用户名: 密码: 验证码:
不同条件下浮萍磷吸收效率及其作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济社会发展,水体富营养化问题日趋严重,其中以磷的贡献尤为突出。如何经济、有效地去除磷污染是解决水体富营养化问题的关键。近年来,利用特定水生植物进行水体生态修复的研究引起了广泛关注。研究表明,浮萍除磷具有效率高、成本低的优点。目前,关于浮萍净化污水的研究主要集中于浮萍的生长繁殖能力,以及对氮的吸收机理研究。但涉及影响浮萍磷吸收的因素及其机理的研究仍较为有限。本研究围绕不同因子对浮萍磷吸收效率的影响,通过对浮萍磷吸收效率、磷吸收动力学特征、与磷代谢相关的酶活性以及细胞微结构变化的研究,详细阐述了品种差异、光照强度、温度、pH、水体磷浓度以及不同类型富营养化水体环境对浮萍磷吸收效率的影响,明确了不同条件下浮萍的磷吸收效率,阐明了其作用机理,为提高浮萍的磷净化效率提供了理论依据。通过研究得出以下主要结果:
     (1)稀脉浮萍的相对生长率RGR高于少根紫萍和紫萍,稀脉浮萍叶状体增殖速度最快。在实验室模拟培养条件下,稀脉浮萍叶状体的倍增时间最短,为3.23,少根紫萍和紫萍叶状体倍增时间分别为4.15天和4.81天。单位鲜重稀脉浮萍吸收的磷量显著低于少根紫萍和紫萍,其高磷累积吸收量建立在生物量大量扩增基础上。稀脉浮萍对H2PO4-的的亲和力常数Km和最大吸收速率Vmax均最小,紫萍的Km和Vmax最大。稀脉浮萍对H2PO4-的亲和力更强,在较低的离子浓度下就可以达到Vmax;而当环境中磷浓度较高时,紫萍对磷的净化速率高于少根紫萍和稀脉浮萍。实验室模拟培养期间,紫萍体内的ACPase和H+-ATPase活力水平始终最高,稀脉浮萍次之,少根紫萍最低。从细胞学形态结构上分析,紫萍和少根紫萍叶绿体基粒内囊体片层结构排列紧密,叶绿体周围环绕多个线粒体,而稀脉浮萍叶绿体中存在较大的淀粉粒构和空泡结构,片层结构松散。紫萍和少根紫萍的细胞超微结构更有利于植物光能利用效率和同化物运输能力的提高。因此,紫萍对磷的吸收能力更强,更适于对高磷浓度污水进行修复。
     (2)紫萍RGR随光照强度增加而逐渐上升,在60001x高光强下,紫萍叶状体仍维持较高扩增速度。紫萍累积吸收磷量随着光照强度提高而升高,但单位鲜重浮萍吸收的磷量在60001x高光强条件下最低,30001x光强时的磷吸收能力略高于15001x,但两者之间无显著差异。随着光照强度增加,紫萍对H2P04-的最大吸收速率Vmax增加;不同光强条件下紫萍对H2P04-的亲和力常数Km略有差异,3000lx和60001x光强下略高于15001x光强。随着光照强度的增加,紫萍体内ACPase活力增加。实验室模拟培养期间,紫萍H+-ATP酶活力呈先缓慢下降随后逐渐上升的现象。培养后期低光强下,紫萍的H+-ATP酶活力超过高光强处理。强光下,紫萍叶肉细胞内的叶绿体数明显增加;弱光时虽然叶绿体数较少,但其基粒片层结构变厚,增加了光合作用反应面积。
     (3)25℃时紫萍RGR最高,35℃略低,10℃最低。低温对紫萍生长的胁迫作用甚于高温。紫萍的累积吸收磷量随着温度的升高而增加,但单位鲜重浮萍吸收的磷量在10℃时最高,35℃次之,25℃最低。25℃和35℃条件下,紫萍的高磷累积吸收量通过生物量的大量扩增实现。随着温度增加,紫萍对H2P04-的最大吸收速率Vmax增加:不同温度之间亲和力大小依次为:25℃>10℃>35℃。35℃条件下紫萍对H2PO4-的低亲和力可能是高温胁迫作用所致。随着温度增加,紫萍体内ACPase活力增加。但长时间的低温胁迫也会使紫萍体内ACP酶活力显著提高。不同温度条件下,紫萍体内H+-ATPase活力的大小依次为:25℃>10℃。从细胞超微结构来看,与25℃适温条件相比,10℃低温和35℃高温下,紫萍细胞均存在一定程度的逆境胁迫作用。表现为低温时部分叶绿体皱缩成带状,叶肉细胞之间出现较大空隙;高温时叶绿体外膜溶解,基质外渗,脂质小球数量增多。
     (4)不同pH条件下,紫萍RGR大小依次为pH6>pH5>pH7>pH8>pH9。紫萍磷累积吸收量在pH6条件下最高,当pH>6时,随着pH升高,磷累积吸收量降低。pH对单位鲜重紫萍吸收的磷量无显著影响。不同pH条件下,紫萍对H2P04-的最大吸收速率Vmax大小依次为:pH6>pH7>pH8>pH5>pH9,亲和力常数Km大小依次为:pH5>pH9>pH8>pH7>pH6。不同pH条件培养较长时间后,紫萍H+-ATPase和ACPase活力在pH6、pH7和pH8条件下高于pH5和pH9。紫萍在pH5条件下叶肉细胞中的叶绿体数量明显减少,类囊体片层结构松散。在pH6和pH7条件下,紫萍叶绿体数量丰富,叶肉细胞中溶质和细胞器较多,类囊体片层排列整齐紧密,光合效率高。pH8和pH9条件下,紫萍植株受到高OH-伤害,尤其是在pH9时,叶肉细胞中的叶绿体数量急剧减少,叶绿体和类囊体膜崩解,形成大量脂质小球。
     (5)紫萍在水体总磷浓度0.1mg/L~15mg/L范围内,能保持较高的RGR,累积吸收磷量和单位鲜重紫萍吸收磷量均随着磷浓度升高而增加,当水体中总磷浓度达到45mg/L以上时,紫萍生长受限,RGR较低,磷累积吸收量和单位鲜重紫萍吸收的磷量均显著下降。当水体中总磷浓度在0.3mg/L-3mg/L范围时,紫萍对水体中磷的去除效率最高(约70%)。当水体中总磷浓度低于0.3mg/L时,紫萍体内ACPase活力升高,但长时间的低磷条件使紫萍生长受抑,从而使低磷和高磷条件之间ACPase活力的差异减小。与高磷条件相比,低磷条件下紫萍H+-ATPase活力较低。当水体中磷浓度较低时,紫萍叶绿体中出现大量淀粉粒结构,光合产物运输受阻;提高水体环境中磷浓度,叶绿体中淀粉粒结构开始消失;当进一步提高磷浓度使水体中总磷浓度达到45mg/L时,紫萍细胞出现质壁分离现象,叶绿体结构受到破坏,表现为外膜溶解,类囊体片层排列紊乱,对营养物的同化效率降低。
     (6)不同类型富营养化水体中,三种浮萍的磷吸收效率存在差异。稀脉浮萍在氮磷浓度较低的景观水体中,磷累积吸收量最高。由于磷累积吸收量与生物量几乎按比例同步增加,以鲜重为基础算得的单位鲜重浮萍吸收的磷量并没有增加。紫萍在氮磷浓度较高的农业废水和生活污水中,磷累积吸收量和单位鲜重浮萍吸收的磷量均高于少根紫萍和稀脉浮萍,表现出对高磷浓度水体的磷吸收优势。稀脉浮萍叶绿素含量在景观水体中最高,在生活污水中最低。少根紫萍和紫萍叶绿素含量始终随着水体中氮磷浓度上升而升高。三种浮萍蛋白质含量均随着水体中氮磷浓度的升高而升高。不同类型富营养化水体中,稀脉浮萍体内蛋白质含量始终高于少根紫萍和紫萍。紫萍体内ACPase和H+-ATPase活力随着水体中磷浓度的增加而升高,在磷浓度较高的农业废水和生活污水中紫萍的ACPase和H+-ATPase活力显著高于稀脉浮萍和少根紫萍。在高磷浓度水体中,紫萍对污水中磷的去除效果、生长速率以及对磷的吸收积累能力均高于低磷环境,适于修复高磷污染的生活污水和农业废水;稀脉浮萍在低磷浓度水体中的生长速率高、对磷的吸收能力强,适于低磷污染的景观水体修复。
     (7)用Hill方程对三种品种浮萍吸收H2P04速率与溶液中磷浓度关系进行拟合,其拟合度都高于Michaelis-Menten方程。不同环境条件下(包括光照强度、温度、pH、水体中初始磷浓度水平),对比Hill方程和Michaelis-Menten方程拟合的紫萍吸收HPO42-的速率与溶液中总磷浓度的关系曲线发现,前者的拟合效果均不同程度上优于后者。说明在较宽的磷浓度范围内,浮萍对H2P04的吸收速率与溶液中磷浓度之间表现出“S形”吸收曲线关系。
