用户名: 密码: 验证码:
采动影响下煤体内瓦斯运移规律实验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在归纳总结了以往煤的瓦斯吸附解吸实验系统的特点后,独立设计开发了新型的三维采场瓦斯运移规律模拟实验系统,提出了进行煤的瓦斯吸附解吸实验的一个新思路。利用新型实验系统进行了大尺寸煤体在不同含水率条件下的瓦斯吸附解吸实验,通过实验研究发现,大尺寸煤体单位质量瓦斯吸附量约为以往利用煤粉进行实验时所得结果的1/10左右;大尺寸煤体的瓦斯解吸量与时间呈现出近似于抛物线形态的相关性;煤体的瓦斯解吸过程并不是恒温的,随着解吸过程的进行,实验煤体温度呈现下降趋势;采动时煤体的解吸速度要明显快于自然解吸速度,且解吸程度更为充分。最终根据以上实验研究、数值模拟以及理论推导,建立了在采动卸压作用的影响下,煤体内的空气—瓦斯混合气体运移方程组,并给出定解条件。
After summarized the characteristics of early time coal gas adsorption-desorption experimental system, author design and developed the3D stope gas delivery law simulation experimental system, provide a new way for doning methane adsorption-desorption experiment. By use of this new experimental system, we doing a series experiments about big size coal body methane adsorption-desorption, temperature curve in desorption experiment, and do the methane adsorption-desorption experiments with mining influence in the first time. the value of unit mass gas adsorbed quantity of big size coal is1/10of pulverized coal's value;The methane adsorption capacity of big size coal is similar to the parabola; Gas desorption process is an endothermic process the monitoring of experimental coal temperature gradual decline in the form of a parabolic function; Desorption velocity of adopts to move is faster than natural desorption velocity, and have a deeper desorption degree. According to the experiments research, numerical simulation and theoretical derivation, we established the equations about air-methane mixture gas delivery law in mining influence, and presented the definite conditions.
引文
1.周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001.
    2.李树刚.综放开采围岩活动及瓦斯运移[M].徐州:中国矿业大学出版社,2000.
    3.缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    4.陈占清,缪协兴,刘卫群.采动围岩中参变渗流系统的稳定性分析[J].中南大学学报(自然科学版),2004,35(1):129-132.
    5.王家臣,范志忠.厚煤层煤与瓦斯共采的关键问题,煤炭科学技术,2008,36(2).
    6.盛金昌,速宝玉,王媛.裂隙岩体渗流-弹塑性应力耦合分析[J].岩石力学与工程学报,1999,19(3):177-181.
    7.陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4):299-308.
    8.周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报,1996,(12):338-344.
    9.王恩志,王洪涛,孙役.双重裂隙系统渗流模型研究[J].岩石力学与工程学报,1998,17(4):400-406.
    10.梁冰,章梦涛.考虑时间效应煤和瓦斯突出的失稳破坏机理研究[J].阜新矿业学报,1997,16(2):129-133.
    11.Charlez P.A.Rock Mechanics(H:Petroleum applications)[M],Paris:Technical Publisher,1991.
    12.孙秀堂,常成,王成勇.岩石临界CTOD的确定及失稳断裂过程区的研究[J].岩石力学与工程学报,1995,14(4):312-315.
    13. Keivan Noghabai.Discrete versus Smeared versus Element-Embedded Crack Models on Ring Problem[J].Journal of Engineering Mechanics,2010,125(6):307-314.
    14. Valko P,Economides M J.Propagation of hydraulically induced fractures-a continuum damage mechanics approach[J].International Journal of Rock Mechanics and Mining Sciences,2009,31 (3):221-229.
    15.杨延毅,周维垣.裂隙岩体的渗流-损伤耦合分析模型及其工程应用[J].水力学报,1991(5):19-27.
    16.杨太华,曾德顺.三峡船闸高边坡裂隙岩体的渗流损伤特征[J].中国地质灾害预防治学报,1997,8(2):13-18.
    17.朱珍德,孙钧.裂隙岩体非稳定渗流场与损伤场耦合分析模型[J].水文地质工程地质,1999,26(2):35-42.
    18.郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报,2001,20(2):156-159.
    19. Tang,C A,Tham L G,Lee P K K,Yang T H,Li L C.Coupled analysis of flow, stress and damage in rock failure[J].Int.J.Rock Mech.Min.Sci.2002(39):477-489.
