用户名: 密码: 验证码:
基于后向动态光散射的高浓度纳米颗粒粒径测量技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为21世纪的重要学科之一,纳米技术为材料科学带来了广泛而深刻的变革。我国在2006年2月9日公布的国家中长期科技发展规划纲要中,已把“纳米技术研究”列为4个重大科学研究计划之一。纳米颗粒的粒度检测是纳米技术中极其重要的一个方面,特别是近年来随着纳米技术广泛应用于制药、生物、电子、光电子、能源、催化和陶瓷等领域,各行业对纳米颗粒粒径的测量和监控要求也越来越严格,其发展水平已成为当前衡量一个国家纳米科技水平以及在这方面综合实力的重要标志之一。较之先进国家,我国在纳米颗粒的粒度测量技术及仪器方面尚有不小的差距,尤其是在高浓度纳米颗粒的粒径测量方面差距更大。
     动态光散射技术是目前应用最广泛的纳米颗粒粒径测量技术,但传统的动态光散射法一般只适用于稀溶液的测量。本文针对高浓度下的纳米颗粒粒径测量这一技术难点,提出了基于后向动态光散射的高浓度纳米颗粒粒径测量方法,以及基于现代功率谱估计的动态光散射频谱测量法。
     本论文的主要研究内容包括:
     一.研究了传统动态光散射法测量纳米颗粒悬浮液时其浓度受限的诸多因素,提出了当检测高浓度纳米颗粒的粒径时,应首先着眼于消除散射光的多重散射效应,并针对这一难点分析了国内外研究的现状,最后研发了基于后向动态光散射的高浓度纳米颗粒粒径测量装置。
     二.从麦克斯韦方程组出发推导了基于信号涨落的散射光场一般方程的表达式,针对颗粒布朗运动的统计特性,研究了散射光强涨落的表征方法,建立了与涨落有关的颗粒粒径信息表达式。
     三.利用颗粒运动的特征函数的概念,并认为基于粒子运动模型的散射光谱与粒子运动的特征函数是一时空双重傅立叶变换,进而建立了散射光场谱密度与颗粒粒径的联系。
     四.研究了动态光散射频谱测量技术的发展及其存在的问题,提出了一种新的基于现代功率谱估计的动态光散射频谱测量方法。从光电倍增管计数统计特性出发,根据Wiener-Khintchine定理,将时域自相关函数转换为频域的功率谱密度,得到了散射光强的谱密度表达式;根据FFT,利用现代功率谱估计中的自回归(AR)模型,实现了动态光散射信号功率谱密度的估计;最后通过计算信号自相关矩阵的秩得到AR模型中的阶数p,从而解决了在应用中由于待测颗粒粒径未知而无法确定阶数p的问题。
     五.根据本文研制的高浓度纳米颗粒粒径测量系统,分别采用时域相关光谱方法和频域谱密度测量法进行了相应的实验,并与传统光子相关光谱测量法进行了比较和分析。
     六.本文还对实际应用中与测量相关的一些问题进行了讨论,包括:光源的偏振态变化对测量结果的影响,采样时间的间隔对测量结果的影响,以及传统动态光散射系统的最佳检测孔径等问题。
As one of the important subjects in the21st century, nanotechnology has broughtmaterials science extensive and profound changes. Our country has identified"nanotechnology research" as one of the four major scientific research programs in theoutline of development planning, which was announced in medium and long-termNational Science and Technology in9th Feb.2006. Nanoparticle sizing is extremelyimportant in nano-technology. Especially in recent years, with the nano-technologywidely used in pharmaceutical, biotechnology, electronics, optoelectronics, energy,catalytic and ceramic and other fields, the requirements of various industries for themeasurement and monitoring of nanoparticle are increasingly stringent. And itsdevelopment level has become a standard to measure the level of a NationalNanotechnology and overall strength in this area. Compared with advanced countries,Our country has a distance in the nanoparticle sizing techniques and equipment,particularly in the measurement of nano-particle size in concentrated dispersion.
