用户名: 密码: 验证码:
复合凝聚反应制备茉莉香精微/纳米胶囊及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合凝聚反应(Complex coacervation)是发生于两种或两种以上大分子之间的基于静电相互作用的自聚集现象。利用不同反应程度的产物,可获得一系列具有不同尺度、特殊表面性能或优异乳化性质的复合凝聚物。它们在食品、化工、医药及纺织领域都有潜在的应用价值。然而,由于该反应原料间差异性较大,可控因素多且可调范围窄,致使其工业化进程缓慢。
     本论文所研究的对象为复合凝聚反应应用领域的一个极重要分支——胶囊化包埋。通过对不同尺度的复合凝聚物形成机理的研究,发现适用于纳米胶囊及微胶囊制备的不同反应阶段,以茉莉精油作为芯材,较为简便地获得相应胶囊化产品的制备工艺,并对其胶囊性质进行了一定的探索。具体研究内容及结果如下:
     选取明胶-阿拉伯胶体系作为反应的原料组合,在不同的混合比例(2:1,1:1,1:2,w/w)下,测量逐滴添加醋酸后600nm的吸光值变化,得到浊度滴定曲线。通过对曲线不同阶段的分析,发现该体系可通过pH条件控制,形成可溶性复合物及不可溶性复合物阶段,即它们具备了形成纳米胶囊与微胶囊的可能性。
     研究1:1混合比例下,相同pH值的明胶-阿拉伯胶体系的复聚物及以茉莉精油为芯材的微胶囊之间的关联性,具体为显微图像、产率及内部特性(抗机械外力-耐热性)。结果表明,二者之间具有极高的一致性,可借此简化微胶囊的工艺优化过程,概括如下:通过电位分析确定壁材之间可能的混合比例;浊度滴定曲线被用作选择最适混合比例及相应的pH条件;所得出的最适条件即可应用于微胶囊的制备。据此工艺优化过程,研究发现了一种新型多糖类壁材——羧甲基纤维素钠,显微图像结果表明其所形成的微胶囊结构与明胶-阿拉伯胶体系相似。
     通过动态温度流变分析模拟两种产自不同树种的阿拉伯胶(A. Senegal:AA;A. Seyal:BA)与明胶发生复合凝聚反应包裹茉莉精油后的冷却过程。结果发现对于流变曲线中弹性模量大于粘性模量的阶段,明胶-BA体系较明胶-AA体系具有更低的温度,即意味着要达到同样的弹性模量值时,明胶-BA体系需使温度降至更低。由于弹性模量体现了体系的类固体性质,因此可通过二者流变曲线的差异来指导微胶囊制备过程中的冷却步骤,达到使价格较低的BA型阿拉伯胶与价格较高的AA型接近的显微形态效果。具体的冷却条件为:AA,20-10°C;BA,5-0°C。
     选取三组混合比例(2:1,1:1,1:2)下的明胶-阿拉伯胶体系,利用多种手段研究其分子水平的复聚物形成机理。首先,通过显微图像及粒径分布分析发现,随pH的降低,1:1及1:2混合比例下的复聚物粒径逐渐增大,而2:1的复聚物粒径则逐渐减小。其次,原料转化率分析结果显示,复聚物的粒径转变趋势与阿拉伯胶的转化率变化相一致,即阿拉伯胶参与反应的数量越多,则复聚物粒径越大。最后,通过圆二光谱技术揭示了2:1混合比例下明胶、阿拉伯胶大分子的构象转变过程。在复聚物的形成中,明胶分子由无规卷曲结构转向了有序的PPII螺旋;阿拉伯胶分子则由部分有序的PPII螺旋转向了结构紧凑的PPI螺旋。该构象转变规律也体现于1:1与1:2的混合比例中。据此,推测复聚物粒径的改变是受分子水平的结构转变与参与反应的阿拉伯胶数量二者共同的影响。
     利用等温滴定量热技术对复合凝聚反应中的结合等温线进行分析,进一步佐证了明胶-阿拉伯胶体系中存在可溶性复合物及不可溶性复合物的两阶段产物。通过不同温度下的曲线发现氢键作用对反应影响较大,低温促使更多氢键的生成。考虑到可溶性复合物的形成中静电相互作用极其有限,因此在以下纳米胶囊的制备中只需要常温条件(25~30°C)反应即可。
     原位酸化剂——葡萄糖酸-δ-内酯被用于自发地缓慢改变体系的pH值,从而获得低水平下的浊度滴定曲线,探寻可溶性复合物的形成pH范围。结果表明,随明胶-阿拉伯胶混合比例的降低,相应的pH范围逐渐扩大。同时,通过NaCl及脲的添加发现大分子间的相互作用不仅包含起主导作用的静电相互作用,也与疏水相互作用有关。在确定可溶性复合物形成pH范围后,利用粒径分布分析获得适于纳米胶囊制备的最适pH条件及壁材比例(1:1,pH4.80)。其后,以平均粒径、多分散指数、电位及载量为指标,采用单因素优化,获得茉莉香精纳米胶囊的制备条件:明胶、阿拉伯胶比例1:1,总浓度0.5%;茉莉精油浓度0.5%;乳化剂(Span80: Tween80=1:1)浓度0.5%;固化剂转谷氨酰胺酶添加量0.25%。该条件下所制得的茉莉精油纳米胶囊平均粒径(r)为69.56nm,PDI值为0.135,带电量为-14.80mV。透射电镜结果与粒径测量结果相似,且充分证明了纳米胶囊对茉莉精油的包埋特性。
     为获得具耐高温性的茉莉香精纳米胶囊,特对其固化过程进行研究。对不同pH条件(pH4.80,6.0,7.0,8.0)下固化的茉莉香精纳米胶囊进行80°C的水浴加热,结果表明中性或弱碱性条件下的固化能显著提高粒子所带电荷的绝对值,增加体系的稳定性。在pH7条件下固化的纳米胶囊,经过7h的加热后,粒径为101.89nm,多分散指数为0.106,电位为-9.45mV,它的稳定性仍优于未固化纳米胶囊的初始值(电位-8.67mV)。基于纳米胶囊在形成与热作用下的粒径转变现象,发现大分子吸附、固化交联、热展开等是导致其粒径变化的主要因素。
     pH7固化条件下的茉莉香精纳米胶囊于加热不同时间下的挥发性物质分析结果发现,五种茉莉香精的特征性风味(芳樟醇,氨茴酸甲酯,顺-茉莉酮,二氢月桂烯醇,乙酸苄酯,乙酸苯乙酯,肉桂酸甲酯和吲哚)随加热时间的延长含量均下降。根据它们的下降趋势分析该纳米胶囊能耐受80°C、5h以内的加热条件。采用热重分析,对不同固化条件的茉莉香精纳米胶囊进行研究,以表征它们抵抗干热的能力。结果表明pH7、8条件下固化的纳米胶囊耐热性显著优于pH6的条件,它们经过200°C下15min的加热,体系的整体失重率仅为约20%。
Complex coacervation reaction is a self-assembled phenomenon that always happened among two orabove two kinds of macromolecules driven by electrostatic interactions. Through the application ofdifferent extents of reaction products, we could obtain series of complex coacervates with variable size,special surface capability or excellent emulsification. Such complex coacervates will confer great potentialsin industries like food, chemical engineering, pharmaceutical and textile. However, due to the largedifference among raw materials and big difficult in controlling the parameters, its process ofindustrialization is always slow.