    20. Yang T H, Tham L G., Tang C A,Liang Z Z. Influence of heterogeneity of mechanical proper ties on hydraulic fracturing in permeable rocks[J].Rock Mech.Rock Eng.,2004,37(4):251-275.
    21. Li L,Holt R M. Simulation of flow in sandstone with fluid coupled particle model.Rock Mechanics in the National Interest[J]. Elsworth,Tinucci,Heasley (eds), Swets Zeitinger Lisse,2001:165-172
    22. Bruno M S,Dorfmann A,Lao K.Coupled particle and fluid flow modeling of fracture and slurry injection in weakly consolidated granular media[J]. Rock Mechanics in the National Interest [J]. Elsworth,Tinucci,Heasley(eds), Swets Zeitinger Lisse, 2001:173-180.
    23. Paterson S.Experimental deformation of rocks:the brittle field [M]. Berlin:Springer,1978.
    24. Li S P,Wu D X. Effect of Confining Pressure,Pore Pressure and Specimen Dimension on Permeability of Yin zhuang sandstone [J].Int.J.Rock Mech Min Sci.1997,34(3/4):435-441.
    25. Li S P,Li Y S,Wu Z Y.Permeability-strain equations corresponding to the complete stress-strain path of Yinzhuang sandstone [J] Int J. Rock Mech Min Sci Geomech Abstr,1994,31 (4):383-391.
    26. Zoback M D,Byerlee J D.The effect of microcracks dilatancy on the permeability of West erly granite[J].Journal of Geophysical Research,1975 (80):752-755.
    27. Schulze,O.,Popp,T.,and Kern,H.Development of damage and permeability in deforming rock salt[J].Engineering Geology,2001 (61):163-180.
    28. Oda M T,Takemura A,Aoki T.Damage growth and permeability change in triaxial compression tests of Inada granite[J].Mechanics of Materials,2002 (34):313-331.
    29. Otto Schulze,Till Popp,Hartmut Kern.Development of damage and permeability in deforming rock salt.Engineering Geology,2001(61):163-180.
    30. Rutqvist,J.,Tsang,C.F..Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain [J] Journal of Contaminant Hydrology,2003 (62-63):637-652.
    31. Mahnken,R.,Kohlmeier,M.Finite element simulation for rock salt with dilatancy boundary coupled to fluid permeation [J] Computer methods Appl Eng,2001(190):4259-4278.
    32.韩宝平,冯启言等.全应力应变过程中碳酸盐岩渗透性研究[J].工程地质学报,2000,8(2):127-128.
    33.李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报,2001,23(1):68-70.
    34.姜振泉,季梁军.岩石全应力应变过程渗透性试验研究[J].岩土工程学报,2001,23(2):153-156.
    35.周世宁.瓦斯在煤层流动的机理[J].煤炭学报,1990,15(1):61-67.
    36.周世宁,林柏泉.煤层瓦斯赋存及流动规律[M].北京:煤炭工业出版社,1998.
    37.何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学工业出版社,1995.
    38.孙培德.Sun模型及其应用-煤层气越流气固耦合模型及可视化模拟[M].杭州:浙江大学出版社,2002.
    39. Bernabe Y.The effective pressure law for permeability in Chelmsford granite and barre granite[J].Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,1986,23(3):267-275.
    40.赵阳升.煤岩流体力学[M].北京:煤炭出版社,1993.
    41.刘卫群.破碎岩体渗流理论及其应用研究[D].中国矿业大学博士论文,徐州:2002.
    42.王嫒,徐志英.裂隙岩体渗流与应力耦合分析的四自由度耦合法[J].水利学报,1998:55-59.
    43.陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13:299-308.
    44.唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    45.唐春安,徐曾和,徐小荷.岩石破裂过程分析RFPA2D系统在采场上覆岩层移动规律研究中的应用[J].辽宁工程技术大学学报,1999,18(5):456-458.
    46.唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    47.刘红元,刘建新,唐春安.采动影响下覆岩垮落过程的数值模拟[J].岩土工程学报,2001,23(2):201-204.
    48.唐春安,赵文.岩石破裂全过程分析软件系统RFPA2D[J]岩石力学与工程学报,1997,16(5):507-508.
    49.唐春安,芮勇勤,刘红元等.含瓦斯“煤样”突出现象的RFPA2D数值模拟[J].煤炭学报,2000,25(5):501-504.
    50.杨天鸿,唐春安,朱万成等.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报,2001,23(4):489-493.