     Dynamic light scattering (DLS) technique is the most widely used nano-particlesizing technique currently. However, the traditional dynamic light scattering method isgenerally applied only to the measurement in dilute dispersion. In this paper, a methodwas proposed to solve the difficulty of the measurement of nanoparticle in concentrateddispersion, which was based on backscattering dynamic light, as well as themeasurement by dynamic light scattering spectrum based on the modern powerspectrum estimation.
     The main researches are as following:
     The factors, which limit the measurement by traditional DLS in concentrateddispersion, are studied. It was proposed that the focus should be first put on theelimination of the multiple scattering effect, when measuring the nanoparticle inconcentrated dispersion. And a review on research status at home and abroad wasanalyzed for this difficulty. Finally the method and equipment for nanoparticle sizingbased on backscattering dynamic light in concentrated dispersion was developed.
     Starting from the Maxwell's equations, the expressions of the general equation ofthe scattered light based on the fluctuation of the signal were derived. According to thestatistical properties of particles with Brownian motion, the characterization method ofthe intensity fluctuation of scattering light was studied, and the expressions of the particle size related to the fluctuation of the signal were set up.
     The relationship between the particle size and the spectrum density of scatteredlight field was set up, using the characteristic function of particle movement and that itis a double Fourier transform in time and space between the scattering spectra based onthe model of the movement of particle and characteristic function of movement.
     The development and existence of the problems of dynamic light scatteringspectrum measurement technique were studied. A new method was proposed based onthe modern power spectrum estimation. From the counting statistical characteristics ofthe Photomultiplier tubes, the spectral density expression of the intensity of scatteringlight was deduced by converting the time-domain auto-correlation function to frequencydomain power spectral density according to Wiener-Khintchine theorem; The powerspectral density estimation of the dynamic scattering light was implemented by the useof autoregressive (AR) model of modern power spectrum estimation with FFT; Finallythe problem that the number of p-order could not be determined because of theunknown particle size in application was resolved by calculating the rank of the matrixof signal auto-correlation.
     The measurement system for nanoparticle sizing in concentrated dispersion wasdeveloped based on backscattering dynamic light scattering, which includes: preparationof test nanoparticle dispersion, optical system (the selection of light source, the incidentand scattering optical path), the devices for signal detecting and treatment (the digitalcorrelator and photon counter were used separately based on two methods of signalanalysis). The experiments were carried out by correlation spectroscopy in time-domainand spectral density in frequency domain separately, and the results were compared andanalyzed with the measurements using traditional photon correlation spectroscopy.
     A number of problems about the practical application of measurement werediscussed, which includes: The impact of the measurement result from the changes ofthe Polarization of light source; the change in measurement results led by the samplingtime, as well as the problem of the best detection aperture in traditional dynamic lightscattering system.
引文
[1]任红轩.世界纳米科技发展趋势分析[J].新材料产业,2007,6(1):14-17.
    [2]王乃宁等。颗粒粒径的光学测量技术及应用。北京:原子能出版社,2000.
    [3] Ryogo Kubo. Electronic Properties of Metallic Fine Particles. I.[J]. J. Phys. Soc.Jpn.,1962,17(6):975-986.
    [4] Lieve Goorden, Michiel van Oudheusden, Johan Evers, et al. The Yearbook ofNanotechnology in Society, Volume I: Presenting Futures[M]. Springer Netherlands,2008.
    [5]刘维平,邱定蕃,马瑞新.超细粉体制备及测量技术研究进展[J].化工矿物与加工,2003,32(3):1-4.
    [6]周艳琼.纳米材料的奇异特性[J].中国设备工程,2001,8:54-55.
    [7] P. Ball, L. Garwin. Science at the atomic scale[J]. Nature,1992,355(6363):761-763.
    [8] C. Mo, Z. Yuan, L. Zhang, et al. Infrared absorption spectra of nano-alumina[J]Nanostructured Mater.,1993,2,47-54.
    [9] H. Takagi, H. Ogawa, Y Yamazaki, et al. Quantum size effects onphotoluminescence in altrafme Si particles[J]. Appl. Phys. Lett.,1990,56(24),2379-2380.