     The current paper was focused on an important application field of complex coacervation-microencapsulation. The formation mechanism of complex coacervates was been investigated to disclosethe variable reaction phases suitable for preparation of nano-capsule and microcapsule. Furthermore, thecorresponding capsule type products were specifically fabricated with jasmine essence as core material;also their capsules’ characteristics were explored. The main contents are as follows:
     The gelatin-gum arabic system was chosen as raw materials of the reaction. Firstly, the turbidity titrationcurve at variable mixing ratios (2:1,1:1,1:2,w/w) for gelatin-gum arabic was obtained via drop-wise additionof acetic acid and then tested the absorbance values at600nm. Through analysis of the curve, it was found thatthis system could form soluble complexes and insoluble complexes by pH adjustment. In correspondence, thiscurve had the possibility to form nano-capsule and microcapsule.
     The complex coacervates and corresponding microcapsules at the mixing ratio of1:1and the same pHrange were investigated to find their relationship in each other, for the purpose of simplifying microcapsulepreparation optimization processing. Comparisons on morphology, yield and internal characteristic(anti-mechanical force capability-heat-resistance) were performed. Finally, a simplified method was proposed,in which the zeta-potential measurement helps to establish the approximate mixing ratios of wall materials; theturbidity analysis facilitates the finding of suitable pH corresponded to the highest turbidity to make the perfectmicrocapsule. According to this method, a new combination of wall materials named gelatin and sodiumcarboxymethyl cellulose was provided and verified by morphology.
     The dynamic-temperature rheological analysis was applied to investigate the cooling process ofcomplex coacervation happened between gelatin and two variety of gum arabic from different types of tree(A. Senegal: AA; A. Seyal: BA). It was found that the systems composed of different gum arabic conferredgreat variance on the property of viscoelasticity. In particular, the transition temperature from viscosity toelasticity was much higher for AA type complexes than BA type complexes. As the elasticity representedthe solid-like capability, such rheological curve could be applied to guide the preparation of microcapsuleby adjusting the cooling conditions. Therefore, the cheaper BA type gum arabic could own a similarmorphology with AA type. The specific cooling conditions are20-10°C for AA and5-0°C for BA。
     The coacervates of gelatin and gum arabic with three mixing ratios (2:1,1:1and1:2, w/w) wereprepared in order to elucidate their pH-dependent complexation mechanism. Firstly, the analysis ofmorphology and size distribution showed that with pH decline, the coacervates became larger for themixing ratio of1:1and1:2; whereas, the trend went oppositely as to the mixing ratio of2:1. Through thecomposition analysis of coacervates, such transition pattern was found to be consistent with the conversionrate of gum arabic. Coacervates prepared by the mixing ratio of2:1were chosen to further investigate theformation mechanism at the molecular level. During the complexation process with pH decrease, gelatinmolecules experienced a conformational change from a flexible pattern to an ordered PPII helix. On theother hand, gum arabic went through a transition from partly ordered PPII helix to a more compactstructure, called PPI helix. Such characteristics of conformational transition were also similar for thesystems with mixing ratios of1:1and1:2. Therefore, it was presumed that the change of coacervates size was due to the combined reasons including the conformational transition and the reacted amount of gumarabic.
     The isothermal titration calorimetry was used to analyze the binding isotherm for complexcoacervation. The curve verified again the existence of two phase products, including soluble complexesand insoluble complexes. Also, the curves at different temperatures showed that hydrogen bond played animportant role for structure formation. Specifically, the low temperature facilitated more hydrogen bondproduced. Considering the limit electrostatic interactions existed for soluble complexes, the correspondingnano-capsules could be strengthened by hydrogen bond through reacting just at room temperature, withoutthe need of heating.
     The colloidal behavior of soluble complexes was investigated using turbidity titration (600nm) withthe help of an in situ acidification-glucono-δ-lactone. The results showed that, with the decrease of mixingratio, the corresponding pH range for soluble complexes became a little larger. Furthermore, the addition ofNaCl and urea indicated the interactions between macromolecules were not only electrostatic interactions,but also hydrophobic interactions. Through the analysis of particle distribution, pH4.80under the mixingratio of1:1was chosen as the favorable condition for the nano-particles preparation. Subsequently,corresponding nano-capsules with jasmine essential oil entrapped were prepared. Based on the parametersof general size, polydispersity index (PDI), zeta potential and load, the best nano-capsules weresuccessfully prepared (r=69.56nm, PDI=0.135and zeta potial=-14.80mV) The optimized conditions wereselected as follows: total concentration0.5%, jasmine essence concentration0.5%, emulsifier concentration0.5%, emulsifier composition Span80and Tween80(1:1), cross-linker transglutaminase (0.25%). Theresults of transmission electron morphology were consistent with the particle size distribution, furtherverifying the encapsulation capability of nano-capsules.
     In order to obtain heat-resistant jasmine essence nano-capsules, the hardening process via cross-linkertransglutaminase was investigated. Their heat-resistance capability against80°C water bath was evaluated bysize, PDI and zeta potential. The results showed that the nanocapsules cross-linked at alkaline conditionsconferred a better stability. Specifically, the nano-capsules processed at pH7for hardening process could endurethe incubation at80°C for7h. The final characteristics are as follows: size=101.89nm, PDI=0.106, zetapotential=-9.45mV. Such particles stability were still better than the original value of un-hardenednano-capsules (zeta potentiall=-8.67mV). Based on the particle size transition rules among nano-capsules’formation and heat effect, it signified the macromolecules’ absorption, cross-linkage and heat-unfolding were themain reasons for size variation.
     During the analysis of volatile compounds for jasmine essence nano-capsules hardened at pH7undervariable heating time, five characteristic flavor compounds (linalool, methyl anthranilate, cis-jasmone,dihydromyrcenol, benzyl acetate, acetic acid phenethyl ester, cinnamic acid methyl ester and indole) for jasmineessence were found gradually decreased along the extension of time. According to these results, it could beconcluded that the nano-capsules containing jasmine essence were able to resist the heat processing (80°C)below5hours. Furthermore, the thermal analysis was applied to explore the capability of jasmine essencenano-capsules against dry heating effect. The results found the nano-capsules processed at pH7,8displayed abetter heat-resistant capability than pH6. After15min heating at200°C, their total weight lose was only lessthan20%.
