用户名: 密码: 验证码:
高强度特厚钢板生产工艺研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国国民经济的快速发展以及超高层、大跨度钢结构建设项目的不断增加,机械和建筑用厚钢板的市场需求量越来越大,对钢板厚度规格要求不断增加,性能要求不断提高。本文结合某宽厚钢板联合研发中心建设项目中HSLA优质特厚板开发课题,以Q345和Q420级别钢为研究对象,通过基础理论研究、实验室模拟实验、变形过程力学分析和现场工业试制,对60-120mm Q345E和110mm Q420E特厚板生产工艺进行了研究。重点分析了轧制和热处理工艺对Q345和Q420厚板组织和性能的影响规律,实现实验室轧制工艺向现场应用的技术转移,对Q345特厚板现场试制过程中探伤合格率较低的原因进行分析,最终实现Q345级特厚板的工业化生产,成功试制出110mm Q420E高强度低合金钢产品。论文主要工作及研究成果如下:
     (1)以Q420钢厚板为研究对象,在Gleeble-2000热模拟机上进行了不同参数的实验,研究了变形温度、变形量和应变速率对Q420钢的动态再结晶行为和奥氏体热变形后等温保持时间里的静态再结晶行为的影响,建立了实验钢的变形抗力模型和静态再结晶动力学模型。采用一维隐式差分法和ANSYS有限元软件模拟特厚板粗轧过程中厚度方向温度场和应变场分布,结合高温再结晶行为实验结果来分析特厚板厚度方向不同位置的再结晶发生条件。
     (2)通过对Q420特厚板连续冷却相变研究得出,随着冷却速度提高,铁素体相变开始转变温度降低,相变后铁素体晶粒细化;贝氏体开始转变温度先升高后降低,贝氏体转变量逐渐增加。随着变形量的增加,CCT曲线整体向左上方移动,变形促进了碳原子扩散进而加速了铁素体相变,使相变温度升高,相变进程加快。随着变形温度的降低,铁素体相变温度升高,扩大了铁素体区,贝氏体相变温度降低。实验钢在奥氏体未再结晶区变形,其冷速所达到范围内CCT曲线存在较宽的铁素体析出区域,变形组织为先共析铁素体+珠光体,因此,对于此钢种的开发,可以充分利用其连续冷却转变曲线的特点,综合利用细晶强化、相变强化方式来提高钢板的性能。
     (3)研究了开轧温度、冷却速度等参数对Q345和Q420特厚板组织和性能影响规律和不同轧制方式对Q420特厚板组织和性能的影响。结果表明,采用TMCP工艺生产Q420特厚板时,在总压下率一定的情况下,加大未再结晶区总压下率,钢板的屈服强度提高,抗拉强度略有升高,断后伸长率略有降低,同时,钢板的冲击韧性得到改善,低温冲击韧性改善尤为显著。与UPR工艺轧制厚板相比,TMCP工艺钢板心部的强度和韧性明显提高,断后伸长率变化不大,这是由于奥氏体再结晶区和奥氏体未再结晶区晶粒细化机理不同所致。
     (4)与热轧态钢板相比,不同轧制工艺Q420钢板经正火热处理后,钢板的屈服强度降低,抗拉强度和断后伸长率变化不大,低温冲击韧性显著提高。相同轧制工艺条件下,钢板在实验温度范围内随着正火温度的降低,强度变化不大,但是韧性得到明显改善。这是由于正火温度降低,第二相粒子溶解析出数量较少,尺寸较小,奥氏体的晶粒长大较慢,两方面都对提高钢板韧性有利。钢板热处理前的轧制方式对热处理后钢板的性能影响不大,这是因为在实验正火温度范围内,奥氏体化后奥氏体晶粒尺寸差异较小所致。
     (5)将实验室研究成果应用于现场,摸索出适合现有宽厚板生产线规格60~120mmQ345E特厚板生产工艺,采用C-Mn钢成分,两阶段控制的TMCP工艺,实现了稳定工业生产。经生产数据统计得出,此工艺生产厚板25万t,性能合格率达92%,探伤合格率达99.21%。确定了Q420钢的化学成分、热轧和热处理工艺参数,摸索出适合现场生产的Q420厚板最佳生产工艺,并在现场成功试制出110mm Q420E高强度低合金钢产品。
     (6)在现场原有Q345级别特厚板TMCP成熟生产工艺的基础上,通过挖掘轧机设备潜力,提出微合金元素减量化、生产工序减量化的低速大压下特厚板生产工艺—UPR轧制工艺。对此工艺金属变形特点进行分析,采用连续速度场和上界功率法,运用积分中值定理和矢量内积的方法求解和分析轧制过程力能参数,对此工艺的可行性进行分析。通过现场试验证实该工艺生产的特厚板强韧性能匹配良好,在增加变形渗透性和均匀性、改善钢板内部质量的同时,使特厚板生产工艺轧制道次大大减少,缩短了轧制周期,提高生产效率。
In recent years, with the rapid development of national economy and the increasing of building super high-rise and large-span steel construction projects, the demand for heavy plate with more heavy thickness and better properties used in construction and machinery has been increasing. The work of this dissertation were carried out integrating with the project of "The Development for High Strength Low Alloy High-quality Ultra-heavy Plate"and the production process of two ultra-heavy steel plates, i.e. Q345E steel with60-120mm thickness and Q420E with110mm thickness, were investigated through basic theoretical research, laboratory simulation experiments, mechanics analysis in deforming and industrial trial. The influence of rolling and heat treatment parameters on the microstructure and mechanical properties of Q345and Q420heavy plates were investigated in laboratory based on which the industrial trial were carried out. The reason for high inferior rate by detection examination in Q345industrial trial was clarified. Finally, Q345ultra-heavy steel plate was successfully realized in industrial production. The main work is shown as follows:
