用户名: 密码: 验证码:
城市污水处理厂水质提高与污泥堆肥技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展和城市化进程的加快,城市用水供需矛盾日益加大。进一步开发城市污水,实现污水资源化和中水回用并妥善处置剩余污泥,对于保障城市安全供水和环境资源的可持续利用具有重大的战略意义。近年来,A2/O(Anoxic/Anaerobic/Oxic)工艺在城市污水处理中已得到了广泛应用,但作为二级单元处理城市污水,A2/O工艺仍然面临着氮磷去除性能不稳定、碳源不足和剩余污泥处置难等问题。
     本文针对我国城市污水处理厂进水水质特征,模拟并开展了A2/O工艺处理城市污水的中试研究,重点考察了调整工艺运行参数、外加碳源以及化学药剂辅助除磷等措施对工艺氮磷去除性能的影响并进行了优化,随后又在此基础上后置高效纤维滤池和紫外消毒对A2/o工艺出水做进一步深度处理,探讨其工艺参数,系统的提出了一套水质再提高技术集成优化方案并用于指导实际工艺调试运行。此外,围绕城市污水处理厂剩余污泥的处置问题,本文还着重开展了利用污泥制备生物菌肥的技术研究,综合考察了污泥特性、原料构成、生物菌种配比以及功能菌的投加对污泥堆肥的影响,在注重工程实际应用的同时,从理论上阐明了采用活性污泥制备生物菌肥的可行性。主要工作如下:
     (1)对A2/O工艺运行参数进行优化调整并考察了外加碳源和化学辅助药剂对工艺氮磷去除性能的强化作用效果。
     ①水力停留时间和内回流比对工艺氮磷去除性能的影响大于对有机物的去除。延长水力停留时间和增加回流比在一定程度上有助于提高工艺的硝化效率和氮磷去除效果。综合考察,确定水力停留时间10h、内回流比200%为实现工艺最佳污染物去除效果的参数条件。此外,工艺在较短的水力停留时间(6h)和较小的内回流比(100%)下能够实现较高的COD去除效率,体现出较强的耐有机负荷能力。
     ②投加碳源甲醇能够改善工艺对氮磷的去除效果,但对工艺的COD去除性能影响较小。研究结果表明,当甲醇投加量超过40mg/L,工艺对氮磷的去除效率提高不明显,基本趋于稳定,实验确定甲醇投加最佳量范围为20-40mg/L。关于厌氧区硝酸盐氮对聚磷菌除磷效果的影响研究表明,当厌氧区硝酸盐氮浓度大于2mg/L时,厌氧区聚磷菌的释磷特性就会受到明显的抑制。甲醇的投加对聚磷菌的释磷性能的影响不明显。
     ③三种化学药剂聚合氯化铝、聚合氯化铝铁和聚合硫酸铝均能起到强化工艺除磷性能的作用,但聚合硫酸铝的效果最好。实验确定实现工艺出水满足一级A排放标准的最佳聚合硫酸铝投加量为40mg/L,最佳投加点为二沉池前端。
     (2)研究了后置纤维滤池对A2/O工艺出水水质再提高的强化效果并探讨了工艺参数。
     ①纤维滤池在初始滤速分别为10m/h、20m/h、30m/h、40m/h的条件下,对于不同进水浊度和初始滤速,纤维滤池在有效过滤期内的滤出水浊度均能稳定在1NTU以下,运行周期长并体现出良好的反洗效果。
     ②通过优化,最终确定滤速20m/h,有效过滤周期22h为最佳运行参数条件,此时,工艺周期产水量为440m3/m2(滤料),反冲洗耗水率为3%左右。
     ③纤维滤池在最佳操作条件下对进水悬浮物中所携带的COD的去除率在56%以上,但对溶解性的COD基本没有去除。
     (3)现场实际工艺的调试运行
     ①根据中试实验结果对光大水务济南有限公司二厂工艺运行参数进行调整,确定最佳参数条件范围为:水力停留时间10-12h、内回流比150-200%、外回流比100%、污泥龄20d。
     ②A2/O工艺出水在投加化学除磷药剂并经过高效纤维滤池和紫外消毒处理后,最终出水能够稳定达到一级A排放标准。
     ③受济南市南水北调工程和城市管网建设的影响,光大水务济南有限公司二厂进水水质较改造前有了明显变化,目前碳源基本满足工艺需要,不需要额外增加。
     (4)污泥制备生物菌肥技术研究
     ①通过对光大水务(济南)有限公司污泥性质的分析,发现污泥中含有丰富的有机质和植物营养成分,同时重金属含量很低,能够满足污泥农用要求。
     ②污泥、稻壳、蘑菇渣的肥料组成在发酵时间、发酵温度、腐熟效果上均明显优于污泥、稻壳、草炭、粉煤灰的肥料组成,说明将脱水污泥、稻壳和蘑菇渣以57.25:16.20:24.50的比例混合有较好的发酵效果,适宜制备生物菌肥。
     ③在堆肥过程中添加0.2%-0.3%的复合菌有利于物料的高效发酵,并且添加的有益菌可以为作物提供良好的微生态环境。
     ④物料发酵后添加功能菌种枯草芽孢杆菌能够提高菌肥的肥效,增加作物的抗病能力,最终产品能够达到《生物有机肥》(NY884-2004)国家标准。
With the development of economy and the acceleration of urbanization, the contradiction between supply and demand of urban water is rising. To realize the reuse of wastewater and reclaimed water, it is very necessary to further develop the urban sewage and proper dispose surplus sludge. And it is of great strategic significance for ensuring safety of city water and sustainable use of environmental resources. In recent years, A2/O (Anoxic/Anaerobic/Oxic) technology has been widely used in the urban sewage treatment. However, as a secondary unit of urban sewage treatment, A2/O process still faced with some problems like removal performance instability of nitrogen (N) and phosphorus (P), carbon source deficiency and disposal difficulty of excess sludge.