引文
1De Kruif C, Tuinier R. Polysaccharide protein interactions[J]. Food Hydrocolloids.2001,15(4-6):555-563.
    2Bungenberg de Jong H, Kruyt H. Coacervation (partial miscibility in colloid systems)[J]. Proceedings ofthe Koninklijke Nederlandse Akademie van Wetenschappen.1929,32:849-856.
    3Burgess DJ. Practical analysis of complex coacervate systems[J]. Journal of Colloid and InterfaceScience.1990,140(1):227-238.
    4Piculell L, Lindman B. Association and segregation in aqueous polymer/polymer, polymer/surfactant,and surfactant/surfactant mixtures: similarities and differences[J]. Advances in Colloid and InterfaceScience.1992,41:149-178.
    5Tolstoguzov V. Compositions and phase diagrams for aqueous systems based on proteins andpolysaccharides[J]. International review of cytology.1999,192:3-31.
    6Priftis D, Tirrell M. Phase behaviour and complex coacervation of aqueous polypeptide solutions[J].Soft Matter.2012, DOI:10.1039/C2SM25604E.
    7Carvalho E, Mateus N, Plet B et al. Influence of wine pectic polysaccharides on the interactionsbetween condensed tannins and salivary proteins[J]. Journal of agricultural and food chemistry.2006,54(23):8936-8944.
    8Green BK, Lowell S. Oil-containing microscopic capsules and method of making them[P]. US Patent2,800,457,1957.
    9Schmitt C, Sanchez C, Desobry-Banon S et al. Structure and technofunctional properties ofprotein-polysaccharide complexes: a review[J]. Critical Reviews in Food Science and Nutrition.1998,38(8):689-753.
    10Bungenberg de Jong H. Crystallisation–coacervation–flocculation[J]. Colloid science.1949,2:232-258.
    11Guzey D, McClements DJ. Characterization of β-lactoglobulin–chitosan interactions in aqueoussolutions: a calorimetry, light scattering, electrophoretic mobility and solubility study[J]. FoodHydrocolloids.2006,20(1):124-131.
    12Mekhloufi G, Sanchez C, Renard D et al. pH-induced structural transitions during complexation andcoacervation of β-lactoglobulin and acacia gum[J]. Langmuir.2005,21(1):386-394.
    13Mounsey JS, O'kennedy BT, Fenelon MA et al. The effect of heating on β-lactoglobulm-chitosanmixtures as influenced by ph and ionic strength[J]. Food Hydrocolloids.2008,22(1):65-73.
    14Singh SS, Siddhanta A, Meena R et al. Intermolecular complexation and phase separation in aqueoussolutions of oppositely charged biopolymers[J]. International Journal of Biological Macromolecules.2007,41(2):185-192.
    15Huang GQ, Sun YT, Xiao JX et al. Complex coacervation of soybean protein isolate and chitosan[J].Food chemistry.2012,135(2):534-539.
    16Sanchez C, Mekhloufi G, Renard D. Complex coacervation between β-lactoglobulin and Acacia gum:A nucleation and growth mechanism[J]. Journal of Colloid and Interface Science.2006,299(2):867-873.
    17Schmitt C, Sanchez C, Lamprecht A et al. Study of β-lactoglobulin/acacia gum complex coacervationby diffusing-wave spectroscopy and confocal scanning laser microscopy[J]. Colloids and Surfaces B:Biointerfaces.2001,20(3):267-280.
    18Souza CJF, Garcia Rojas EE, Melo NR et al. Complex coacervates obtained from interaction egg yolklipoprotein and polysaccharides[J]. Food Hydrocolloids.2012,30(1):375-381.
    19Schmitt C, Sanchez C, Thomas F et al. Complex coacervation between β-lactoglobulin and acaciagum in aqueous medium[J]. Food Hydrocolloids.1999,13(6):483-496.
    20Bowman W, Rubinstein M, Tan J. Polyelectrolyte-gelatin complexation: Light-scattering study[J].Macromolecules.1997,30(11):3262-3270.
    21Matsunami H, Kikuchi R, Ogawa K et al. Light scattering study of complex formation betweenprotein and polyelectrolyte at various ionic strengths[J]. Colloids and Surfaces B: Biointerfaces.2007,56(1):142-148.
    22Girard M, Turgeon SL, Gauthier SF. Interbiopolymer complexing between β-lactoglobulin andlow-and high-methylated pectin measured by potentiometric titration and ultrafiltration[J]. FoodHydrocolloids.2002,16(6):585-591.
    23Wang X, Wang YW, Ruengruglikit C et al. Effects of salt concentration on formation and dissociationof β-lactoglobulin/pectin complexes[J]. Journal of agricultural and food chemistry.2007,55(25):10432-10436.
    24Weinbreck F, Nieuwenhuijse H, Robijn GW et al. Complexation of whey proteins with carrageenan[J].Journal of agricultural and food chemistry.2004,52(11):3550-3555.
    25Tolstoguzov VB. Functional properties of protein-polysaccharide mixtures. Functional Properties ofMacromolecules[M]. Elsevier Applied Science, London.1986:385-415.
    26Schmitt C, Sanchez C, Despond S et al. Effect of protein aggregates on the complex coacervationbetween β-lactoglobulin and acacia gum at pH4.2[J]. Food Hydrocolloids.2000,14(4):403-413.
    27Fang Y, Li L, Inoue C et al. Associative and segregative phase separations of gelatin/κ-carrageenanaqueous mixtures[J]. Langmuir.2006,22(23):9532-9537.
    28Kachanechai T, Jantawat P, Pichyangkura R. The influence of chitosan on physico-chemicalproperties of chicken salt-soluble protein gel[J]. Food Hydrocolloids.2008,22(1):74-83.
    29Gon alves E, Kitas E, Seelig J. Binding of oligoarginine to membrane lipids and heparan sulfate:structural and thermodynamic characterization of a cell-penetrating peptide[J]. Biochemistry.2005,44(7):2692-2702.
    30Chung K, Kim J, Cho BK et al. How does dextran sulfate prevent heat induced aggregation ofprotein?: The mechanism and its limitation as aggregation inhibitor[J]. Biochimica et Biophysica Acta(BBA)-Proteins&Proteomics.2007,1774(2):249-257.
    31Semenova M. Factors determining the character of biopolymer-biopolymer interactions inmulticomponent aqueous solutions modeling food systems[M]. Macromolecular Interactions in FoodColloids and Food Technology. ACS Publications, Washington DC,1996:37-49.
    32Leaneuville SI SC, Turgeon SL, Hardy J, Paquin P Small-angle static light scattering study ofassociative phase separation kinetics in β-lactoglobulin+xanthan gum mixtures under shear[M]. FoodColloids: Interactions, Microstructure and Processing. Royal Society of Chemistry, Cambridge.2005:443-465.