     (1) Regarding the Q420heavy Plate Steel as the research object, thermal simulated experiments with different parameters was carried out in Gleeble-2000thermal simulator, the effect of deformation temperature, deformation and strain rate on the dynamic recrystallization behavior and static recrystallization behavior in the maintaining isothermal time after hot deformation of austenite was studied. meanwhile, the deformation resistance model and the static recrystallization kinetics model. were established. The temperature field and strain field distribution in the rough rolling procedure was simulated using one dimensional implicit difference method and finite element software ANSYS Combining with the results of high temperature recrystallization behavior, the condition of recrystallization taking place was analyzed which in different positions of the heavy plates along thickness direction.
     (2) Through continuous cooling phase transformation study it was found that with the increase of cooling rate, the ferrite start transformation temperature decreased, the grain was refined, but the bainite start transformation temperature first rising and then began to lower, at the same time the bainite transformation volume gradually increased. As the deformation reduction increases, the whole CCT curve moved towards the upper left orientation, the ferrite transformation was accelerated which reason was the deformation accelerate the diffusion of carbon atom, transformation temperature change higher. As the deformation temperature decreased, the ferrite phase transition temperature increased and the ferrite area expanded. while the bainitic transformation temperature decreases. After the tested steel was deformed in austenite non-recrystallization, the CCT curve contain wide ferrite region in its cooling rate achieved, which microstructure was pro-eutectoid ferrite and pearlite. therefore, for the development of this steel, can take full advantage of the characteristics of its continuous cooling transformation curve, comprehensively utilized the finer grain strengthening, phase change strengthening to improve the performance of the heavy steel plates.
     (3) The influence of start rolling temperature, cooling rate to the microstructures and properties of Q345and Q420tested steels and rolling mode to the microstructures and properties of Q420tested steels were researched. The results showed that using TMCP process produced Q420ultra-heavy plate, when the total reduction was invariable, increase the total reduction in austenite non-recrystallization, the yield strength increased, the tensile strength increased slightly and elongation slightly lower, while the impact toughness of steel improved, especially the low temperature impact toughness improved significantlly. Comparing with the UPR rolling process, the strength and toughness in the centre layer of the plate remarkably improved, and the elongation changed slightly, which cause is the different grain refinement mechanism in austenite recrystallization region and austenite non-recrystallization region.