    [10]王刚.用于纳米颗粒粒度测量的模拟探测动态光散射技术研究[D].吉林大学博士论文,2006.
    [11]Z. Q. Qiu, Y W. Du, H. Tank et al. A Mossbauer study of fine iron particles[J]. J.Appl. Phys.,1988,63(8),4100-4104.
    [12]王志飞.磁性纳米复合颗粒的合成及其应用研究[D].东南大学博士学位论文,2006.
    [13]J.Karch, R.Birringer, H.Gleiter. Ceramics ductile at low temperature[J]. Nature,1987,330(6148):556-558.
    [14]高新,李稳宏,王锋,等.纳米材料的性能及其应用领域[J].石化技术与应用,2002,20(3):199-201.
    [15]王光祖,汪静,朱森.纳米技术与纳米材料的春天[J].珠宝科技,2004,16(4):20-24.
    [16]刘辉荣.纳米技术产业发展现状和我国的对策研究[J].改革与探索,2007,2:15-16.
    [17]胡松青,李琳,郭祀远,等.现代颗粒粒度测量技术[J].现代化工,2002,22(1):58-61.
    [18]周祖康.动态光散射[J].化学通报,1986,10:34-39.
    [19]程光煦.拉曼布里渊散射——原理及应用[M].北京:科学出版社,2001.
    [20]J. Tyndall. On the Blue Colour of the Sky, the polarization of Light by CloudyMatter Generally[J]. Philos. Mag.,1869,37(250):384-394.
    [21]Lord Rayleigh. On the light from the sky, its polarization and colour[J]. Philos.Mag.,1871,41(267):107-120.
    [22]Lord Rayleigh. On Copying Diffraction Gratings and Some Phenomena ConnectedTherewith[J]. Phil.Mag.,1881,11(312):196-205.
    [23]G. Mie. Beitrge zur Optik trüber Medien speziell kolloidaler Metallsungen[J]. Ann.Phys.,1908,25(4):377-445.
    [24]P. Debye. Das Verhalten von Lichtwellen in der Nahe eines Brennpunktes odereiner Brennlinie[J]. Ann. Phys.,1909,30(14):755-776.
    [25]L. Brillouin. über die Fortpflanzung des Licht in Disperdierenden Medien[J]. Ann.Phys.1914,44(6):203-240.
    [26]L. Brillouin. Diffusion of light and X-ray by a transparent homogeneous body. Theinfluence of thermal agitation[J].Ann. Phys.,1922(5),17:88-122.
    [27]Chu B. Laser Light Scattering[M]. New York: Academic Press,1974.
    [28]C. V. Raman, K. S. Krishnan. A new type of secondary radiation[J]. Nature,1928,121(3048):501.
    [29]P. Debye. Molecular-weight determination by light scattering[J]. J. Phys. ColloidChem.,1947,51(7):18-31.
    [30]P. Debye, E. W. Anacker. Micelle shape from dissymmetry measurements[J]. J.Phys. Colloid Chem.,1951,55(5):644-655.
    [31]R. Pecora. Doppler Shifts in Light Scattering from Pure Liquids and PolymerSolutions[J]. J. Chem. Phys.,1964,40(6):1604.
    [32]R. Foord, E. Jakeman, C. Oliver. Determination of Diffusion Coefficients ofHaemocyanin at Low Concentration by Intensity Fluctuation Spectroscopy ofScattered Laser Light[J]. Nature,1970,227(5255):242-245.
    [33]S. P. Lee, W. Tscharnuter, B. Chu. Calibration of an optical self-beatingspectrometer by polystyrene latex spheres and confirmation of the Stokes-Einsteinformula[J]. J. Polym. Sci. Phys.,1972,10(8):2453-2459.
    [34]T. Provder. Challenges in particle size distribution measurement past, present andfor the21st century[J]. Progress in organic Coatings,1997,32:143-153.
    [35]D. F. Nicoli, V. B. Elings. Automatic Dilution Systems[P]. US Patent4.794.806Jan.3.1989.
    [36]R. G. W. Brown, R. Grant. Photon statistical properties of visible laser diodes[J].Rev. Sci. Instrrum.,1987,58(6):928-931.