     This study simulated and developed pilot test of A2/O process to treatment urban wastewater according to China's urban sewage treatment plants feed water quality characteristics. The influence on the performance of N and P removal process and measures were studied and optimized, like operation parameters of adjustment process, dosing carbon sources and auxiliary chemicals, etc. Following to these treatments, the effluent of A2/O were post further processed by high efficiency fibrous filter chamber and UV disinfection measure, and the process parameters of these treatments were discussed. A scheme of integration and optimization of further improvement technology of municipal sewage treatment plant water quality was proposed and applied to guide practical test and operation process. In addition, the urban sewage treatment plants surplus sludge was used to prepare bacterial manure. And the influence factors of sludge compost were investigated, like sludge characteristics, raw material composition, and ratio of biological strains and dosing of functional bacteria. While the application effects were considered, the feasibility to prepare bacterial manure by active sludge was discussed theoretically. The main works are as follows:
     (1) Optimization of process parameters of A2/O and investigation the performance to N and P removal of adding carbon sources and auxiliary chemicals
     ①The hydraulic retention time (HRT) and inner recycling ratio have greater influence to N and P removal than organics removal process. Prolonging HRT and increasing reflux ratio contribute to improve nitrification efficiency and N/P removal effect to some extent. It is shown that under the optimum parameter conditions:HRT is10h, inner recycling ratio is200%, the effect of pollutants removal is the best. In addition, the process could achieve high COD removal efficiency in a relatively short period of HRT (6h) and small reflux ratio (100%), which reflects the strong resistance to organic load capacity.
     ②Dosing methanol could improve removal effect of N and P while it has little influence to the removal performance of COD and NH3-N. The results indicate that, the efficiency of N and P removal process is not apparent, tending to be stable when the dosing quantity of methanol is more than40mg/L. And the optimum dosing range of methanol is20-40mg/L. Study on the influence of nitrate N to P removal effect of P enrichment bacteria in anaerobic zone indicates that the release P characteristic P of enrichment bacteria will be obviously inhibited when nitrate N concentrations is more than2mg/L in anaerobic zone. The influence on dosing methanol to the performance of release P of P enrichment bacteria is not obvious.
     ③Three kinds of chemicals, polyaluminium chloride (PAC), polymeric aluminum ferric chloride (PAFC) and polyaluminium sulfate (PAS), could strengthen P removal function of treatment process. And the effluent quality can meet the first class of A standard while the optimum dosing quantity of chemicals is40mg/L PAC in the front of secondary sedimentation tank.
     (2) Study on the treatment effect and process parameters of high efficiency fibrous filter chamber to effluent of A2/O
     ①The filter water turbidity could be reduced to1NTU or less in4min when the initial speed of fibrous filter chamber are10m/h,20m/h,30m/h,40m/h. In addition, the effluent turbidities from fibrous filter chamber are all below1NTU in different turbidities and initial filter speeds, and there are long running period and get a good result in backwashing.