     (4) Comparing with Q420steel plate with different hot rolling process, after normalized the yield strength decreased, the tensile strength and elongation changed little, and the low temperature impact toughness improved significantly. The plate rolled with same rolling process in the experimental normalizing temperature range, with the normalizing temperature decreased, the strength changed little, but the toughness improved significantly, which reason is the reduced number of second-phase precipitates dissolved, the finer of the precipitates; and the slower austenite grain growth rate, both aspects facilitated the toughness of the steel plate. Rolling mode before heat-treatment has a little effect on the properties of the plates, it may be because the smaller difference of austenite grain size in the experimental normalizing temperature range.
     (5) Rolling process of60mm-120mm Q345E HSLA ultra-heavy plate suitable for the existing wide and heavy steel plate production line was received through the transformation of laboratory results to the factory, which composition was general C-Mn steel without microalloyed element, and the process was two-stage controlled TMCP rolling process, finally realized large-scale industrial production. Through data Statistic it obtained that the plates rolled with this TMCP process were up to250,000t, which qualified rate was92%, detection examination checking qualified rate was99.21%. The chemical composition, hot-rolled and heat treatment process parameters of Q420steel was determined, optimal production process of Q420heavy plate was received, and the110mm Q420E high-strength low-alloy steel products was successfully produced in the industry.
     (6) On the basis of original TMCP process for Q345ultra-heavy plate, the UPR production process which reduces micro-alloying elements and simplifies working procedure was realized through developing equipment potentialities.The metallic deformation behavior and rolling force and torque parameters in UPR rolling process was studied using continuous velocity field, the upper bound of power, integral mean value theorem and vector inner product method, based on which the feasibility of this process was discussed. The ultra-heavy plates produced using UPR process had a good combination of strength and toughness, and good interior quality due to the improvement of deformation penetrability and uniformity. Furthermore, the rolling passes were greatly reduced thus the rolling cycle was shortened, and also the lumber recovery was increased.
引文
1.王国栋,刘相华,吴迪.节约型钢铁材料及其减量化加工制造[J],轧钢,2006,23(2):1-5.
    2.马朝晖,屈朝霞,王海涛.100mm厚高层建筑用Q345GJD特厚板的焊接性能研究[J],钢结构,2009,24(1):54-57.
    3.袁建光,贺达伦.宝钢5m厚板轧机投产三年回顾[J],宝钢技术,2008,(3):12-15.
    4.胡宗文,王元清,石永久,等.钢结构厚板的工程应用及其脆性破坏研究[J],钢结构(增刊),2008,37-44.
    5.王国栋.认清形势,自主创新,调整结构,保持增长—论轧钢行业2009年的任务[J],轧钢,2009,26(1):1-5.
    6.杨雄,金永春,王全礼,等.V-N微合金化高强度厚板的研制[J],钢铁钒钛,2005,26(1):16.
    7.刘淑梅.低速大压下变形深透特征的计算与分析[D],西安:西安建筑科技大学,2000.
    8.曹晓春,甘国军,李翠光.Q460E钢在国家重点工程中的应用[J],焊接技术,2007,36(8):12-15.
    9.卢立香,陈才发.国家体育场Q460E及Q345GJ-D钢厚板焊接工艺[J],焊接技术,2007,36(2):26-29.
    10.吕作荣.结构用低合金高强度Q460C热轧钢板的研制[J],本钢技术,2006(3):7-9.
    11.杨固川.中厚板生产设备概述[J],轧钢,2004,21(1):38-41.
    12.王国栋,刘相华,王君.我国中厚板生产设备、工艺技术的发展[J],中国冶金,2004,14(9):1-8.
    13.张永嘉,黄锡镐.3号高炉炉壳钢板的研制[J],宝钢技术,1992,(3):45-51.
    14.龚雪群,张强松.SM490新材料厚板焊接工艺试验及接头的改进研究[J],Science & Technology Information,2008 (35):101-103.
    15.孙浩,陈启祥,陈林谦.迪林根厚板厂工艺设备考察[J],轧钢,2000,17(2):59-62.
    16.孙决定.国外厚板轧机装备与轧制技术的发展现状[J],武钢技术,2005,43(1):48-52.
    17.王仁贵,张晓军,王新华.鞍钢厚板坯铸机高效化技术的系统开发和应用[J],钢铁研究学报,2009,21(1):59-62.
    18.杨作宏,陈伯春.谈微合金元素Nb、V、Ti在钢中的作用[J],甘肃冶金,2000,(4):20-22.