    33Weinbreck F, Nieuwenhuijse H, Robijn GW et al. Complex formation of whey proteins: exocellularpolysaccharide EPS B40[J]. Langmuir.2003,19(22):9404-9410.
    34Aberkane L, Jasniewski J, Gaiani C et al. Thermodynamic Characterization of Acacia Gumβ-Lactoglobulin Complex Coacervation[J]. Langmuir.2010,26(15):12523-12533.
    35De Vries R, Cohen Stuart M. Theory and simulations of macroion complexation[J]. Current Opinionin Colloid&Interface Science.2006,11(5):295-301.
    36Velazquez-Campoy A, Leavitt SA, Freire E. Characterization of protein-protein interactions byisothermal titration calorimetry[J]. Methods in Molecular Biology-glifton Then Totowa-.2004,261:35-54.
    37Aberkane L, Jasniewski J, Gaiani C et al. Structuration mechanism of β-lactoglobulin–acacia gumassemblies in presence of quercetin[J]. Food Hydrocolloids.2012,29(1):9-20.
    38Li X, Fang Y, Al-Assaf S et al. Complexation of bovine serum albumin and sugar beet pectin:structural transitions and phase diagram[J]. Langmuir.2012,28(27):10164-10176.
    39Girard M, Turgeon SL, Gauthier SF. Thermodynamic parameters of β-lactoglobulin-pectin complexesassessed by isothermal titration calorimetry[J]. Journal of agricultural and food chemistry.2003,51(15):4450-4455.
    40Harnsilawat T, Pongsawatmanit R, McClements D. Characterization of β-lactoglobulin–sodiumalginate interactions in aqueous solutions: a calorimetry, light scattering, electrophoretic mobility andsolubility study[J]. Food Hydrocolloids.2006,20(5):577-585.
    41Schmitt C, Da Silva TP, Bovay C et al. Effect of time on the interfacial and foaming properties ofβ-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH4.2[J]. Langmuir.2005,21(17):7786-7795.
    42Ball V, Winterhalter M, Schwinte P et al. Complexation mechanism of bovine serum albumin andpoly (allylamine hydrochloride)[J]. The Journal of Physical Chemistry B.2002,106(9):2357-2364.
    43Feng X, Pelton R, Leduc M et al. Colloidal complexes from poly (vinyl amine) and carboxymethylcellulose mixtures[J]. Langmuir.2007,23(6):2970-2976.
    44Braudo E, Antonov YA. Non-coulombic complex formation of protein as a structure forming factor infood systems[J]. Food proteins, structure and functionality.1993:210-215.
    45Dickinson E, Miller R, Schmitt C et al. Structural modification of β-lactoglobulin as induced bycomplex coacervation with acacia gum[J].2007.
    46Cousin F, Gummel J, Ung D et al. Polyelectrolyte-protein complexes: structure and conformation ofeach specie revealed by SANS[J]. Langmuir.2005,21(21):9675-9688.
    47Girod S, Boissière M, Longchambon K et al. Polyelectrolyte complex formation betweeniota-carrageenan and poly (L-lysine) in dilute aqueous solutions: a spectroscopic and conformationalstudy[J]. Carbohydrate Polymers.2004,55(1):37-45.
    48Delben F, Stefancich S. Interaction of food polysaccharides with ovalbumin[J]. Food Hydrocolloids.1998,12(3):291-299.
    49段金友,方积年.圆二色谱在糖类化合物结构研究中的应用[J].天然产物研究与开发.2004,16(1):71-75.
    50Burova TV, Grinberg NV, Grinberg VY et al. Conformational changes in ι-and κ-carrageenansinduced by complex formation with bovine β-casein[J]. Biomacromolecules.2007,8(2):368-375.
    51Paradossi G, Chiessi E, Malovìkovà A. Conformational study of the diastereomeric pairs in poly(lysine)-pectate complexes[J]. Macromolecules.2001,34(23):8179-8186.
    52Matia-Merino L, Lau K, Dickinson E. Effects of low-methoxyl amidated pectin and ionic calcium onrheology and microstructure of acid-induced sodium caseinate gels[J]. Food Hydrocolloids.2004,18(2):271-281.
    53Tuinier R, Rolin C, De Kruif C. Electrosorption of pectin onto casein micelles[J]. Biomacromolecules.2002,3(3):632-638.
    54Ganzevles RA, van Vliet T, Stuart MAC et al. Manipulation of adsorption behaviour at liquidinterfaces by changing protein-polysaccharide electrostatic interactions[M].Food Colloids:Self-assembly and Material Science, Royal Society of Chemistry, Cambridge.2007:195-208.
    55Ducel V, Saulnier P, Richard J et al. Plant protein–polysaccharide interactions in solutions:application of soft particle analysis and light scattering measurements[J]. Colloids and Surfaces B:Biointerfaces.2005,41(2):95-102.
    56Lv Y, Zhang X, Abbas S et al. Simplified optimization for microcapsule preparation by complexcoacervation based on the correlation between coacervates and the corresponding microcapsule[J].Journal of Food Engineering.2012.
    57Baracat MM, Nakagawa AM, Casagrande R et al. Preparation and Characterization of MicrocapsulesBased on Biodegradable Polymers: Pectin/Casein Complex for Controlled Drug Release Systems[J].AAPS PharmSciTech.2012,13(2):364-372.
    58Zhang W, Yan C, May J et al. Whey protein and gum arabic encapsulated Omega-3lipids. The effectof material properties on coacervation[J]. Agro Food Industry Hi-tech.2012,20(4):20-23.
    59Ye A, Flanagan J, Singh H. Formation of stable nanoparticles via electrostatic complexation betweensodium caseinate and gum arabic[J]. Biopolymers.2006,82(2):121-133.
    60Guzey D, McClements DJ. Formation, stability and properties of multilayer emulsions for applicationin the food industry[J]. Advances in Colloid and Interface Science.2006,128:227-248.
    61Benjamin O, Silcock P, Leus M et al. Multilayer emulsions as delivery systems for controlled releaseof volatile compounds using pH and salt triggers[J]. Food Hydrocolloids.2011,27(1):109-118.
    62Laneuville S, Paquin P, Turgeon S. Effect of preparation conditions on the characteristics of wheyprotein--xanthan gum complexes[J]. Food Hydrocolloids.2000,14(4):305-314.
    63Laneuville SI, Paquin P, Turgeon SL. Formula Optimization of a Low‐fat Food System ContainingWhey Protein Isolate‐Xanthan Gum Complexes as Fat Replacer[J]. Journal of food science.2005,70(8):513-519.
    64刘贺,朱丹实,刘丽萍et al.明胶与阿拉伯胶复合凝聚法制备脂肪替代品的研究[J].食品科学.2009,30(08):124-127.
    65Shih FF. Interaction of soy isolate with polysaccharide and its effect on film properties[J]. Journal ofthe American Oil Chemists' Society.1994,71(11):1281-1285.