     ②The optimum operation parameters were obtained with the filter speed of20m/h and filtration cycle22h. The periodic quantity of water produce is440m3/m2and water consumption rate of backwashing is about3%.
     ③The COD removal rate of suspended substances is above56%by fibrous filter chamber in the optimum operating conditions, while it does not work with the dissolution of COD.
     (3) Commissioning and operation of field process
     ①The pilot plant test results indicate that the optimum operating condition of Guangda water resources Jinan Co., Ltd Plant2is HRT10-12h, inner and external recycling ratio150-200%and100%and sludge age20d.
     ②The effluent of A2/O were added chemicals, post further processed by high efficiency fibrous filter chamber and UV disinfection measure. And the final effluent water quality could reach the first class of A standard.
     ③Compared with the influent quality before transformation, a significant change was discovered in Guangda water resources Jinan Co., Ltd Plant2, under the influence of South-to-North Water Transfer Project and municipal water supply network construction in Jinan City. At present, carbon source could meet the need of process.
     (4) Preparation technology of bacterial manure by active sludge
     ①The analysis of sludge properties of Guangda water resources Jinan Co., Ltd indicate that the sludge are rich in organic matter and plant nutrition ingredient while the heavy metals concentrations was low, which can meet the requirements of farmland application.
     ②The composting effect, fermentation time and temperature of the fertilizer composition of sludge, rice husk and mushroom residue are much better than the composition of sludge, rice husk, peat and fly ash. And the most feasible conditions to prepare bacterial manure are the ratio of dewatered sludge, rice husk and mushroom residue is57.25:16.20:24.50.
     ③It is beneficial to high efficient fermentative material for dosing compound bacteria with0.2%-0.3%during the composting process. And it could provide a suitable micro-ecological environment for crops adding beneficial bacteria.
     ④It could improve fertilizer efficiency of bacterial manure, enhance the crops' resistance to disease and the final product could reach the national standard of biological organic fertilizer (NY884-2004), adding bacillus subtilis after the material fermentation.
引文
[1]中国水资源现状.天星教育网[EB/OL]. http://www.tesoon.com/a/08/36208.htm
    [2]张云橄,邢国平,陈若宇.生物活性炭滤池预处理微污染原水运行方式比较[J].净水技术.2003,22(3):19-21.
    [3]中国环境状况公报,中国政府网[EB/OL].2003, http://www.gov.cn/test/2005-07/01 /content 11691.htm
    [4]刘连成.中国湖泊富营养化的现状分析[J].灾害学.1997,12(3):61-65.
    [5]林文波,李慧秋,王圣杰.城镇污水处理厂达国家一级排放标准的工艺选择实例[J].水工业市场,2009,(11):63-66.
    [6]吴昌永,彭永臻,彭轶.A2/O工艺的反硝化除磷特性研究[J].中国给水排水,2008,24(15):11-14.
    [7]张杰,臧景红.A2/O工艺的固有缺欠和对策研究[J].给水排水,2003,29(3):22-26.
    [8]Henze M. Capabilities of biological nitrogen removal processes from wastewater[J]. Water Sci Technol,1991, (23):669-679.
    [9]郭海娟,马放,沈耀良.C/N比对反硝化除磷效果的影响[J].环境科学学报,2005,25(3):367-371.
    [10]郝红元,郝红英,王伟.A2/O工艺影响因素的研究[J].给水排水,2003,29(4):12-15.
    [11]周爱姣,陶涛,张太平,等.A-A2/O工艺处理低碳源城市污水的除磷脱氮效果[J].环境科学与技术,2008,31(12):150-152.
    [12]郑兴灿.城市污水处理技术决策与典型案例[M].北京:中国建筑工业出版社,2007.
    [13]王佳伟,郑江,周军,等.基于碳源需求的A2/O工艺分段进水研究[J].中国给水排水,2010,26(11):47-50.
    [14]李燕峰,管真真,郭方铮.临沂污水处理厂除磷脱氮工艺改造成果介绍[J].科技咨询导报,2007,26:113-114.
    [15]Chang H Y, Ouyang C F. Improvement ofnitrogen and phosphorus removal in the an aerobic-oxic-anoxic-oxic process by stepwise feeding[J]. Wat Sci Tech,2000,42(3-4):89-94.