With the fast development of economy and population, water body eutrophication has become one of the most important environmental problems. Phosphorus is known to play an important role in water eutrophication. In order to improve water quality it is crucial to remove phosphorus from eutrophic water effectively. In recent years, ecological remediation methods using aquatic plants have aroused widespread interest. One of the most efficient and economical ways is the use of duckweed for eutrophic water body treatment. However, studies to date mainly deal with duckweed growth capacity and mechanisms of nitrogen uptake, while knowledge concerning mechanisms of phosphorus uptake and controlling factors still remains limited. In this paper, phosphorus purification capacity of duckweed were studied by determining phosphorus uptake efficiency, uptake kinetics, characteristics of phosphorus metabolism enzymes in plants and cell ultrastructure changes under the influence of various factors(varieties, light intensity, temperature, pH, phosphorus concentration and water type). The absorption efficiency and mechanisms of phosphorus by duckweed under different conditions were determined, which provided an important theoretical reference for the development and utilization of duckweed in the phosphorus restoration of eutrophic water bodies. The main results were as follows:
     (1) Lemna aequinoctialis had a higher relative growth rate than Spirodela oligorrhiza and Spirodela polyrrhiza, with a leaflets'doubling time of3.23days, while the doubling times of Spirodela oligorrhiza and Spirodela polyrrhiza were4.15and4.81days respectively. However, the phosphorus uptake capacity of Lemna aequinoctialis was siginificantly lower than that of Spirodela oligorrhiza and Spirodela polyrrhiza. The high phosphorus accumulation in Lemna aequinoctialis was a result of biomass increase. The Km and Vmax values for phosphorus uptake of Lemna aequinoctialis were lower than those of Spirodela oligorrhiza and Spirodela polyrrhiza, indicating a stronger affinity to phosphorus of Lemna aequinoctialis Spirodela polyrrhiza had the highest Km and Vmax values for phosphorus uptake, which might lead to a better performance of Spirodela polyrrhiza in purifying wastewater with a higher phosphorus concentration. Spirodela polyrrhiza had the highest ACPase and H+-ATPase activity, followed by Lemna aequinoctialis and Spirodela oligorrhiza. Morphologically, Spirodela oligorrhiza and Spirodela polyrrhiza had tightly arranged chloroplasts thylakoid membranes, and the chloroplasts were surrounded by many mitochondrias, while chloroplasts in Lemna aequinoctialis had relatively loose structure, with accumulated starch and vesicles. Cell ultrastructure of Spirodela oligorrhiza and Spirodela polyrrhiza was of great benefit to light use and transport of assimilation substance in plants. Therefore, Spirodela polyrrhiza had higher phosphorus absorption capability than Spirodela oligorrhiza and Lemna aequinoctialis, making it more suitable for purifying high-phosphorus polluted water.