    19.苏式怀,孙维,汪开忠.铌微合金化技术在H型钢生产中的应用[J],微合金化技术,2001,1(1):53-58.
    20.齐俊杰,黄运华,张跃.微合金化钢[M],北京:冶金工业出版社,2006,85-92.
    21. K.Narita.Physicalchemistry of the group IV Va(Ti, Zr), Va(V, Nb, Ta) and rare earth elements in steel[J]. Trans.IsIJ,1975, (15):145-152.
    22. Zhao-hui Zhang, Yong-ning Liu, Xiao-kai Liang, et al. The effect of Nb on recrystallization behavior of a Nb micro-alloyed steel [J]. Materials Science and Engineering A,2008, (474):254-260.
    23. Qingbo Yu, Zhaodong Wang, Xianghua Liu,et al. Effect of microcontent Nb in solution on the strength of low carbon steels[J]. Materials Science and Engineering A,2004, (379):384-390.
    24. Fernandez J., lllescas S., Guilemany J.M.. Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel[J], Materials Letters,2007,61:2389-2392.
    25.张彦睿.VN微合金化生产HRB500热轧带肋钢筋的试验研究[D],西安建筑科技大学硕士学位论文,2007.16-19.
    26. Andrade H J, Akben M G, Jonas J J. Effect of molybdenum, niobium and vanadium on static recrystallization and on solute strengthening in microalloyed steels [J]. Metallurgical Transactions, 1983, A 14(10):1967-1977.
    27.孙全社.钒微合金化钢的强韧性研究[J],机械工程材料,2006,30(8):27-30.
    28.高泽平.低合金高强度钢的强化机理及生产工艺的探讨[J],河南冶金,2001(1):17-20.
    29. B. Eghbali. Microstructural development in a low carbon Ti-microalloyed steel during deformation within the ferrite region[J], Materials Science and Engineering A,2008, (480):84-88.
    30. Z. Guo, T. Furuhara. The influence of (MnS+VC) complex precipite on the crystallography of intergranular pearlite transformation in Fe-Mn-C hypereutectoid alloys [J], Scripta Materialia,2001, 45(5):525-532.
    31.张永嘉,郑磊.宝钢宽厚板开发研制十年回顾[J],宝钢技术,1998,(3):1-6.
    32.王有铭,韦光.宽厚板的控制冷却[J],宝钢技术,1999,(6):18-21.
    33.张燕燕.厚板轧制新工艺与新技术的采用[J],轧钢,1998,(6):40-43.
    34.王祖滨.新世纪初期低合金高强度钢的发展[J],2003,(63):16-19.
    35. J.H. Samuel, S. Yue, J.J. Jonas, et al. Effect of dynamic recrystallization on microstructural evolution during strip rolling [J], ISIJ International,1990,30(3):216-225.
    36. S.K. Mishra, S. Ranganathan, S.K, Das, et al. Investigation on precipitation characteristics in a high strength low alloy (HSLA) steel [J], Scripta Materialia,1998,39(2):253-259.
    37.许长金,钟成芬.厚板的控制轧制和控制冷却[J],鞍钢技术,1995,(9):11-18.
    38.田村今男.奥氏体热变形行为和形变热处理(一)[J],钢铁,1985,20(1):64-75.
    39.王国栋.以超快速冷却为核心的新一代TMCP技术[J],上海金属,2008,30(2):1-5.
    40.李曼云,孙本荣.钢的控制轧制与控制冷却技术手册[M],北京:冶金工业出版社,1998,1-10.
    41. S Shanmugam, N K Ramisetti, R D K Misra, et al. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels[J]. Materials Science and Engineering A,2007, (460-461):335-343.
    42. Jo H J, Kang K.B., Park C.G.. Effects of cooling rate and isothermal holding on the precipitat-ion behavior during continuous casting of Nb-Ti bearing HSLA steels [J], Scripta Materialia 2003,49:1081-1086.
    43. QI S Z, Zhang P j, Du L X, Liu X H, et al. Controlled rolling and controlled cooling technology of ultra-high strength steel with 700 MPa grade[J], Journal of Iron & Steel Research Internat- ion,2004,11(3):27-42.