    51.钱鸣高.绿色开采的概念与技术体系[J].煤炭科技,2003,(4):]-3.
    52.钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采及其技术体系[J].采矿与安全工程学报,2006,23(1):1-5.
    53.钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采[J].煤炭学报,2007,32(1):1-7.
    54.周德昶.地面钻井抽采瓦斯技术的发展方向[J].中国煤层气,2007,1:18-23.
    55.张正林,李树刚.卸压瓦斯抽采技术研究及其效果[J].煤炭科学技术,2005,4:10-12.
    56.井多胜,徐传田.地面钻孔抽放瓦斯技术的试验[J].煤炭技术,2006,6:84-86.
    57.胡千庭,梁运培,林府进.采空区瓦斯地面钻孔抽采技术试验研究[J].中国煤层气,2006,2:3-6.
    58.袁亮.淮南矿区煤矿煤层气抽采技术[J].中国煤层气,2006,1:7-10.
    59. MOFFAT D H, WEALE K E. Sorption by Coal of Methane at High Pressures[J]. Fuel, 1995(34):449-462.
    60. YANG R T, SAUNDERS J T. Adsorption of Gases on Coals and Heat-Treated Coals at Elevated Temperature and Pressure Adosorption from Hydrogen and Methane as Single Gases[J]. Fuel,1985(64):616-620.
    61. ZWIETERING P, KREVELEN D W. Chemical Structure and Properties of Coal VI-Pore Stucture[J]. Fuel,1954(33):331-337.
    62.顾惕人.表面化学[M].北京:科学出版社,2001.
    63.崔永君,张庆玲,杨锡禄.不同煤的吸附性能及等量吸附热的变化规律[J].天然气工业,2003,23(4):130-131.
    64.梁冰.温度对煤的瓦斯吸附性能影响的试验研究[J].黑龙江矿业学院学报,2000,10(1):20-22.
    65.于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000.
    66. YANG Q L. Experiment on Law of Gas Desorption of Coal and Its Application in Prediction of Outburst Danger and Gas Content[J]. Fushun Institute of Coal Science Research Institute,1986.
    67.张占存,马丕梁。水分对不同煤种瓦斯吸附特性影响的实验研究[J]。煤炭学报,2008,33(2):144-147.
    68. BARRER R M。 Difussion in and Through Solid[M]. Cambridge University Press,1951.
    69. WINTER K, JANAS H. Gas Emission Characteristics of Coal and Mehtods of Determining the Desorbable Gas content by means of Desorbometers[C]//X IV International Conference of Coal Mine Safety Research.
    71. AIREY E M. Gas Emissions fromBroken Coal, An Experimental and Theoretical Investigation[J]. International Journal of Rock Mechanics and Mineral Sciences,1968, 5:475-494.
    72. BOLT B A, INNES J A. Diffusion of Carbon Dioxide from Coal[J]. Fuel.1959,38:333-337.
    73.王佑安,杨思敬.煤和瓦斯突出危险煤层的某些特征[J].煤炭学报.1981(1):47-53.
    74.孙重旭.煤样解吸瓦斯泻出的研究及其突出煤层煤样解吸的特点[C]//煤与瓦斯突出第三次学术论文集.煤炭科学研究总院重庆分院,1983.
    75. KISSELL F N, MECULLOCH C M. The Direct Method of Determining Methane Content of Coalbeds for Ventilation Design. U.S. Bureau of Mines Report of Investigation, R17767,1973.
    76. SMITH D M, WILLIAMS F L. A New Technique for Determining the Methane Contert of Coal[C]//Proceedings of the 16th Intersociety Energy Conversion Engineering Conference. Atlanta, GA,1981:1267-1272.
    77. SMITH D M, WILLIAMS F L. Diffusion Models for Gas Production from Coals[J]. Fuel,1984,63:256-261.
    78.王兆丰.空气、水和泥浆介质中煤的瓦斯解吸规律与应用研究[D].徐州:中国矿业大学,2001.
    79.程远平.煤矿瓦斯防治理论与工程应用[M].中国矿业大学出版社,2010.
    80. Zhu W,Wong T F.The transition from brittle faulting to cataclastic flow:permeability evolution[J].J.Geophysics. Res.,1997,102(B2):3027-3041.
    81. Cristescu N,Hunsche U.Time effects in rock mechanics [J]. Seriea,Materials, Modelling and Computation,Wiley,Chichester,1998:342-438.