    66Park SI, Daeschel M, Zhao Y. Functional Properties of Antimicrobial Lysozyme‐ChitosanComposite Films[J]. Journal of Food Science.2004,69(8):215-221.
    67Zheng F, Shi XW, Yang GF et al. Chitosan nanoparticle as gene therapy vector via gastrointestinalmucosa administration: results of an in vitro and in vivo study[J]. Life Sciences.2007,80(4):388-396.
    68Velema J, Kaplan D. Biopolymer-based biomaterials as scaffolds for tissue engineering[J]. TissueEngineering I.2006:187-238.
    69Samuel R, Lee C, Ghivizzani S et al. Delivery of plasmid DNA to articular chondrocytes via novelcollagen-glycosaminoglycan matrices[J]. Human Gene Therapy.2002,13(7):791-802.
    70郝红,梁国正.微胶囊技术及其应用[J].现代化工.2002,22(3):60-62.
    71Rotman A, Blatt Y. Heat stabilized flavoring agents coated with hydrogenated castor oil[P]. US Patent5098725,1992.
    72Tan CT, Kang YC, Sudol MA et al. Method of making controlled release flavors[P]. US Patent5064669,1991.
    73Wang Y, Ye H, Zhou C et al. Study on the spray-drying encapsulation of lutein in the porous starchand gelatin mixture[J]. European Food Research and Technology.2012,234(1):157-163.
    74Wei W, Li ZY, Liu FX et al. The Microcapsules Production by Supercritical Fluid ImpingingTechnology Combines with Fluidized Bed[J]. Advanced Materials Research.2012,557:483-488.
    75Dewettinck K, Huyghebaert A. Fluidized bed coating in food technology[J]. Trends in Food Science&Technology.1999,10(4-5):163-168.
    76高培,冯亚青,李刚et al.界面聚合法制备黄色电子墨水微胶囊[J].精细化工.2007,24(1):5-9.
    77Ichiura H, Takayama M, Nishida N et al. Interfacial polymerization preparation of functional papercoated with polyamide film containing volatile essential oil[J]. Journal of Applied Polymer Science.2012,124(1):242-247.
    78葛艳蕊,冯薇.原位聚合法制备玫瑰香精微胶囊的研究[J].日用化学工业.2003,33(5):337-339.
    79Gandham VD, Brochu ABW, Reichert WM. Microencapsulation of Liquid Cyanoacrylate via In situPolymerization for Self-healing Bone Cement Application[J]. MRS Online Proceedings Library.2012,1417(1).
    80徐文秀,吴彩娥,李婷婷.气流式锐孔法制作丁香油微胶囊的研究[J].食品工业科技.2005,26(6):96-99.
    81宫言佩,王晓阳,刘志强et al.锐孔-凝固浴法制备大蒜油微胶囊的工艺[J].中国调味品.2010,(4):61-64.
    82张海洋,吕怡,倪悦et al.明胶/CMC复合凝聚法制备微胶囊研究[J].食品与机械.2010,(5):44-47.
    83Nakagawa K, Nagao H. Microencapsulation of Oil Droplets Using Freezing-Induced Gelatin-AcaciaComplex Coacervation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2012,411:129-139.
    84Drusch S, Regier M, Bruhn M. Recent Advances in the Microencapsulation of Oils High inPolyunsaturated Fatty Acids[J]. Novel Technologies in Food Science.2012,7:159-181.
    85Dong ZJ, Xia SQ, Hua S et al. Optimization of cross-linking parameters during production oftransglutaminase-hardened spherical multinuclear microcapsules by complex coacervation[J]. Colloidsand Surfaces B: Biointerfaces.2008,63(1):41-47.
    86Chang CP, Leung TK, Lin SM et al. Release properties on gelatin-gum arabic microcapsulescontaining camphor oil with added polystyrene[J]. Colloids and Surfaces B: Biointerfaces.2006,50(2):136-140.
    87阎师杰,吴彩娥.核桃油微胶囊化工艺的研究[J].农业工程学报.2003,19(1):168-171.
    88王承南,钟海雁.油茶籽油微胶囊凝聚法工艺技术的研究[J].中南林学院学报.2001,21(4):28-31.
    89Li W, Wu G, Chen H et al. Preparation and characterization of gelatin/SDS/NaCMC microcapsuleswith compact wall structure by complex coacervation[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects.2009,333(1-3):133-137.
    90Dai R, Wu G, Li W et al. Gelatin/carboxymethylcellulose/dioctyl sulfosuccinate sodium microcapsuleby complex coacervation and its application for electrophoretic display[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2010,362(1):84-89.
    91Weinbreck F, Minor M, De Kruif C. Microencapsulation of oils using whey protein/gum arabiccoacervates[J]. Journal of microencapsulation.2004,21(6):667-679.
    92闫向阳,李光水,雍国平.凝聚法制备薄荷脑微胶囊技术研究[J].食品科学.2005,26(3):116-119.
    93王广远,罗明科.复合凝聚法制备辛硫磷微胶囊剂的研究[J].农药.1998,37(11):14-16.
    94Sheen L, Lin S, Tsai S. Properties of Essential Oil Microcapsules Prepared by PhaseSeparation/Coacervation[J]. Journal-Chinese Agricultural Chemical Society.1992,30:307-307.
    95路宏波,张冲,冯岩et al.复合凝聚法制备鱼油微胶囊技术的研究[J].食品工业科技.2008,(6):120-123.
    96Kralovec JA, Zhang S, Zhang W et al. A review of the progress in enzymatic concentration andmicroencapsulation of omega-3rich oil from fish and microbial sources[J]. Food chemistry.2011,131(2):639-644.
    97冯岩,张晓鸣,路宏波et al.复合凝聚法制备VE微胶囊工艺的研究[J].食品与机械.2008,(3):39-43.
    98姚建国,朱银燕,周卯星et al.丹参酮的微胶囊化[J].日用化学工业.2003,33(005):289-291.
    99倪悦,吕怡,夏书芹et al.苦瓜籽油的复凝聚微胶囊化技术研究[J].食品工业科技.2011,(7):237-241.
    100杜玉宝,焦利勇,王晓敏et al.柠檬油香精微胶囊的研制[J].大连轻工业学院学报.2004,23(003):182-185.
    101Onder E, Sarier N, Cimen E. Encapsulation of phase change materials by complex coacervation toimprove thermal performances of woven fabrics[J]. Thermochimica acta.2008,467(1-2):63-72.
    102Maji TK, Hussain MR. Microencapsulation of Zanthoxylum limonella oil (ZLO) in genipincrosslinked chitosan–gelatin complex for mosquito repellent application[J]. Journal of AppliedPolymer Science.2009,111(2):779-785.
    103Qi W, Yan X, Fei J et al. Triggered release of insulin from glucose-sensitive enzyme multilayershells[J]. Biomaterials.2009,30(14):2799-2806.