    44.吴扣根,郑少波,倪伟,等.宽厚板的加热、轧制和冷却技术[J],浙江冶金,2001,(1):35-40.
    45.钱振伦.我国宽厚板生产技术和装备的发展及评述[J],冶金管理,2008,(3):57-60.
    46.于世果,沈继刚.现代厚板生产工艺技术及工艺装备技术[J],钢铁技术,2008,(6):18-28.
    47.王国栋,刘相华.日本中厚板生产技术的发展和现状(二)—随中国金属学会代表团访问日本观感之二[J],2007,24(3):1-5.
    48.张训江,熊伟,王明亮.4300mm宽厚板热处理线工艺及主要设备介绍[J],鄂钢科协论文专辑:38-40.
    49.鹿内伸夫等TMCP厚板组织控制技术的最新进展和厚板产品的高性能化[J],鞍钢技术,2008,(4):54-59.
    50.常跃峰,王祖滨,赵文忠.低合金高强度宽厚钢板的发展趋势[J],钢铁,2007,42(8):1-6.
    51.常跃峰.低合金高强度宽厚板的发展[J],宽厚板,2002,8(5):1-5.
    52.孙玮,刘福义.国外厚板生产线工艺及设备特点[J],宽厚板,2008,14(1):43-48.
    53. Kozaburo Otani, Keiichi Hattori, Hirohide Mura-oka, et al. Development of Ultraheavy-Gauge (210mm Thick)800N/mm2 Tensile Strength Plate Steel for Racks of Jack-up Rigs [J].Nippon Steel Technical Report,1993, (58):1-8.
    54. Hiroshi KAGECH1KA. Production and Technology of Iron and Steel in Japan during 2005[J], ISIJ International,2006,46 (7),:939-958.
    55. The Technical Society, the Iron and Steel Institute of Japan. Production and Technology of Iron and Steel in Japan during 2007[J], ISIJ International,2008,48 (6):707-728.
    56. Kametani Hirohito, Okada Hitoshi, Murayama Hiroshi, Development of 200 mm-thick HT980 steel plate and its application study To penstock bifurcation[J], Welding in the World,Le Soudage Darts Le Monde,1998,41(6):515-526.
    57. Hashimoto Tamotsu, Arimochi Kazushige, Onishi, Kazushi; et al. Development of 150mm thick HT980Z steel plate[J], Sumitomo Search,1996, (58):56-64
    58. HAYASHI Kenji, KOSEKI Tomoya, OGAWA Takao et al. Steel Products for Construction, Industrial Machinery and Plant[J], JFE TECHNICAL REPORT,2004, (2):49-54.
    59. FUJIBAYASHI Akio, OMATA Kazuo. JFE Steel's Advanced Manufacturing Technologies for High Performance Steel Plates[J],. JFE TECHNICAL REPORT,2005, (5):10-15.
    60. HAYASHI Kenji, FUJISAWA Seiji, NAKAGAWA Ichiro. High Performance 550MPa Class High Strength Steel Plates for Buildings-Steel Plates with New Specified Design Strength, "HBL385," which Minimize Construction Costs in Frame Fabrication and Alleviate Environmental Burden[J], JFE TECHNICAL REPORT,2005, (5):53-59.
    61. Development of New Heavy-Gauge Steel Plate Using Cladding Technology[J], JFE GIHO,2004, (5): 65-66.
    62. Kazuo Omata, Hiroshi Yoshimura, Sadahiro Yamamoto. Leading High Performance Steel Plates with Advanced Manufacturing Technologies[J], NKK TECHNICAL REVIEW,2003, (88):73-80.
    63. MURAKAMI Yukio, FUJISAWA Seiji, FUJISAWA Kazuyoshi. Features of New High-Strength Steel Materials"550 N/mm2 Class" for Building Frames[J], JFE TECHNICAL REPORT,2006, (8):57-62.
    64.孙浩,陈启祥,陈林谦.迪林根厚板厂工艺设备考察[J],轧钢,2000,17(2):59-62.
    65. Mikael JONSSON. An Investigation of Different Strategies for Thermo-mechanical Rolling of Structural Steel Heavy Plates[J], ISIJ International,2006,46 (8):1192-1199.