    [16]林桂炽,黄玲珍.不同碳源对冷轧不锈钢废水生物脱氮的影响研究[J].广东化工,2007,34(165):77-78.
    [17]许文峰,李桂荣,汤洁.不同碳源对缺氧生物滤池生物脱氮的试验研究[J].吉林大学学报(地球科学版),2007,37(1):139-143.
    [18]王丽丽,赵林,谭欣,等.不同碳源及其碳氮比对反硝化过程的影响[J].环境保护科学,2004,30(1):15-18.
    [19]孙慧,郑兴灿,孙永利,等.外加碳源对改良A2/O工艺反硝化除磷的影响[J].中国给水排水,2010,26(13):82-85.
    [20]王晓莲,王淑莹,彭永臻.进水C/P比对A2/O工艺性能的影响[J].化工学报,2005,56(9):1765-1770.
    [21]吴昌永,彭永臻,彭轶.A2/O工艺处理低C/N比生活污水的试验研究[J].化工学报,2008,59(12):3126-3131.
    [22]Jens M, Eva A S I. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J]. Wat Res,1999,33(8):1871-1883.
    [23]Vlekke G J F M., Comeau Y, Oldham W K. Biological phosphate removal from wastewater with oxygen or nitrate in sequencing batch reactors[J]. Environmental Technology Letters,1988,9: 791-796.
    [24]Kuba T, Smolders G J F, Loosdrecht M C M, et al. Biological phosphorus removal from wastewater by anaerobic-aerobic sequencing batch reactor[J]. Wat. Sci Tech,1993,27(5/6): 241-252.
    [25]刘宝玲.A2/O 工艺改善污水处理除磷脱氮的措施[J].污染防治技术,2003,16(2):65-67.
    [26]魏新庆,王秀朵.多功效UCT处理工艺的工程应用[J].中国给水排水,2008,34(3):45-48.
    [27]张忠祥.废水生物处理新技术[M].北京:清华大学出版社,2004.
    [28]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007.
    [29]李军,杨秀山,彭永臻.微生物与水处理工程[J].北京:化学工业出版社,2002,364-365.
    [30]万年红.A2/O工艺的改良与设计应用[J].中国给水排水,2003,19(8):81-83.
    [31]White J S, Bayley S E, Curtis P J. Sediment storage o f phosphorus in a northern prairie wetland receiving municipal and agro-industrial wastewater[J]. Ecol Eng,1999,14(1-2):127-138.
    [32]张志斌,周峰,杜明臣,等.化学同步除磷药剂的优选研究[J].中国给水排水,2010,26(11):104-106.
    [33]张亚勤.污水处理厂达到一级A排放标准中的化学除磷[J].中国市政工程,2009,142:40-41.
    [34]Saito T, Brdjanovic D, Vanloosdrecht M C M, et al. Effect of nitrite on phosphate uptake by phosphate accumu-lating organisms[J]. Wat Res,2004,38(17):3760-3768.
    [35]Maurer, Abramovich, Siegrist, et al. Kinetics of biologically induced phosphorus precipitation in wastewater treatment[J]. Wat Res,1999,33(2):484-493.
    [36]侯红娟,周琪.城市污水除磷技术发展[J].四川环境,2004,23(6):41-45.
    [37]王文超,张华,张欣.化学除磷在城市污水处理中的应用[J].水科学与工程技术,2008,1:14-16.
    [38]吴燕,安树林.废水除磷方法的现状与展望[J].天津工业大学学报,2001,20(1):20-21.
    [39]于晓浩,陈银广,顾国维.城市污水除磷技术研究-化学强化一级除磷与生物除磷[J].环境科学与技术,2008,31(11):82-85.
    [40]宋志伟,张芙蓉.污泥浓度对膜生物反应器处理焦化废水的影响[J].黑龙江科技学院学报,2009,19(6):423-426.
    [41]李思敏,王俊,宋晓娟.不同混凝剂除磷效果的研究[J].河北工程大学学报(自然科学版),2010,27(1):51-54.
    [42]王立立,张娜,胡勇有.生活污水化学强化混凝除磷试验研究[J].工业水处理,2006,26(3):26-29.
    [43]李军,任健,杨晓冬,等.碳源受限型污水化学辅助除磷试验[J].北京工业大学学报,2009,35(10):1396-1401.