     (2) RGR value of Spirodela polyrrhiza increased with the increase of light intensity. Spirodela polyrrhiza fronds remained in a high expanding speed even in60001x high light intensity. Total absorbed phosphorus amount of Spirodela polyrrhiza increased with the increase of light intensity, while phosphorus uptake capacity was the lowest at60001x high light intensity. There was no significant difference between phosphorus uptake capacity with light intensity of30001x and15001x. With the increase of light intensity Vmax for phosphorus uptake of Spirodela polyrrhiza increased, while no change was observed for Km. Phosphorus affinity of Spirodela polyrrhiza with30001x and60001x light intensity were slightly higher than15001x. ACPase activity of Spirodela polyrrhiza also increased with the increase of light intensity. H+-ATPase activity firstly decreased, and then increased slowly during the cultivation period. At the later period of cultivation, H+-ATPase activity of Spirodela polyrrhiza with weak light intensity were higher than strong light intensity. When supplied with strong light intensity, chloroplasts in mesophyll cell of Spirodela polyrrhiza increased. Though the number of chloroplasts decreased with weak light intensity, grana lamella of chloroplasts thickened to increase its photosynthesis reaction area.
     (3) The highest and lowest RGR values of Spirodela polyrrhiza were determined at25℃and10℃respectively. The growth of duckweed was negatively influenced more by low temperature than by high temperature. Total absorbed phosphorus in Spirodela polyrrhiza increased with temperature, while the highest phosphorus uptake capacity was detected at10℃, which indicated that biomass increase was the reason for high cumulation of absorbed phosphorus in25℃and35℃treatments. Vmax for phosphorus uptake of Spirodela polyrrhiza increased with the increase of temperature. Km value of phosphorus affinity changed at different temperatures:25℃>10℃>35℃. ACPase activity of Spirodela polyrrhiza increased with the increase of temperature, however, the stressing effect caused by a long period of time with low temperature may also lead to a higher phosphorus affinity. H+-ATPase activity of Spirodela polyrrhiza under different temperature was25℃>10℃>35℃. In terms of cell ultrastructure, Spirodela polyrrhiza was under stress to a certain degree in10℃and35℃treatments, as shown by shriveled. Chloroplasts and large cell cavity at10℃, and dissolved chloroplast envelope, exuded stroma and increased Plastoglobulus at35℃.
     (4) RGR values of Spirodela polyrrhiza at different pH were pH6> pH5> pH7> pH8> pH9. The highest total cumulative absorbed phosphorus in Spirodela polyrrhiza was found at pH6, while phosphorus uptake capacity was not affected by pH. Vmax for phosphorus uptake of Spirodela polyrrhiza was pH6> pH7> pH8>pH5> pH9, and Km was pH5> pH9> pH8> pH7> pH6. H+-ATPase and ACPase activities of Spirodela polyrrhiza were higher at pH6, pH7and pH8than other treatments. The number of chloroplasts in mesophyll cell of Spirodela polyrrhiza decreased significantly at pH5, with loose strucutre of thylakoidas lamella. At pH6and pH7, Spirodela polyrrhiza had more chloroplasts, solvend and organelles, and tightly arranged thylakoids, which assured a high photosynthetic efficiency. Duckweed was damaged by high concentration of OH-under pH8and pH9treatments, especially at pH9. As a result, the number of chloroplasts decreased dramatically, while the membranes of chloroplasts and thylakoid were collapsed and many plastoglobulus ermerged.
     (5) Spirodela polyrrhiza could maintain a high RGR in water with0.1mg/L to15mg/L of phosphorus. The growth of Spirodela polyrrhiza was restricted, and RGR value was low as phosphorus concentration in water was above45mg/L. The highest phosphorus removal efficiency of Spirodela polyrrhiza was reached approximately70%when phosphorus concentration in solution was ranged between0.3mg/L and3mg/L. ACPase activity of Spirodela polyrrhiza increased when phosphorus was lower than0.3mg/L. However, long time exposure to low phosphorus would limit the growth of Spirodela polyrrhiza, which thus reduced the difference of ACPase activities betweenlow and high phosphorus concentration treatments. H+-ATPase activity with high phosphorus treatment was higher than low phosphorus treatment. Under low phosphorus treatment, many starch grains appeared in chloroplasts and the transport of photosynthetic products was interrupted. As soon as phosphorus concentration of outer solution was increased, starch grains disappeared. When phosphorus concentration reached45mg/L, plasm olysis started and structure of chloroplasts was destroyed, indicated by disintegrated membranes, lamella of thylakoidas arranged in disorder, and decreased nutrients assimilatory efficiency.