    66.蔡得祥.宝钢特厚板用新锭型及相关工艺的研究[D],上海:上海交通大学,2007.
    67.陈健就,贺达伦.现代化宽厚板厂控制轧制和控制冷却技术[J],宝钢技术,1999,(2):10-21.
    68.封常福Ti-Nb微合金处理对0345B厚钢板组织结构和性能的影响[D],山东,上东大学,2007.
    69.林承模,张杰,常跃峰,等.27.1t直接轧制特厚板钢锭的研制[J],钢铁,1994,29(9):19-24.
    70.王占学.控制轧制与控制冷却[M],北京:冶金工业出版社,1988.
    71.王延溥.金属塑性加工学—轧制理论与工艺[M],北京:冶金工业出版社,1997,112-115.
    72.周纪华,管克智.金属塑性变形抗力[M],北京:机械工业出版社,1987.
    73.陈连光,王桂雁,宗铎.轧制速度对钢的强韧性的影响[J],宽厚板,2001,7(2):29-33.
    74.伍晓红.低速大压下工艺理论与实验[D],西安:西安建筑科技大学,1996.
    75.赵志业,王国栋.现代塑性加工力学[M],沈阳:东北工学院出版社,1986.
    76.王定武.特厚钢板制造技术的新进展[J],冶金管理,2009,(5):56-57.
    77.孙齐松,王新华,许晓东,等.中厚钢板缺陷分析及原因探讨[J],钢铁,2007,42(8):41-45.
    78.周远华,冉广秀.低合金钢中厚板探伤缺陷的原因分析与探讨[J],重型机械科技,2003,(2):40-44.
    79.周佩.15MnNbR钢板探伤不合格原因分析[J],中国冶金,2006,16(2):22-25.
    80.夏保卫,赵向政,张杰.厚钢板超声波探伤缺陷成因及控制[J],宽厚板,2007,13(5):30-34.
    81.徐宝杰,刘佩明,王勇.中厚板探伤不合原因分析及探讨[J],山东冶金,2007,29(12):75-77.
    82.李春梅.厚规格20g钢板超声波探伤不合原因分析[J],宽厚板,2007,13(4):15-17.
    83.王占学.塑性加工金属学[M].北京:冶金工业出版社,1981,149-153.
    84.赵德文,杜林秀,刘相华,等.厚板热轧中心缺陷压合条件分析[J],钢铁研究学报,2009,待发表.
    85. Betzalel Avitizur. Metal Forming-The Application of Limit Analysis [M], New York:Marcel Dekker. Inc.,1980.
    86.林治平.上界法在塑性加工工艺中的应用[M],北京:中国铁道出版社,1991.
    87. Gordon, W.A., Analysis of central burst in Forging Proc.NAMRC-XI,1983,238.
    88.邓伟,赵德文,秦小梅,等.特厚板轧制缺陷压合模拟研究[J],钢铁,2009,44(9):58-62.
    89.环境科学大辞典编辑委员会.环境科学大辞典[M],北京:中国环境科学出版社,1991,720.
    90.李庆臻.科学技术方法大辞典[M],北京:科学出版社,1999,88-92.
    91.张永军.金属材料内裂纹愈合过程的物理模拟与计算机模拟[D],北京科技大学博士学位论文,2003,15-17.
    92.杜林秀.低碳钢变形过程及冷却过程的组织演变与控制[D],沈阳:东北大学,2003.
    93.魏岩,王昭东,韩冰,等.Nb-Ti微合金钢奥氏体高温变形行为[J],东北火学学报(自然科学版),1997,18(2):165-168.
    94.余驰斌,叶传龙,赵刚,等.Nb-Ti钢高温变形时动态再结晶行为及模型探讨[J],武汉科技大学学报(自然科学版),2003,26(4):334-336.
    95.周志敏,高维林,白光润.14MnNb钢的热变形行为[J],钢铁,1993,28(2):40-44.
    96.孙彬斌,贾志伟,张红梅,等.C-Si-Mn系双相钢静态软化行为的研究[J],热加工工艺,2007,36(10):21-24.
    97. A.I. Fernandez, P. Uranga, B. Lopez, et al. Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb-Ti microalloyed steels[J], Materials Science and Engineering A,2003(361):367-376.