    82. Brace W F,A note on permeability change in geologic materials due to stress[J].Pure Appl.Geophys.1978(116):627-633.
    83. Wang J A,Park H D.Fluid permeability of sedimentary rocks in a complete stress-strain process[J].Engineering Geology,2002(63):291-300.
    84. Biot M A.General theory of three-dimensional consolidation[J].J Appl Phys., 1941(12):155-164.
    85. Leo CJ and Booker JR. Time stepping FEM for analysis of contaminant transport in fractured porous media. Int.Num. Anal.Methods Geomech,1996,20:847-864.
    86. Mao Bai,Derek Elsworth.Coupled processes in subsurface deformation, flow,and transport [R].American Society of Civil Engineers,ASCE press,2009.
    87. Bruno M S,Nakagawa F M.Pore pressure influence on tensile fracture propagation in sedimentary rock [J].In.J.Rock Mech.Min.Sci.,1991,28(4):261-273.
    88. Bridgeman P W.Breaking tests under hydrostatic pressure and conditions of rupture[J].Phil.Mag.,1912(24):63-80.
    89. Rice J R,Cleary M P.Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[J].Rev.Geophys.Space Phys.,1976(14):227-241.
    90. Esaki J.Shear-flow coupling test on rock joints.ln:Proc.7th Int. Confer. ISRM,1992.
    91.耿克勤等.岩体裂隙渗流水力特征的实验研究[J].清华大学学报(自然科学版),1996,36:102-106.
    92.段小宁,李鉴初.应力场与渗流场相互作用下裂隙岩体水流运动的数值模拟[J].大连理工大学学报,1992,32:712-717.
    93.杨天鸿.岩石破裂过程渗透性质及其应力耦合作用研究[D].东北大学博士学位论文,沈阳,2001.
    94.高海鹰.三维裂隙岩体渗流场与应力场耦合模型研究[J].岩土工程学报,1997,19:102-105.
    95.杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    96. Minkoff S, Stone C, Bryant S, et al.Coupled fluid flow and geomechanical deformation modeling[J].Journal of Petroleum Science and Engineering,2003, (38):37-56.
    97. Fredrich J, Arguello J, Thome B, et al.Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge Diatomite[A].In: Proceedings of SPE Annual Technical Conference and Exhibition[C].[s.l.]:[s.n.], 1996.195-210.
    98. Noorishad J, Tsang C F.Coupled thermohydroelasticity phenomena in variably saturated fractured porous rocks-formulation and numerical solution[A].In:Stephansson O, Jing L, Tsang CF ed.Coupled Thermo-Hydro-Mechanical Processes of Fractured Media[C].Amsterdam:Elsevier Science Publishers,1996.93-134.
    99. Tsang C F.Linking thermal, hydrological, and mechanical processes in fractured
    100. rocks[J].Annu.Rev.Earth Planet.Sci.,1999, (27):359-384.
    101. Zhao C, Hobbs B E, Muhlhaus H B, et al.Computer simulations of coupled problems in
    102. geological and geochemical systems[J].Computer Methods in Applied Mechanics and
    103. Engineering,2002, (191):3137-3152.
    104. Rutqvist J, Tsang C F.Analysis of thermal-hydrologic-mechanical behavior near an
    105. emplacement drift at Yucca Mountain[J].Journal of Contaminant Hydrology,2003, (63): 637-652.
    106. Oldenburg C M, Pruess K, Bensen S M.Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery [J].Energy and Fuels, 2001,15:293-298.
    107. Biot M A.Theory of elasticity and consolidation for a porous anisotropic solid[J].J.Appl.Phys,1955,26(2):182-191.
    108. Biot M A.Theory of stress strain relations in anisotropic viscoelasticity and relaxation phenomena[J].Appl.Phys,1954,25(11):1385-1391.
    109. Detournay and J.C Roegiers, Poroelastic Concepts Explain Some of the Hydraulic Fracturing Mechanisms.SPE 15262,1982.
    110. Reservoir Study-I. Theory and Governing Equations," paper SPE 30752 presented at the SPE Annual Technical Conference & Exhibition, Dallas, TX,22.25 Oct.1995.
    111.王瑞金,张凯,王刚Fluent技术基础与应用实例,清华大学出版社,2008.
    112.潘卫东.综放开采中顶煤介质属性分区与超声波测试技术研究[D].中国矿业大学(北京).2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700