     (6) Difference existed in phosphorus uptake efficiency of three duckweek species in different types of eutrophic water. In landscape water with low nitrogen and phosphorus concentrations, total absorbed phosphorus in Lemna aequinoctialis was higher than in Spirodela oligorrhiza and Spirodela polyrrhiza. This is due to the increase of biomass. However, total absorbed phosphorus and phosphorus uptake capacity of Spirodela polyrrhiza was the highest in domestic sewage and agricultural waste water with higher nitrogen and phosphorus concentration. Spirodela polyrrhiza showed a high phosphorus uptake capacity in high phosphorus concentration environment. In landscape water, chlorophyll content of Lemna aequinoctialis was higher than the other two species, whereas in domestic sewage it was the lowest. With the increase of nitrogen and phosphorus concentration in water, chlorophyll content of Spirodela oligorrhiza and Spirodela polyrrhiza increasedand protein content also increasedin all three duckweed species. ACPase and H+-ATPase activity of Spirodela polyrrhiza, which increased with the increase of phosphorus concentration of outer water environment, was much higher than that of Lemna aequinoctialis and Spirodela oligorrhiza in domestic sewage and agricultural waste water treatments. In high phosphorus water environment, phosphorus removal efficiency, cumulative uptake capacity, and growth rate of Spirodela polyrrhiza were higher than low phosphorus environment, making it a better candidate for treating domestic sewage and agricultural waste water with a high phosphorus concentration. Lemna aequinoctialis had a high growth rate and strong phosphorus uptake capacity in low phosphorus water environment, suitable for low-phosphorus landscape water treatment.
     (7) Hill equation had a higher precision compared with Michaelis-Menten equation, when correlating H2PO4-uptake rate of three duckweed species and phosphorus concentration in solution. When simulating the relation curve between H2PO4-uptake rate of Spirodela polyrrhiza and phosphorus concentration in solution under different environmental conditions, Hill equation showed a better result than Michaelis-Menten equation. The relationship between H2PO4-uptake rate of duckweed and phosphorus concentration in solution followed a sigmoid curve.
引文
Alan H G, Danon A, Dawn A, et al. Phosphate starvation inducible metabolism in lycopersicon esculentum. Ⅱ.Characterization of the phosphate starvation inducible-excreted acid phosphatase[J]. Plant Physiol, 1988,87:716-720.
    Allinson G, Stagnitti F, Colville S, et al. Growth of floating aquatic macrophytes in alkaline industrial wastewater [J]. Journal of Environmental Engineering,1999,126(12):1103-1107.
    Aziz A and Kochi M N. Growth and morphology of SProdela polyrhiza and SProdela puctata as affected by some environmental factors[J].Bangladesh Journal of Botany,1999,28 (2):133-138.
    Badran M I, Foster P. Environmental quality of the Jordanian coastal waters of the Gulf of Aqaba Red Sea[J]. Aquatic Ecosystem and Management 1998,1:75-89.
    Bergmann B A, Cheng J J, Classen J J, et al. In vitro select ion of duckweed geographical isolates for potential use in swine lagoon effluent renovation [J]. Bioresource Technology,2000,37(3):13-20.
    Bergman B A, Cheng J J, Classen J J, et al. Nutrient removal from swine lagoon effluent by duckweed[J]. Transactions of the American Society of Agriculttural Engineering,2000,42(2):263-269.
    Bizsel N and Uslu O. Phosphate, nitrogen and iron enrichment in the polluted Izmir Bay, Aegean Sea[J].Marine Environmental Research,2000,49:101-122.
    Bjorkman K and Karl D M. Bioavailability of inorganic and organic phosphours compounds to natural assemblages of microorganisms in Hawaiian coastal waters[J]. Marine Ecology Progress Series,1994, 111:265-273.
    Bondada B R, Syvertsen J P. Concurrent changes in net CO2 assimilation and chloroplast ultrastructure in nitrogen deficient citrus leaves. Environmental and ExperimentalBotany,2005,54:41-48.
    Bonomo L, Pastorelli G, Zambon N. Advantages and limitations of duckweed based wastewater treatment systems[J]. Water Science Technology,1997,35(5):239-246.
    Brix H and Schierup H H. The use of aquatic macrophytes in water pollution control [J]. Ambio,1989,18(2): 101-107.
    Brooks A. Effect of P nutrition on ribulose 1,5-biphosphate carboxylase activation, photosynthetic quantum yield and amounts of some calvin cycle metabolites in sPrlach leaves[J]. Plant physiology,1986,13: 221-237.
    Cacco G, Ferrari G, Saccommani M. Pattern of sulfate uptake during root elongation in maize:its correction with productivity [J]. Physiol Plant,1980,48:375-378.
    Chau L H. Biodigester effluent versus manure, from Pgs or cattle, as fertilizer for duckweed. Livestock Research for Rural Development,1998,10(3):27-35.
    Cheng J J, Bergmann B A, Classen J J, et al. Nutrient recovery from swine lagoon water by SProdela punctata[J]. Bioresource Technology,2002,81(1):81-85.
    Cheng J J, Landesman L, Bergmann B A, et al. Nutrient removal from swine lagoon liquid by Lemna minor 8627 [J]. Transaction of the ASAE,2002,45 (4):1003-1010.
    Cheng J J, and Liu B. Nitrification/denitrification in intermittent aeration process for swine wastewater treatment[J]. Journal of Engineering,2001,127(8):705-711.
    Chrispeels M J, Crawford N M, Schroeder J I. Proteins for transport of water and mineral nutrients across the membranes of plant cells[J]. The Plant Cell,1999,11:661-675.
    Christensen J P, Townsend D W, Montoya J P. Water column nutrients and sedimentary denitri fication in the Gulf of Marine[J]. Continental Shelf Reseach,1996,16 (4):489-515.
    Clarkson D D and Scattergood C B. Growth and phosphate transport in barley and tomato plants during development of, and recovery from phosphate stress[J]. Journal of Experimental Botany,1982,33(5): 865-875.