    98. P. Uranga, A.I. Fernandez, B. Lopez, et al. Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite[J], Materials Science and Engineering A,2003 (345): 319-327.
    99. S.H. Chou, K..B. Kang, J.J. Jonas. Mathematical modeling of the recrystallization kinetics of Nb microalloyed steels [J], ISIJ International,2001,41(7):766-773.
    100. S.F. Medina, J.E. Mancilla, C.A. Hernandez. Static recrystallization of hot deformed austenite and induced precipitation kinetics in vanadium microalloyed steels [J], ISIJ International,1994,34(8): 689-696.
    101. S.F. Medina, J.E. Mancilla. Static recrystallization modeling of hot deformed microalloyed steels at temperatures below the critical temperature [J], ISIJ International,1996,36(8):1077-1083.
    102. S.F. Medina, A. Quispe, P. Valles, et al. Recrystallization precipitation interaction study of two medium carbon niobium microalloyed steels [J], ISIJ International,1999,39(9):913-922.
    103. S.H. Chou, K.B. Kang, J.J. Jonas. The dynamic, static and metadynamic recrystallization of a Nb-microalloyed steel [J], ISIJ International,2001,41(1):63-69.
    104. S.F. Medina, A. Quispe. Improved model for static recrystallizaiton kinetics of hot deformed austenite in low alloy and Nb/V microalloyed steels [J], ISIJ International,2001,41(7):774-781.
    105. Y. Xu, Y. Cui and H. Shong. Mechanical working and steel processing conference proceeding [J], ISS, 1997,34:641-649.
    106. G. Li, T. M. Maccagno, D.Q. Bai, et al. Effect of initial grain size on the static recrystallization kinetics of Nb microalloyed steels[J], ISIJ International,1996,36(12):1479-1485.
    107. Soheil Solhjoo. Analysis of flow stress up to the peak at hot deformation[J], Materials and Design, 2009, (30):3036-3040.
    108. Z.Q. Sun, W.Y. Yang, J.J. Qi. Deformation enhanced transformation and dynamic recrystallization of ferrite in a low carbon steel during multipass hot deformation[J], Materials Science and Engineering A, 2002, (334) 201-206.
    109. Sellars C M, Mcg W J, Hot workability [J], Int.Metall.Rev.,1972,17(158):1-24.
    110. Medina S F, Hernadez C A. General expression of Zener-Hollomon parameter as a function of chemical composition of low alloy and microalloyed steel [J], Acta Mater,1996,44(1):137-148.
    111. Karhausen K, Kopp R. Model for Integrated Process and Microstructure Simulation in Hot Forming [J]. Steel Research,1992,63 (6):247-251.
    112.魏立群,祁捷.B72LX钢的动态再结晶数学模型[J],钢铁研究学报,2006,18(9):44-46.
    113.徐有容,侯火华,王德英,等.16Mn钢热变形流变应力模型及晶粒火小[J],1993,28(11):40-44.
    114. Laasraoui A, Jonas J J. Recrystallisation of austenite after deformation at high temperatures and strain rates-analysis and modeling [J]. Metallrugical and Materials Transactions,1991, A 22(1):151-160.
    115. Akira Yanagida, Jun Yanagimoto. Formularization of softening fractions and related kinetics for static recrystallization using inverse analysis of double compression test[J], Materials Science and Engineering A.2008(487):510-517.
    116. Zhao-hui Zhang, Yong-ning Liu, Xiao-kai Liang, et al. The effect of Nb on recrystallization behavior of a Nb micro-alloyed steel[J]. Materials Science and Engineering A.2008 (474) 254-260.
    117. D. Jorge-Badiola, I. Gutierrez. Study of the strain reversal effect on the recrystallization and strain induced precipitation in a Nb-microalloyed steel [J], Acta Materialia,2004 (52):333-341.
    118.丁敬国.中厚板轧制过程软测量技术的研究与应用[D],沈阳:东北火学,2009.
    119.林慧国,傅代直.钢的奥氏体转变曲线[M],北京:机械工业出版社,1988,256-270.
    120.续伟霞,郑为为,石俊亮,等.新型耐候钢连续冷却转变曲线的测定[J],材料热处理学报,2007,28(5):70-73.