    104Kyogoku N, Saeki T, Fujikawa S. Process for producing microcapsules[P]. US Patent5023024;1991.
    105李珂.新型生物交联剂京尼平的性质与应用[J].中国化工贸易.2011,3(6):92-93.
    106Meena R, Prasad K, Siddhanta A. Development of a stable hydrogel network based onagar–kappa-carrageenan blend cross-linked with genipin[J]. Food Hydrocolloids.2009,23(2):497-509.
    107段丽红,金蓓,高利军et al.京尼平交联大豆蛋白/壳聚糖复合凝胶的控释[J].化工学报.2012,63(3):962-969.
    108Zhu Y, Rinzema A, Tramper J et al. Microbial transglutaminase—a review of its production andapplication in food processing[J]. Applied Microbiology and Biotechnology.1995,44(3):277-282.
    109Kaloti M, Bohidar H. Kinetics of coacervation transition versus nanoparticle formation inchitosan-sodium tripolyphosphate solutions[J]. Colloids and Surfaces B: Biointerfaces.2010,81(1):165-173.
    110Ron N, Zimet P, Bargarum J et al. Beta-lactoglobulin–polysaccharide complexes as nanovehicles forhydrophobic nutraceuticals in non-fat foods and clear beverages[J]. International Dairy Journal.2010,20(10):686-693.
    111马双双,肖作兵,胡静et al.纳米桂花香精胶囊的制备研究[J].食品工业.2010,(5):37-40.
    112肖作兵,叶琳,章苏宁et al.牛肉香精纳米微胶囊的制备研究[J].食品科学.2007,28(3):155-157.
    113Jones O, Decker E, McClements D. Formation of biopolymer particles by thermal treatment ofβ-lactoglobulin-pectin complexes[J]. Food Hydrocolloids.2009,23(5):1312-1321.
    114Jones OG, McClements DJ. Stability of biopolymer particles formed by heat treatment ofβ-lactoglobulin/beet pectin electrostatic complexes[J]. Food Biophysics.2008,3(2):191-197.
    115Jones OG, McClements DJ. Recent progress in biopolymer nanoparticle and microparticle formationby heat-treating electrostatic protein-polysaccharide complexes[J]. Advances in Colloid and InterfaceScience.2010,167(1-2):49-62.
    116Bromley E, Krebs M, Donald A. Mechanisms of structure formation in particulate gels ofβ-lactoglobulin formed near the isoelectric point [J]. Eur Phys J E: Soft Matter Biol Phys.2006,21(2):145-152.
    117Mehalebi S, Nicolai T, Durand D. Light scattering study of heat-denatured globular proteinaggregates[J]. International Journal of Biological Macromolecules.2008,43(2):129-135.
    118Jones OG, Lesmes U, Dubin P et al. Effect of polysaccharide charge on formation and properties ofbiopolymer nanoparticles created by heat treatment of [beta]-lactoglobulin-pectin complexes[J]. FoodHydrocolloids.2010,24(4):374-383.
    119Jones OG, McClements DJ. Biopolymer Nanoparticles from Heat‐Treated ElectrostaticProtein–Polysaccharide Complexes: Factors Affecting Particle Characteristics[J]. Journal of foodscience.2010,75(2):36-43.
    120Jones OG, Decker EA, McClements DJ. Comparison of protein-polysaccharide nanoparticlefabrication methods: Impact of biopolymer complexation before or after particle formation[J]. Journalof Colloid and Interface Science.2010,344(1):21-29.
    1Green BK, Lowell S. Oil-containing microscopic capsules and method of making them. In: US Patent2,800,457;1957.
    2朱晓丽,刘力娜,张志国et al.乳清蛋白/阿拉伯胶复凝聚法制备载乙酸油酯微胶囊及其表征[J].高分子学报.2009,(010):1062-1069.
    3Li W, Wu G, Chen H et al. Preparation and characterization of gelatin/SDS/NaCMC microcapsules withcompact wall structure by complex coacervation[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects.2009,333(1-3):133-137.
    4路宏波,张冲,冯岩et al.复合凝聚法制备鱼油微胶囊技术的研究[J].食品工业科技.2008,(6):120-123.
    5冯岩,张晓鸣,路宏波et al.复合凝聚法制备VE微胶囊工艺的研究[J].食品与机械.2008,(3):39-43.
    6Liu S, Cao YL, Ghosh S et al. Intermolecular interactions during complex coacervation of pea proteinisolate and gum arabic[J]. Journal of agricultural and food chemistry.2009,58(1):552-556.
    7León AE, Durán E, de Barber CB. Utilization of enzyme mixtures to retard bread crumb firming[J].Journal of agricultural and food chemistry.2002,50(6):1416-1419.
    8Schmitt C, Sanchez C, Desobry-Banon S et al. Structure and technofunctional properties ofprotein-polysaccharide complexes: a review[J]. Critical Reviews in Food Science and Nutrition.1998,38(8):689-753.
    9Burgess D, Carless J. Microelectrophoretic studies of gelatin and acacia for the prediction of complexcoacervation[J]. Journal of Colloid and Interface Science.1984,98(1):1-8.
    10Osman ME, Williams PA, Menzies AR et al. Characterization of commercial samples of gum arabic[J].Journal of agricultural and food chemistry.1993,41(1):71-77.
    11Liu S, Low NH, Nickerson MT. Effect of pH, salt, and biopolymer ratio on the formation of peaprotein isolate gum arabic complexes[J]. Journal of agricultural and food chemistry.2009,57(4):1521-1526.
    12Mekhloufi G, Sanchez C, Renard D et al. pH-induced structural transitions during complexation andcoacervation of β-lactoglobulin and acacia gum[J]. Langmuir.2005,21(1):386-394.
    13Singh SS, Siddhanta A, Meena R et al. Intermolecular complexation and phase separation in aqueoussolutions of oppositely charged biopolymers[J]. International Journal of Biological Macromolecules.2007,41(2):185-192.
    14Yeh LH, Fang KY, Hsu JP et al. Influence of boundary on the effect of double-layer polarization andthe electrophoretic behavior of soft biocolloids[J]. Colloids and Surfaces B: Biointerfaces.2011.
    15Weinbreck FCJ. Whey-protein/polysaccharide coacervates: structure and dynamics[J].2004.
    1Weinbreck F, Nieuwenhuijse H, Robijn GW et al. Complexation of whey proteins with carrageenan[J].Journal of Agricultural and Food Chemistry.2004,52(11):3550-3555.
    2Weinbreck F, Nieuwenhuijse H, Robijn GW et al. Complex formation of whey proteins: exocellularpolysaccharide EPS B40[J]. Langmuir.2003,19(22):9404-9410.
    3陈丽,李八方,赵雪et al.可食性狭鳕鱼皮明胶-褐藻胶复合膜的性质与结构表征[J].食品工业科技.2009,(010):275-278.