    Clarkson D T, Luttge U. Mineral nutrition:inducible and repressible nutrient transport systems[J]. Progress in Botany,1991,52:61-83.
    Cogliatti D H and Clarkson D T. Physiological changes in, and phosphate uptake by potato plants during development of, and recovery from phosphate deficiency [J]. Physiol Plant,1983,58(3):287-294.
    Culley D D and Epps E A. Use of duckweed for waste treatment and animal feed[J]. Water Pollution Control Federation,1973,45(2):337-347.
    Dalu J M and Ndamba J. Duckweed based wastewater stabilization ponds forwastewater treatment a low cost technology for small urban areas in Zimbabwe) [J]. Physics and Chem istry of the Earth,2003,28(20-27): 1147-1160.
    DeBusk T A, Peterson J E, Reddy K R. Use of aquatic and terrestrial plants for removing phosphorus from dairy wastewater. Eeological Engineering,1995,5(2-3):371-390.
    Debusk W F and Reddy K R. Growth and nutrient uptake potential of Azolla caroliniana willd. and Salvina rotundifolia willd. as a function of temperature[J]. Environmental and Experimental Botany,1987,27(2): 215-221.
    Dietz K J. The relationship between phosphate status and photosynthesis in leaves:reversibility of the effects of phosphate defieiency on photosynthesis [J]. Planta,1986,167:376-381.
    Drew M C and Fontes L R. Uptake and ling distance of phosphate, potassium, and chloride in relation to internal ion concentration in barley[J]. Planta,1984,160(6):500-507.
    Fontes R C and Barber S A. Prediction of P uptake by two tomato cultivars grow under indeficient and sufficient P soil conditions using a mechanistic mathematical model[J]. Plant and soil,1986,94:87-98.
    Foyer C H, Speneer C M. The relationship between phosphate status and photosynthesis in leave, effcet on intraeellular orthopnosphate distribtuion on photosythesis, assimilate partitioning[J]. Planta,1986,167: 369-371.
    Fredeen E D. Influence of P nutrition on growth and carbon partitioning in alycine max[J]. Plant physiology, 1989,89:225-230.
    Gijzen H J. Anerobes, aerobes and photogrophs:A winning team for wastewater management[J]. Water Science and Technology,2001,44(8):123-132.
    Goldstein A H, Bartlein D A, Mcdaniel R G. Phosphate starvation inducible metabolism in Lycopersicon esculentum[J]. Plant Physiology,1988,87:711-715.
    Graudette H E and Lyons B. Phosphate geochemistry in nearshore carbonate sedimentsa suggestion of apatite formation [J].The society of Economic Palaeontologists and Mineralogists,1980,29:215-225.
    Hanisak M D and Harlin M M. Uptake of nitrogen by Codium fragile subsp. Tomentosoides (Chlorophyta) [J]. J Phycol,1978,14:450-454.
    Hill A V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves[J]. Journal of Physiology,1910,40:4-7.
    Holmboe N, Kristensen E, Andersen F O. Anoxic decomposition in sediments from a troPcal mangrove forest and the temperate wadden sea: implication of N and P addition experiments. Estuarine Coastal and Shelf Seienee,2001,53:125-140.
    Howard J W, Chen J Y, Bergmann B A, et al. Nutrint removal from Anaerobically pretreated swine wastewater with growing duckweed:Plot study[J]. Transaction of the ASAE,2000,44(3):64-70.
    Johnson Z and Barber R T. The low-light reduction in the quantum yield of photosynthesis:potentialerrors and biases when calculating the maximum quantum yield[J]. Photosynthesis Research,2003,75(1):85-95.
    Korner S, Das S K, Veensta S, et al. The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba[J]. Aquatic Botany,2001,71(1):71-78.
    Korner S, Lyatuu G B, Vermaat J E. The influence of Lemna gibba L. on the degradation of organic material in duckweed-covered domestic wastewater[J]. Water Research,1998,32(10):3092-3098.
    Korner S and Vermaat J E. The relative importance of Lemna gibba L., baeteria and algae for the nitrogen and phosphorus removal in duckweed-eovered domestic wastewater[J]. Water Research,1998,32(12): 3651-3661.
    Lee R B. Selectivity and kinetics of ion uptake by barley plants following nutrient deficiency[J]. Annals of Botany,1982,50(4):429-449.
    Lefebvre D D, Duff S M G, Fife C A, et al. Response to phosphate deprivation in Brassica nigra suspension[J]. Physiol Plant,1990,93:504-511.
    Lemon G D, Postuszny U, Husband B C. Potential and Realized Rates of Vegetative Reproduction in SProdela polyrhiza, Lemna minor, and Wolffia borealis. Aquatic Botany,2001,70:79-87.
    Lineweaver H and Burk D. The Determination of Enzyme Dissociation Constants[J]. Journal of the American Chemical Society,1934,56:658-666.
    Li W, Recknagel F. In situ removal of dissolved phosphorus in irrigation drainage water by planted floats preliminary results from growth chamber experiment[J]. Agriculture, Ecosystems and Environment,2002, 90:9-15.
    Long S P and Woodward F I. Plants and temperature[M]. Cambridge, United Kingdom:Company of Biologists,1988:237-258.
    Michaelis L and Menten M L. Die Kinetik der Inwertin Wirkung[J]. Biochemistry,1913,49:333-369.
    Mungur A S, Shutest R B E, Revirt, D M, et al. An assessment of metal removal by a laboratory scale wetland[J]. Water Science and Technology.1997,35(5):125-133.
    Nielsen N E and Schrring J K. Efficiency and kinetics of P uptake from soil by various barley genotypes[J]. Plant and soil,1983,72:225-230.