    [44]俞蕴芳,顾俊.城市污水化学除磷药剂的选择实验研究[J].污染防治技术,2010,23(4):74-76.
    [45]王秋阳,李涛,王东升,等.A2/O污水处理工艺化学强化除磷研究[J].环境工程学报,2008,2(11):1501-1505.
    [46]邢伟,黄文敏,李敦海,等.铁盐除磷技术机理及铁盐混凝剂的研究进展[J].给水排水,2006,32(2):88-9].
    [47]甘莉,甘光奉.铝铁复合混凝剂的研究新进展[J].给水排水,2004,4(1):58-63.
    [48]Sedlak R. Phosphorus and nitrogen removal from municipal wastewater principles and practice[M].2nd ed. New York:Lewis Publishers,1999.
    [49]Metcalf, Eddy I. Wastewater engineer treatment and reuse[M].4th ed. New York:Mc Graw-Hill,2003.
    [50]段瑞文.化学辅助除磷在改良A2/O工艺中的应用[J].中国给水排水,2005,21(8):94-96.
    [51]周克钊.生物/化学(BC)法处理城市污水研究[J].中国给水排水,2000,16(10):13-16.
    [52]李炜炜,吴国防,丁云松,等.城市污水厂化学除磷投药点后移的生产性试验[J].中国给水排水,2010,26(10):107-109.
    [53]温沁雪,王官胜,陈志强,等.聚合铝铁强化A2/O系统脱氮除磷研究[J].哈尔滨工业大学学报,2010,42(6):945-948.
    [54]李家元.优化混凝沉淀法处理乐果农药废水的研究[J].安徽农业科学,2010,38(23):12564-12566.
    [55]杨文澜,王波,余磊磊,等.混凝沉淀/水解酸化/SBR工艺处理液晶屏生产废水[J].2010,26(12):109-111.
    [56]张新,尹锦锋.石灰和混凝沉淀相结合处理含S042-和F-矿井水[J].能源环境保护,2010,24(5):20-23.
    [57]吴敬东.纤维束过滤技术在污水厂提标改造中的应用[J].中国资源综合用,2010,28(7):60-62.
    [58]吕文胜,任晓杰.自调节纤维过滤技术在滤池改造中的应用[J].中国给水排水,2010,26(10):91-93.
    [59]中明杨,王郑,刘璐,等.凹凸棒复合滤料生物过滤去除Fe2+性能研究[J].能源环境保护,2010,24(4):30-33.
    [60]李欲如,梅荣武,沈浙萍,等.催化氧化预处理及气浮-水解酸化-接触氧化工艺处理原料药废水[J].环境工程,2010,28(5):20-23.
    [61]林方敏,李鑫华.气浮-UMBR工艺处理回用机械加工废水[J].给水排水,2010,36(9):56-58.
    [62]罗虎,郜培,林海龙,等.气浮法处理玉米淀粉生产装置工艺水的研究[J].粮食与饲料工业,2010,10:24-25.
    [63]张慧芬,胡静文,罗婷.几种国内城市污水处理厂消毒工艺的比较[J].山西建筑,2010,36(34):194-195.
    [64]蓝先标.覃秒意污水厂出水消毒效果影响因素的探讨[J].广东化工,2010,10:111-113.
    [65]严冬.污水处理中紫外消毒效果的研究[J].环境科学与管理,2010,35(11):110-112.
    [66]关文秀,赵舒达.普通快滤池的自控运行[J].黑龙江水利科技,2009,37(3):105.
    [67]文屹,张啸楚,苏焱顺.快滤池接触过滤法处理低温低浊度研究与应用[J].山西建筑,2010,36(33):188-189.
    [68]吴兴海,刘松峰,罗剑.滨海水厂虹吸滤池反冲洗系统的改造[J].中国高新技术企业,2009,17:25-27.
    [69]彭志威,刘子建,黄丹莲.水厂虹吸滤池进水流道水力特性的数值模拟[J].中国给水排水,2009,25(15):70-72.
    [70]赵于鹏,余涛.翻板滤池和V型滤池比较[J].民营科技,2010,5:240.
    [71]刘国才.强化过滤及V型滤池设计要点[J].吉林大学学报(地球科学版),2008,38(增刊):223-225.
    [72]梅从明,魏思宇,刘锋.活性砂滤池在污水处理厂提标改造中的应用[J].环境科技,2009,22(4):44-47.