    4蒋挺大.胶原与胶原蛋白[M].北京:化学工业出版社,2006:.
    5Glicksman M. Gum technology in the food industry[M].1969.
    6于东博.阿拉伯胶多糖溶液分子聚集行为研究[D]:[硕士学位论文],上海,上海交通大学;2008.
    7Alftrén J, Pe arrieta JM, Bergenst hl B et al. Comparison of molecular and emulsifying properties ofgum arabic and mesquite gum using asymmetrical flow field-flow fractionation[J]. Food Hydrocolloids.2011,26(1):54-62.
    8Kuan YH, Bhat R, Senan C et al. Effects of Ultraviolet irradiation on the physicochemical andfunctional properties of gum Arabic[J]. Journal of Agricultural and Food Chemistry.2009,57(19):9154-9159.
    9Phillips GO, Williams PA. Handbook of hydrocolloids[M]. CRC;2000.
    10Phillips GO, Ogasawara T, Ushida K. The regulatory and scientific approach to defining gum arabic(acacia senegal and acacia seyal) as a dietary fibre[J]. Food Hydrocolloids.2008,22(1):24-35.
    11Elmanan M, Al-assaf S, Phillips GO et al. Studies on Acacia exudate gums. Part VI. Interfacialrheology of Acacia senegal and Acacia seyal[J]. Food Hydrocolloids.2008,22(4):682-689.
    12Schmitt C, Sanchez C, Desobry-Banon S et al. Structure and technofunctional properties ofprotein-polysaccharide complexes: a review[J]. Critical Reviews in Food Science and Nutrition.1998,38(8):689-753.
    13Gu FL, Kim JM, Abbas S et al. Structure and antioxidant activity of high molecular weight Maillardreaction products from casein-glucose[J]. Food chemistry.2010,120(2):505-511.
    14Pearce KN, Kinsella JE. Emulsifying properties of proteins: evaluation of a turbidimetric technique[J].Journal of agricultural and food chemistry.1978,26(3):716-723.
    1Mekhloufi G, Sanchez C, Renard D et al. pH-induced structural transitions during complexation andcoacervation of β-lactoglobulin and acacia gum[J]. Langmuir.2005,21(1):386-394.
    2Braudo E, Antonov YA. Non-coulombic complex formation of protein as a structure forming factor infood systems[M]. Food proteins, structure and functionality.1993:210-215.
    3Woessner J. The determination of hydroxyproline in tissue and protein samples containing smallproportions of this imino acid[J]. Archives Of Biochemistry and Biophysics.1961,93(2):440-447.
    4Turgeon S, Schmitt C, Sanchez C. Protein-polysaccharide complexes and coacervates[J]. CurrentOpinion in Colloid&Interface Science.2007,12(4-5):166-178.
    5Mahendran T, Williams P, Phillips G et al. New Insights into the Structural Characteristics of theArabinogalactan Protein (AGP) Fraction of Gum Arabic[J]. Journal of agricultural and food chemistry.2008,56(19):9269-9276.
    6蒋挺大.胶原与胶原蛋白[M].化学工业出版社.2006.
    7Whitmore L, Wallace B. Dichroweb, an online server for protein secondary structure analyses fromcircular dichroism spectroscopic data[J]. Nucleic acids research.2004,32(suppl2):668-673.
    8Usha R, Ramasami T. The effects of urea and n-propanol on collagen denaturation: using DSC, circulardicroism and viscosity[J]. Thermochimica acta.2004,409(2):201-206.
    9Doublier JL, Garnier C, Renard D et al. Protein-polysaccharide interactions[J]. Current Opinion inColloid&Interface Science.2000,5(3-4):202-214.
    10Bielska AA, Zondlo NJ. Hyperphosphorylation of tau induces local polyproline II helix[J].Biochemistry.2006,45(17):5527-5537.
    11Ma K, Kan L, Wang K. Polyproline II helix is a key structural motif of the elastic PEVK segment oftitin[J]. Biochemistry.2001,40(12):3427-3438.
    12Gómez-Guillén M, Turnay J, Fernández-D az M et al. Structural and physical properties of gelatinextracted from different marine species: a comparative study[J]. Food Hydrocolloids.2002,16(1):25-34.
    13Paradossi G, Chiessi E, Malovikova A. Study of the interactions of D-and L-polylysine enantiomerswith pectate in aqueous solutions[J]. Biopolymers.1999,50(2):201-209.
    14Girod S, Boissière M, Longchambon K et al. Polyelectrolyte complex formation betweeniota-carrageenan and poly (L-lysine) in dilute aqueous solutions: a spectroscopic and conformationalstudy[J]. Carbohydrate Polymers.2004,55(1):37-45.
    15Dickinson E, Miller R, Schmitt C et al. Structural modification of β-lactoglobulin as induced bycomplex coacervation with acacia gum[M]. Food Colloids,2007.
    16Delben F, Stefancich S. Interaction of food polysaccharides with ovalbumin[J]. Food Hydrocolloids.1998,12(3):291-299.
    17Burova TV, Grinberg NV, Grinberg VY et al. Conformational changes in ι-and κ-carrageenansinduced by complex formation with bovine β-casein[J]. Biomacromolecules.2007,8(2):368-375.
    18Paradossi G, Chiessi E, Malovìkovà A. Conformational study of the diastereomeric pairs in poly(lysine)-pectate complexes[J]. Macromolecules.2001,34(23):8179-8186.
    19段金友,方积年.圆二色谱在糖类化合物结构研究中的应用[J].天然产物研究与开发.2004,16(1):71-75.
    20Renard D, Lavenant-Gourgeon L, Ralet MC et al. Acacia s enegal Gum: Continuum of MolecularSpecies Differing by Their Protein to Sugar Ratio, Molecular Weight, and Charges[J].Biomacromolecules.2006,7(9):2637-2649.
    21Shpak E, Barbar E, Leykam JF et al. Contiguous hydroxyproline residues direct hydroxyprolinearabinosylation in Nicotiana tabacum[J]. Journal of Biological Chemistry.2001,276(14):11272-11278.
    22Sanclimens G, Crespo L, Giralt E et al. Preparation of de novo globular proteins based on prolinedendrimers[J]. The Journal of Organic Chemistry.2005,70(16):6274-6281.
    23Kuemin M, Schweizer S, Ochsenfeld C et al. Effects of terminal functional groups on the stability ofthe polyproline II structure: a combined experimental and theoretical study[J]. Journal of the AmericanChemical Society.2009,131(42):15474-15482.
    24鲍士宝.茶多酚纳米粒复合明胶膜的研究[D]:[博士学位论文],无锡,江南大学;2009.
    25刘小玲.鸡骨明胶的制备,结构及功能性质研究[D]:[博士学位论文],无锡,江南大学;2005.
    26Colthup N, Daly L, Wiberley S. Introduction to infrared and raman spectroscopy POD[J]. Recherche.1990,67:02.