    121. K.Komori.Simulation of deformation and temperature in multi-Pass three-roll rolling[J]. Journal of Materials Proeessing Teehnology,1999,92-93:450-457
    122. P.A.Manohar, T.Chandra, C.R.Kilhnore. Continuous Cooling Transformation Behaviour of Mieroalloyed Steel Coniaining Ti, Nb, Mn and Mo[J],ISIJ International,1996,36(12):1486-1493.
    123. X. Q. YUAN, Z. Y. LIU, S. H. JIAO, et al. The Onset Temperatures of γ to a-Phase Transformation in Hot Deformed and Non-deformed Nb Micro-alloyed Steels[J], ISIJ International,2006,46 (4): 579-585.
    124. M. Zhang, L. Li, R.Y. Fu, et al. Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels[J], Materials Science and Engineering A,2006, (438-440):296-299.
    125. Ming-Chun Zhao, Ke Yang, Fu-Ren Xiao, et al. Continuous cooling transformation of undeformed and deformed low carbon pipeline steels[J], Materials Science and Engineering A,2003, (355):126-136.
    126. A. M. ELWAZRI, P. WANJARA, S. YUE. Continuous Cooling Transformation Temperature and Microstructures of Microalloyed Hypereutectoid Steels[J], ISIJ International,2006,46 (9):1354-1360.
    127. H.J. Jun, J.S. Kang, D.H. Seo, et al. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels[J], Materials Science and Engineering A,2006, (422):157-162.
    128. Irvine K J, Pickering F B, Gladman T. Grain-refined C-Mn steels[J], Journal of the Iron and Steel Institute,1967,20(2):161-182.
    129.林武,张希旺,赵延阔,等.Q345钢奥氏体连续冷却转变曲线(CCT图)[J],材料科学与工艺,2009,17(12):247-250.
    130. Liu Y C, Zhu F X, Li Y M, et al. Effect of TMCP parameters on the microstructure and properties of an Nb-Ti microalloyed steel[J].ISIJ International,2005,45(6):851-857.
    131. Adem Bakkaloglu. Effect of processing parameters on the microstructure and properties of an Nb microalloyed steel[J], Materials Letters,2002,56:200-209.
    132. Toshiro TOMIDA, Norio 1MAI, Kaori MIYATA, et al. Grain Refinement of C-Mn Steel to lum by Rapid Cooling and Short Interval Multi-pass Hot Rolling in Stable Austenite Region [J], ISIJ International,2008,48 (8).:1148-1157.
    133.王国栋,刘相华,孙丽钢,等.包钢CSP"超快冷”系统及590MPa级C-Mn低成本热轧双相钢开发[J],钢铁,2008,43(3):49.
    134. Zhiping Zhao, Zhenmin Wang, Hongmei Zhang, et al. Effect of deformation and cooling rate on the transformation behavior and microstructure of X70 steels[J], Journal of University of Science and Technology Beijing,2007,14(5):410-413.
    135.王国栋,刘相华,朱伏先,等.新一代钢铁材料的研究开发现状和发展趋势[J],鞍钢技术,2005,4:1-8.
    136.王国栋,刘相华,杜林秀,等.超级Super-SS400钢的工业轧制试验[J],钢铁,2001,36(5):39-43.
    137.崔风平,孙玮,刘彦春等.中厚板生产与质量控制[M],北京:冶金工业出版社,2008:361-366.
    138.徐寅.我国400MPa热轧带肋钢筋应用现状和发展建议[J],轧钢,2002,19(4):3.
    139.刘彦春,董瑞峰,屈文胜,等.CSP线生产C2Mn系热轧双相钢的工业试验[J],轧钢,2006,23(4):1-4.
    140.赵德文.连续体成型力学数学解法[M],沈阳:东北大学出版社,2003:413-460.
    141.李龙,丁桦,杜林秀,等.TMCP对低碳锰钢组织和力学性能的影响[J],钢铁,2006,41(11):53-56.
    142.谷庆,冯光宏,常崇民,等.控制轧制工艺对中厚板性能的影响[J],钢铁研究,2001,(118):12-15.
    143.张景进,李阳,杨振东,等.中厚板生产[M],北京:冶金工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700