    [73]王健,陆少鸣.生物预处理后续工艺中炭砂滤池性能研究[J].环境工程,2009,27(增刊):209-212.
    [74]张玉祥.生物陶粒滤池应用于污水再生利用工程[J].中国给水排水,2004,20(3):87-88.
    [75]徐军升,王凯,刘金泉,等.高效纤维滤池应用于城市污水深度处理的研究[J].环境科技,2010,23(5):42-44.
    [76]闻克第.介绍一种液氯消毒处理医院污水装置一氯气、污水溶混器[J].天津职业大学学报,1999,1:36-37.
    [77]徐慧.生活饮用水消毒方法[J].中外医疗,2010,28:175-177.
    [78]黄俊熙.液氯消毒和紫外线消毒在实践中的应用比较[J].广东化工,2009,36(6):152-153.
    [79]黄君礼,周丽颖,马放.二氧化氯处理医院污水的研究[J].环境化学,1999,18(1):61-69.
    [80]水春雨,完颜华.二氧化氯和氯复合消毒剂对城市污水的消毒效果[J].环境污染治理技术与设备,2004,5(1):40-42.
    [81]水春雨,完颜华.二氧化氯和液氯联合消毒城市污水的研究[J].工业用水与废水,2003,34(2):50-52.
    [82]顾雪锋,杨海真.污水处理中紫外线消毒技术的研究进展[J].江苏环境科技,2003,16(3):33-34.
    [83]余海静.紫外线消毒技术在污水处理中的应用[J].平顶山工学院学报,2005,14(5):13-15.
    [84]邵林广,刘艳萍,江小林,等.紫外消毒在城市污水处理中的研究进展[J].工业安全与环保,2005,31(11):7-9.
    [85]顾文杰,张发宝,徐培智,等.调理剂用量对造纸污泥好氧堆肥的影响[J].广东农业科学,2010(10):93-96.
    [86]王立群,喻其林,黄明媛.鸡粪好氧堆肥氨氧化霉菌的筛选及氮转化能力的研究[J].环境科学,2010,31(11):2763-2767.
    [87]鲍艳宇,周启星,娄翼来,等.奶牛粪好氧堆肥过程中不同含碳有机物的变化特征以及腐熟评价[J].生态学杂志,2010,29(11):2111-2116.
    [88]任连海,何亮,宁娜,等.餐厨垃圾高效好氧堆肥过程参数的影响因素研究[J].北京工商大学学报(自然科学版),2010,28(5):40-44.
    [89]张金华,李繁.城市垃圾厌氧堆肥产气控制的初步研究[J].河南机电高等专科学校学报,2008,16(4):24-25.
    [90]刘庆余,刘晓东.大港污水污泥兼性厌氧堆肥用于绿地的可行性研究[J].环境卫生工程,2009,17(5):35-37.
    [91]姚伟卿.堆肥过程的生物学途径及主要影响因索的控制[J].四川环境,2008,27(5):93-97.
    [92]鞠猛.污水处理厂污泥的厌氧堆肥探讨[J].当代化工,2008,37(4):430-434.
    [93]郑瑞生,封辉,戴聪杰,等.碳氮比对堆肥过程NH3挥发和腐熟度的影响[J].环境污染与防治,2009,31(9):59-63.
    [94]袁进,魏永杰,于芳芳.污泥堆肥处理影响因素研究[J].化肥工业,2008,35(3):32-35.
    [95]吴遥远,张桥,余新盛.现代堆肥影响因素及控制[J].安徽农学通报,2007,13(13):69-71.
    [96]曾薇,李磊,杨莹莹,张悦,王淑莹.A2/O工艺处理生活污水反硝化除磷研究[J].北京工业大学学报,2011,37(9)1407-1415.
    [97]窦月芹,吕武.交替式A2/O系统碳源量对去除氮磷途径的影响[J].安徽大学学报(自然科学版),2011,35(4)97-100.
    [98]赫俊国,姜涛,杨晓南,左金龙,吕炳南,张杰.碳源对低温A2/O工艺反硝化除磷的影响.哈尔滨工业大学学报,2011,43(4)32-36.
    [99]王晓莲,王淑莹,马勇,彭永臻.A2/O工艺中反硝化除磷及过量曝气对生物除磷的影响[J].化工学报,2005,56(8)1565-1570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700