    27Aberkane L, Jasniewski J, Gaiani C et al. Thermodynamic Characterization of Acacia Gumβ-Lactoglobulin Complex Coacervation[J]. Langmuir.2010,26(15):12523-12533.
    28Kelly R, Gudo E, Mitchell J et al. Some observations on the nature of heated mixtures of bovine serumalbumin with an alginate and a pectin[J]. Carbohydrate Polymers.1994,23(2):115-120.
    1Laneuville SI, Paquin P, Turgeon SL. Formula Optimization of a Low‐fat Food System ContainingWhey Protein Isolate‐Xanthan Gum Complexes as Fat Replacer[J]. Journal of Food Science.2005,70(8):513-519.
    2Weinbreck F, Minor M, De Kruif C. Microencapsulation of oils using whey protein/gum arabiccoacervates[J]. Journal of Microencapsulation.2004,21(6):667-679.
    3Yeo Y, Bellas E, Firestone W et al. Complex coacervates for thermally sensitive controlled release offlavor compounds[J]. Journal of Agricultural and Food Chemistry.2005,53(19):7518-7525.
    4Dong ZJ, Xia SQ, Hua S et al. Optimization of cross-linking parameters during production oftransglutaminase-hardened spherical multinuclear microcapsules by complex coacervation[J]. Colloidsand Surfaces B: Biointerfaces.2008,63(1):41-47.
    5Park SI, Daeschel M, Zhao Y. Functional Properties of Antimicrobial Lysozyme‐Chitosan CompositeFilms[J]. Journal of Food Science.2004,69(8):215-221.
    6Taravel M, Domard A. Collagen and its interactions with chitosan: III. Some biological and mechanicalproperties[J]. Biomaterials.1996,17(4):451-455.
    7Hong YH, McClements DJ. Formation of hydrogel particles by thermal treatment ofβ-lactoglobulin-chitosan complexes[J]. Journal of agricultural and food chemistry.2007,55(14):5653-5660.
    8Jones OG, Decker EA, McClements DJ. Formation of biopolymer particles by thermal treatment ofβ-lactoglobulin-pectin complexes[J]. Food Hydrocolloids.2009,23(5):1312-1321.
    9Jones O, Decker EA, McClements DJ. Thermal analysis of [beta]-lactoglobulin complexes with pectinsor carrageenan for production of stable biopolymer particles[J]. Food Hydrocolloids.2010,24(2-3):239-248.
    10Mekhloufi G, Sanchez C, Renard D et al. pH-induced structural transitions during complexation andcoacervation of β-lactoglobulin and acacia gum[J]. Langmuir.2005,21(1):386-394.
    11Girard M, Turgeon SL, Gauthier SF. Interbiopolymer complexing between [beta]-lactoglobulin andlow-and high-methylated pectin measured by potentiometric titration and ultrafiltration[J]. FoodHydrocolloids.2002,16(6):585-591.
    12Muthukumar M. Adsorption of a polyelectrolyte chain to a charged surface[J]. The Journal of chemicalphysics.1987,86:7230.
    13Zangi R, Zhou R, Berne B. Urea’s action on hydrophobic interactions[J]. Journal of the AmericanChemical Society.2009,131(4):1535-1541.
    14Ye A, Edwards PLB, Gilliland J et al. Temperature-dependent complexation between sodium caseinateand gum arabic[J]. Food Hydrocolloids.2011.
    1Ron N, Zimet P, Bargarum J et al. Beta-lactoglobulin–polysaccharide complexes as nanovehicles forhydrophobic nutraceuticals in non-fat foods and clear beverages[J]. International Dairy Journal.2010,20(10):686-693.
    2Nelson G. Application of microencapsulation in textiles[J]. International Journal of Pharmaceutics.2002,242(1):55-62.
    3孙京新,周光宏,徐幸莲.猪肉微粒体脂肪酸氧化产物对氧合肌红蛋白氧化的影响[J].南京农业大学学报.2004,27(1):101-104.
    4张冲.典型脂溶性营养素纳米脂质体的制备和稳定性研究[D]:[硕士学位论文],无锡,江南大学;2009.
    5Imura T, Sakai H, Yamauchi H et al. Preparation of liposomes containing Ceramide3and theirmembrane characteristics[J]. Colloids and Surfaces B: Biointerfaces.2001,20(1):1-8.
    6Repáková J, Capková P, Holopainen JM et al. Distribution, orientation, and dynamics of DPH probes inDPPC bilayer[J]. The Journal of Physical Chemistry B.2004,108(35):13438-13448.
    7Zunino MP, Turina AV, Zygadlo JA et al. Stereoselective effects of monoterpenes on themicroviscosity and curvature of model membranes assessed by DPH steady‐state fluorescenceanisotropy and light scattering analysis[J]. Chirality.2011.
    8Dong ZJ, Xia SQ, Hua S et al. Optimization of cross-linking parameters during production oftransglutaminase-hardened spherical multinuclear microcapsules by complex coacervation[J]. Colloidsand Surfaces B: Biointerfaces.2008,63(1):41-47.
    9Zhu Y, Rinzema A, Tramper J et al. Microbial transglutaminase—a review of its production andapplication in food processing[J]. Applied Microbiology and Biotechnology.1995,44(3):277-282.
    10Motoki M, Seguro K. Transglutaminase and its use for food processing[J]. Trends in Food Science&Technology.1998,9(5):204-210.
    11Müller RH, M der K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a reviewof the state of the art[J]. European Journal of Pharmaceutics and Biopharmaceutics.2000,50(1):161-177.
    12Jones OG, McClements DJ. Recent progress in biopolymer nanoparticle and microparticle formationby heat-treating electrostatic protein-polysaccharide complexes[J]. Advances in Colloid and InterfaceScience.2010,167(1-2):49-62.
    13Liu P, Huang M, Song S et al. Sensory characteristics and antioxidant activities of Maillard reactionproducts from soy protein hydrolysates with different molecular weight distribution[J]. Food andBioprocess Technology.2012,5(5):1775-1789.
    14黄致喜,徐晓瑾.茉莉香料化学[J].香料香精化妆品.2004,(3):25-34.
    15郭素枝,张明辉,邱栋梁et al.3个茉莉品种花蕾香精油化学成分的GC-MS分析[J].西北植物学报.2012,31(8):1695-1699.
    16陆宁.茉莉精油的微胶囊化及其在茉莉花茶中的应用研究[D]:[博士学位论文],合肥,安徽农业大学;2003.
    17Bazemore R, Rouseff R, Naim M. Linalool in orange juice: origin and thermal stability[J]. Journal ofAgricultural and Food Chemistry.2003,51(1):196-199.
    18Ito Y, Sugimoto A, Kakuda T et al. Identification of potent odorants in Chinese jasmine green tea scentedwith flowers of Jasminum sambac[J]. Journal of Agricultural and Food Chemistry.2002,50(17):4878-4884..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700