9.
    [110]Simpson G.C. Birtish Antarctic expedition.1910-1913,1 Thacker, Spink @Co.326pp.
    [111]Smedley, D.J., Kwok, K.C.S., Kim, D.H.. Snowdrifting simulation around Davis Station workshop, Antarctica. Journal of Wind Engineering and Industrial Aerodynamics.1993, 50:153-162.
    [112]Sommerfeld, R., Businger, J.A.. The density profile of blown snow[J].J. Geophys. Res, 1965,70:3303-3306.
    [113]Stanislas, M, Kompenhas, J, Westerweel.J., Particle Image Velocity. Progress Towards Industrial Application. Kluwer Academic Publishers, Dordrecht. The Netherland.2000.
    [114]Sugiura, K., Maeno, N.. Wind-tunnel measurements of restitution coefficients and ejection number of snow particles in drifting snow:determination of splash functions[J]. Boundary-Layer Meteorology.2000,95:123-143.
    [115]Sugiura, K., Nishimura, K., Maeno, N.. et al., Measurements of snow mass flux and transport rate at different particle diameters in drifting snow[J]. Cold Region Science and Technology,1998,27:83-89.
    [116]Sundsb(?), P.A.. Numerical modeling and simulations of snow drift. Ph D Thesis, The Norwegian University Science and Technology, Trondheim, Norway,1997.
    [117]Sundsb(?), P.A.. Numerical simulations of wind deflection fins to control snow accumulation in building steps[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1998,74-76:543-552.
    [118]Takabasid, S. Characteristics of drifting snow at Mizuho station, Antarctica[J]. Ann. Glaciol.,1985,6:71-75.
    [119]Takeuchi, M.. Vertical profiles and horizontal increasing of drifting snow transport[J]. J. Glaciol.1980,26:481-492.
    [120]Tominaga, Y., Mochida, A.. CFD prediction of flowfield and snowdrift around a building complex in a snowy region[J]. Journal of Wind Engineering and Industrial Aerodynamics.1999,81:273-282.
    [121]Thiis, T.K.. Large scale studies of development of snowdriftings around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics.2003,91:829-839.
    [122]Tominaga, Y., Mochida, A., Yoshino, H., et al., CFD analysis of wind environment and snowdrift around building complex, In:The third international conference on cold climate herting, ventilating and air-conditioning, Sapporo, Japan:2000.pp:69-74.
    [123]Tominaga, Y, Okaze, T., Mochida, A.. Prediction of snowdrift around a cube using CFD model incorporating effect of snow particles on turbulent flow. The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12,2009, Taipei, Taiwan.
    [124]Tsuchiya, M., Tomabechi, T., Hongo, T., et al., Wind effects on snowdrift on stepped flat roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics.2002,90:1881-1892.
    [125]Uematsu, T., Nakata, T., Takeuchi, K., et al., Three-dimensional numerical simulation of snowdrift[J]. Cold Regions Science and Technology.1991,20:65-73.
    [126]Ungar, J.E., Haff, P.K.. Steady state saltation in air[J]. Sedimentology.1987, 34:289-299.
    [127]White, B.R., Schulz, J.C.. Magnus effect on saltations. Journal of Fluid Mechanics[J]. 1977,81:497-512.
    [128]Willetts, B.B., Rice, M.A.. Intersaltatiing collisions. In:Barndorff-Nielsen O E et al. eds. Processdings of International Workshop on the physics of blowing sand. Aarhus:University of Aarhus.1985,83-100.
    [129]Yang, P., Dong, Z.B., Qian, G.Q., et al. Height profile of the mean velocity of an aeolian saltating cloud:wind tunnel measurements by particle image velocimetry[J]. Gemorphology, 2007,89:320-334.
    [130]Zhang, J, Huang, N.. Simulation of snow drift and the effects of snow particles on wind[J]. Modelling and simulation in engineering,2008,1-6.
    [131]Zheng, X.J.. Mechanics of wind blowing sand movements[M].Springer.
    [132]Zheng, X.J., Huang, N., Zhou, Y.H.. Laboratory measurement of electrification of wind-blown sand and simulation of its effects on sand saltation movement[J]. Journal of Geophysic Research.2003,108(D10):4322.
    [133]Zheng, X.J., Huang, N., Zhou, Y.H.. The effect of electrostatic force on the evolution of sand saltation cloud[J]. The European Physical Journal E.2006,19:129-138.
    [134]Zheng, X.J., Xie, L., Zhou, Y.H.. Exploration of probability distribution of velocities of saltating sand grains based on the stochastic grain-bed collisions[J]. Physiscs Letters A.2005, 341:107-118.
    [135]Zhou, Y.H., Guo, X., Zheng, X.J.. Experimental measurement of wind-sand flux and sand transport for naturally mixed sands[J]. Physical Review E.2002,66:021305.
    [136]Zhou, Y.H., He, Q.S., Zheng, X J.. Attenuation of electro-magnetic wave propagating in sandstorm with consideration of charged sand[J]. The European Physical Journal E.2004, 17:181-187.
    [137]Zhou, Y.H., Li, W.Q., Zheng, X.J.. Particle dynamics method simulations of stochastic collisions of sandy grain bed with mixed size in Aeolian sand saltation[J]. Journal of Geophysical Research.2006,111:D15108.
    [138]Zou, X.Y., Wang, Z.L., Hao, Q.Z., et al., The distribution of velocity and energy of saltating sand grains in wind tunnel[J]. Geomorphlogy.2001,36:155-165.
    [139]陈晓光,李俊超,李长林等.风吹雪对公路的危害及其对策研讨[J].公路.2001,6(6):113-117.
    [140]李栋梁,王春学.积雪分布及其对我国气候影响的研究进展[J].大气科学学报.2011,05
    [141]李培基.中国积雪分布[J].冰川冻土.1983,5:9-18.
    [142]李培基.积雪大尺度气候效应综述[J].冰川冻土.1993,4.
    [143]何丽红.风-沙-电的多场耦合效应及其对风沙跃移运动的影响[博士论文].兰州.兰州大学,2005.
    [144]黄宁.沙粒带电及风沙流电场对风沙跃移运动影响的研究[博士论文].兰州,兰州大学.2002
    [145]黄宁,郑晓静.风沙跃移运动发展过程及静电力影响的数值模拟[J].力学学报.2006,38:146-152.
    [146]马高升,黄宁.风吹雪临界起动风速的研究[J].兰州大学(自然科学版).2006,42(6):130-134.
    [147]王中隆,我国雪害及防治研究[J].山地研究,1983,1(3)
    [148]王中隆.中国风吹雪及其防治研究[M].兰州:兰州大学出版社.2001.
    [149]魏玉光,杨浩,韩学雷[J].中国安全科学学报2004,14(4):40-42.
    [150]张洁.平坦床面上风雪流运动的力学机理分析[硕士论文].兰州大学,兰州.2008.
    [151]http://news.xinhuanet.com/newscenter/2008-08/23/content 9647678.htm.
    [152]http://news.eastday.com/c/20100104/ula4927507.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700