    Nozaily F A, Alaerts G, Veenstra S. Performance of duckweed covered sewage lagoons Ⅱ. Nitrogen and phosphorus balance and plant productivity[J]. Water Research,2000,34:2734-2741.
    Oron G. Duckweed culture for wastewater renovaton and biomass production[J]. Agricultrual Water Management,1994,26:27-40.
    Oron G, Wildschut L R, Porath D. Wastewater recycling by duckweed for protein production and effluent renovation [J]. Water Science and Technology,1984,17:803-817.
    Raghothama K.G. Phosphate acquisition[J]. Annual Review of Plant Physiology,1999,50:665-693.
    Ran N, A gami M, Oron G. A Plot study of constructed wetlands using duckweed (Lemma gibba L.) for treatment of domestic primary effluent in Israel [J]. Water Research,2004,38:2241-2248.
    Rao I M. Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet[J]. Plant physiology, 1995,107:1313-1321.
    Reddy K R, Debusk T A. State of the art utilization of aquatic plants in water pollution control[J]. Water Science and Technology,1987,19(10):61-79.
    Redfield A C, Ketchum B H, Richards F A. The composition of sea-water[M]. New York: Interscience Publication,1963:26-77.
    Schenk M K and Barber S A. Charaeteristies of corn genotypes as related to P uptake[J]. Agronomy Journal, 1979,71:921-924.
    Scott C L. Environmental significance of anthocyanins in plant stress[J]. Photochem Photobiol,1999,70:1-9.
    Steen P V, Brenner A, Oron G. An intgrated duckweed and algae pond system for nitr ogen removal and renovation[J]. Water Science and technology,1998,38:335-343.
    Sultana N, Chowdhury S A, Huque K S, et al. Manure based duckweed production in shallow sink:Effect of nutrient loading frequency on the production performance of Lemma purpusilla[J]. Asian Australasian Journal of Animal Sciences,2000,13(7):1010-1016.
    Sundby B, Gobeil C, Silverberg N, et al. The phosphorus cycle in coastal Marine sediments. Limnology and Oceanography,1992,37:1129-1145.
    Takemoto B K, Noble R D,Harrington H M. Differential sensitivity of duckweeds (Lemnaceae) to sulphite.I.Carbon as similation and frond replication rate as factors influencing sulphite phytotoxicity under low and high irradiance[J]. New Phytol,1986,103:525-539.
    Ududa H. Phosphate deficiency in maize. I.leaf phosphate status, growth, photosynthesis and carbon partitioning[J].1991,32:497-504.
    Vermaat J E and Hanif M K. Performance of common duckweed species (lemnaceae) and the waterfern azolla filiculoides on different types of wastewater[J]. Water Reseach,1998,32(9):2569-2576.
    Wazer V J R. Phosphorus and Its Compounds[M], New York:Interscience Publication,1958:419-439.
    Wilhelm R, Lutz B, Harald S. Influence of cultivar and phosphorus application on P concentration and acid phosphatase activity in wheat and barley contribution to the diagnosis of P supply of plants[J]. Plant Nutrition and Soil Science,1995,158:3-8.
    Yan X L, Lynch L P and Beebe S E. Phosphorus efficiency in common bean genotypes in contrasting soil types. I. Vegetive response[J]. Crop Science,1995,35:1086-1093.
    Zhu J, Zhu X Y. Treatment and utilization of wastewater in the Beijing Zoo by an aquatic macrophyte system[J]. Ecological Engineering,1998,11(1-4):101-110.
    包杰,田相利,董双林,等.温度、盐度和光照强度对鼠尾藻氮、磷吸收的影响[J].中国水产科,2008,15(2):293-300.
    成水平.人工湿地废水处理系统的生物学基础研究进展[J].湖泊科学,1996,8(3):268-273.
    陈英龙.环境学[M].北京:中国环境科学出版社,2001:117-120.
    崔秀丽.白洋淀水体富营养化污染源调查[J].环境科学,1995,16(suppl):17-18,27.
    董建华,金留福,史春余,等.水稻、稗草叶片超微结构与光合性能关系的研究[J].作物学报,1995,21(4):497-505.
    樊大勇,陈志刚.试谈常绿植物叶绿体对低温胁迫的适应性-兼答徐敏老师[J].生物学通报,2002,37(7):23-24.
    樊明寿,张福锁.植物磷吸收效率的生理基础[J].生命科学,2001,13(3):128-131.
    付春平,钟成华,邓春光.pH与三峡库区底泥氮磷释放关系的试验[J].重庆大学学报,2004,27(10):125-127.
    付春平,钟成华,邓春光.水体富营养化成因分析[J].重庆建筑大学学报,2005,27(1):128-131.
    高冲.薏苡对富营养化水体中氮磷吸收去除效应及其影响因子研究[D].浙江大学,2008.
    高冲,杨肖娥,向律成.pH和温度对薏苡植物床去除富营养化水中氮磷的影响[J].农业环境科学学报,2008,27(4):1495-1500.
    国家环保总局.2008年中国环境统计公报[R].北京:国家环保总局,2009(9).
    郭蔚华,张智,何冰,等.高等水生植物修复双龙湖水体叶绿素a变化实验研究[J].重庆环境科学,2002,24(3):45-48.
    Georgiev V B,廖鸿芳.水库的热分层动态特性及其对富营养化过程的影响[J].环保科技情报,1991,2:10-13.
    韩善华,王双.高度抗寒植物冬季线粒体的电镜观察[J].西北植物学报,2000,20(4):539-543.
    何涛,吴学明,贾敬芬.青藏高原高山植物的形态和解剖结构及其对环境的适应性研究进展[J].生态学 报,2007,27(3):2574-2583.
    侯文华,宋关玲,汪群慧.浮萍在水体污染治理中的应用[J].环境科学研究,2004,17(suppl):70-73.
    胡绵好,施练东,朱建坤,等.植物-浮床触生藻类对富营养化水体氮磷去除的协同效果[J].农业环境科学学报,2008,27(3):1090-1097.
    胡晓镭.湖、库富营养化机理研究综述[J].水资源保护,2009,25(4):44-47.
    黄邦钦,洪华生,戴民汉.环境因子对海洋浮游植物吸收磷酸盐速率的影响[J].海洋学报,1993,15(4):64-67.
    黄辉,刘杰,赵浩,等.浮萍放养体系对污水氮磷的净化效果[J].农业环境科学学报,2007,26(增刊):242-245.
    黄沈发,陈长虹,贺军峰.黄浦江上游汇水区畜禽业污染及其防治对策[J].上海环境科学,1994,13(5):4-8.
    黄田,周振兴,张劲,等.富营养化水体的水芹菜浮床栽培试验[J].污染防治技术,2007,20(3):17-19.
    霍守亮,陈奇,席北斗,等.湖泊营养物基准的制定方法研究进展[J].生态环境学报,2009,18(2):743-748.
    季耿善.水域富营养化及对我国洗涤剂“禁磷”的讨论和发展建议报告(上)[J].环境保护,2007,384(22):40-45.
    江苏植物研究所编.江苏植物志[M].南京:江苏科技出版社,1982:321-328.
    蒋廷惠,郑绍建,石锦芹,等.植物吸收养分动力学研究中的几个问题[J].植物营养与肥料学报,1995,1(2):11-17.
    金岚.环境生态学[M].北京:高等教育出版杜,1992:5.
    金相灿,刘鸿亮,屠清瑛,等.中国湖泊富营养化[M].北京:中国环境科学出版社,1990:16-17.
    李传保,龚守富.植物体内酸性磷酸酶研究进展[J].信阳农业高等专科学校学报,2005,15(3):88-89.
    李春俭.高级植物营养学[M].中国农业大学出版社,2008:179-182.
    李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:134.
    李红.植物磷胁迫和铁胁迫蛋白研究进展[J].植物学通报,2001,18(5):571-576.
    李佐荣,鲍素敏,黄祥明.水体的富营养化及其防治[J].安徽农学通报,2007,13(10):67-68.
    梁威,吴振斌.人工湿地对污水中氮磷的去除机制研究进展[J].环境科学动态,2000,3:32-37.
    廖红,严小龙.高级植物营养学[M].北京:科学出版社,2003:141-146.
    林植芳,彭长连,徐信兰,等.两种浮萍植物的叶绿体超微结构对模拟酸雨的敏感性[J].热带亚热带植物学报,2005,13(3):217-223.
    刘春光,金相灿,孙凌,等.水体pH和曝气方式对藻类生长的影响[J].环境污染与防治,2006,28(3):161-163.
    刘晓明,杨延杰,李天来.光强对番茄氮素代谢及相关酶活性的影响[J].北方园艺,2008(5):1-5.
    娄云.富营养化浅水湖泊治理方法初探[J].吉林水利,2005,9:34-37.
    卢进登,陈红兵,赵丽娅,等.人工浮床栽培7种植物在富营养化水体中的生长特性研究[J].环境污染治 理技术与设备,2006,7(7):58-61.
    吕锡武,宋海亮.水培蔬菜法对富营养化水体中氮磷的去除特性研究[J].江苏环境科技,2004,17(2):1-3.
    罗浩亮.浮萍的培养及利用[J].中国农垦,1995(4):27.
    马剑敏,杜晋立,吴晶敏,等.Hg2+,DBS对浮萍的伤害研究[J].河南师范大学学报(自然科学版),2001,29(1):114-116.
    缪绅裕,陈桂珠.人工湿地中的磷在模拟秋茄湿地系统中的分配与循环[J].生态学报,1999,19(2):236-241.
    牛晓君.富营养化发生机理及水华暴发研究进展[J].四川环境,2006,25(3):73-76.
    潘晓华,石庆华,郭进耀.无机磷对植物光合作用的影响及其机理的研究进展[J].植物营养与肥料学报,1997,3(3):201-208.
    彭进新,陈慧君.水质富营养化与防治[M].北京:中国环境科学出版社,1988:40-48.
    濮培民.健康水生生态系统得退化及其修复-理论、技术及应用[J].湖泊科学,2001,13(3):193-203.
    邱栋梁,刘星辉,王湘平,等.模拟酸雨对龙眼叶绿体的伤害效应[J].应用与环境生物学报,2002,8(2):154-158.
    邱东茹,吴振斌.富营养化浅水湖泊沉水水生植被的衰退与恢复[J].湖泊科学,1997,9(1):82-88.
    邱化蛟,许秀美,冷寿慈,等.植物磷素利用率[J].莱阳农学院学报,2001,18(2):116-120.
    饶群,芮孝芳.富营养化机理及数学模拟研究进展[J].水利,2001,21(2):15-19,24.
    单树花,宋克敏,刘晶茹,等.磷饥饿下番茄幼苗根系液泡膜H+-ATPase(?)性的适应性变化[J].植物生理与分子生物学学报,2006,32(6):685-690.
    上海科学院编.上海植物志[M].上海:上海科学技术文献出版社,1999:761-776.
    史丹.我国湖泊富营养化问题及防治对策[J].资源开发与市场,2005,21(1):17-18,27.
    申保忠,姚志刚,谷奉天.青萍、紫萍、槐叶萍生产力研究[J].滨州师专学报,2002,18(2):29-33.
    沈根祥.利用浮萍净化氮磷污水机理及其优化工艺条件研究[D].浙江大学,2005.
    沈根祥,胡宏,沈东升,等.浮萍净化氮磷污水生长条件研究[J].农业工程学报,2004,20(1):284-287.
    沈根祥,胡宏,姚芳,等.浮萍放养体系中氮的平衡与浮萍体内氮的亚细胞分布研究[J].浙江大学学报(农业与生命科学版),2005,31(6):731-735.
    沈根祥,徐介乐,胡双庆,等.浅水体浮萍污水净化系统的除氮途径[J].生态与农村环境学报,2006,22(1):42-47.
    沈根祥,姚芳,胡宏,等.浮萍吸收不同形态氮的动力学特性研究[J].土壤通报,2006,37(3):505-508.
    宋关玲,侯文华,汪群慧.浮萍适合修复水体磷浓度范围的研究[J].中国给水排水,2006,22(suppl):396-400.
    舒金华,黄文钰,吴延根.中国湖泊营养类型的分类研究[J].湖泊科学,1996,8(3):193-200.
    田霄鸿,李生秀,王清君.几种作物NO3-吸收动力学参数测定方法初探[J].土壤通报,2001,32(1):16-19.
    童昌华,杨肖娥,濮培民.低温季节水生植物对污染水体的净化效果研究[J].水土保持学报,2003,17(2):159-162.
    王玲玲,沈熠.水体富营养化的形成机理、危害及其防治对策探讨[J].环境监测与研究,2007,20(4):33-35.
    王淑芳.水体富营养化及其防治[J].环境科学与管理,2005,30(6):63-65.
    王孝纯,周建朝,於丽华,等.不同基因型甜菜无机磷吸收动力学参数研究[J].中国甜菜糖业,2007(2):5-7.
    王雪英,赵琦,焦雨歆.4种北极被子植物叶片显微结构和超微结构研究[J].西北植物学报,2008,28(10):1989-1996.
    吴湘.漂浮栽培植物对富营养化水体中磷的去除效应基因型差异及原因分析[D].浙江大学,2008.
    吴学明.五种高山藏医药用植物茎叶的结构特征研究[J].西北植物学报,1996,16(1):56-60.
    吴振斌,邱东茹,贺锋,等.沉水植物重建对富营养水体氮磷营养水平的影响[J].应用生态学报,2003,14(8):1352-1353.
    肖付刚,赵晓联,顾小红,等.饮用水源蓝藻水华的生物防治研究进展[J].安徽农业科学,2008,36(7):2903-2905.
    谢杰,王心源,吴立.水华暴发机理研究进展与展望[J].内蒙古环境科学,2009,21(5):57-62.
    许秀美,邱化姣,周先学,等.植物对磷素的吸收、转运和代谢[J].山东农业大学学报(自然科学版),2001,32(3):397-400.
    许万祥,周岩,胡宗则.不同加工储藏方法对浮萍营养成分的影响[J].当代畜牧,1998(3):35-36.
    杨艳华,王才林.不同水稻品种叶片显微结构和超微结构的比较研究[J].植物研究,2010,30(2):152-156.
    杨艳华,王才林.不同水稻品种叶片显微结构和超微结构的比较研究[J].植物研究,2010,30(2):152-156.
    姚南瑜.藻类生理学[M].大连:大连工学院出版社,1987:259.
    印万芬.我国主要浮萍科植物的综合开发利用[J].资源节约和综合利用,1998(2):46-48.
    袁祖丽,马新明,韩锦峰,等.镉污染对烟草叶片超微结构及部分元素含量的影响[J].生态学报,2005,25(11):2919-2927.
    由文辉.水生经济植物净化受污染水体研究[J].华东师范大学学报,2000,3(1):99-102.
    张村伙,朱世东.浮床栽培绿叶蔬菜对富营养化水体的净化效果[J].安徽农业科学,2007,35(14):4193-4194.
    张大弟,沈根祥,张晓红,等.上海市郊非点源污染综合调查评价[J].上海农业学报,1997,13(1):31-35.
    张富仓,康绍忠,李志军.小麦和大麦吸收N、P、K的动力学参数及相互作用机制研究[J].应用基础与工程科学学报,2002,10(1):36-41.
    张建平,陈娟,胡一鸿,等.镉胁迫对浮萍叶片光合功能的影响[J].农业环境科学学报,2007,26(6):2027-2032.
    张振贤,郭延奎,邹琦.遮荫对生姜叶片显微结构及叶绿体超微结构的影响[J].园艺学报,1999,26(2): 96-100.
    张志良,瞿伟菁.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2004:67-70.
    种云霄,胡洪营,崔理华,等.浮萍植物在污水处理中的应用研究进展[J].环境污染治理技术与设备,2006,7(3):14-18.
    种云霄,胡洪营,钱易.环境及营养条件对稀脉浮萍和紫背浮萍氮磷量的影响[J].环境科学,2005,26(5):67-71.
    种云霄,胡洪营,钱易.pH及无机氮化合物对小浮萍生长的影响[J].环境科学,2003,24(4):35-40.
    种云霄,胡洪营,钱易.无机氮化合物及pH值对紫背浮萍生长的影响[J].中国环境科学,2003,23(4):417-421.
    种云霄,胡洪营,钱易.细脉浮萍和紫背浮萍在污水营养条件下的生长特性[J].环境科学,2004,25(6):59-64.
    周小平,王建国,薛利红,等.浮床植物系统对富营养化水体中氮、磷净化特征的初步研究[J].应用生态学报,2005,16(11):2199-2203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700