    [37]R. G. W. Brownl. Dynamic light scattering using monomode optical fibres[J].Appl.Opt.1987,26(22):4846-4851.
    [38]R. G. W. Brown, A. jackson. Monomode fibre components for dynamic lightscattering[J]. J. Phys.,1987,20(12):1503-1507.
    [39]R. G. W. Brown, K. D. Ridley, J. G. Rarity. Characterization of silicon avalanchephotodiodes for photon correlation measurements.1:passive quenching[J]. Appl.Opt.1986,25(22):4122-4126.
    [40]R. G. W. Brown, R. Jones, J. G. Rarity et al. Characterization of silicon avalanchephotodiodes for photon correlation measurements.2: Active quenching[J]. Appl.Opt.,1987,26(12):2383-2389.
    [41]D. J. Pine, D. A. Weitz, P. M. Chaikin, et al. Diffusing-Wave Spectroscopy, PhysicalReview Letters,1988,60(12):1134-1137.
    [42]S.E. Skipetrov, R. Maynard. Dynamic multiple scattering of light in multilayerturbid media[J]. Physics Letters A,1996,217(2-3):181-185.
    [43]Marcela Alexander, Douglas G. Dalgleish. Dynamic light scattering techniques andtheir applications in food science[J]. FOBI,2006,1:2-13.
    [44]F. Scheffold. Particle Sizing with Diffusing Wave Spectroscopy[J] Journal ofDispersion Science and Technology,2002,23(5):591-599.
    [45]T. G. Mason, Hu Gang, D. A. Weitz. Diffusing-wave-spectroscopy measurements ofviscoelasticity of complex fluids[J]. J. Opt. Soc. Am. A,1997,14(1):139-149.
    [46]Hans M. Wyss, Sara Romer, Frank Scheffold, et al. Diffusing-Wave pectroscopy ofConcentrated Alumina Suspensions during Gelation[J]. Journal of Colloid andInterface Science,2001,241(1):89-97.
    [47]Parnia Navabpour, Carlos Rega, Christopher J. Lloyd, et al. Influence ofconcentration on the particle size analysis of polymer latexes using diffusing-wavespectroscopy[J]. Colloid Polym Sci,2005,283(9):1025-1032.
    [48]Yves Nicolas, Marcel Paques, Dirk van den Ende, et al. Microrheology: newmethods to approach the functional properties of food[J]. Food Hydrocolloids,2003,17(6):907-913.
    [49]R. G. W. Brown, J. G. Burnett, J. Mansbridge, et al. Miniature laser light scatteringinstrumentation for particle size analysis[J]. Appl.Opt.,1990,29(28):4159-4169.
    [50]Gabriel Popescu, Aristide Dogariu. Dynamic light scattering in localized coherencevolumes[J]. Optics letters,2001,26(8):551-553.
    [51]Franck Jaillon, Sergey E. Skipetrov, Jun Li. Diffusing-wave spectroscopy fromhead-like tissue phantoms: influence of a non-scattering layer[J]. Optics express,2006,14(22):10181-10194.
    [52]S. Haber-Pohlmeier, W. Eimer. Depolarized dynamic light scattering in thenanosecond time range: analyzing rotational motion of B and Z-DNA in solution[J].J. Phys. Chem.1993,97:3095-3097.
    [53]M. C. Pitter, K. I. Hopcraft, E. Jakeman, et al. Structure of polarization fluctuationsand their relation to particle shape[J]. J. Quant. spectrosc. Radiat. Transfer,1999,63(2-6):433-444.
    [54]Michael Kaszuba, David McKnight, Malcolm T. Connah. Measuring sub nanometresizes using dynamic light scattering[J]. Journal of Nanoparticle Research,2007,10(5):823-829.
    [55]Christopher M. Hoo, Natasha Starostin, Paul West. A comparison of atomic forcemicroscopy (AFM) and dynamic light scattering (DLS) methods to characterizenanoparticle size distributions[J]. Journal of Nanoparticle Research,2008,10(1):89-96.
    [56]Bica CID, Borsali R, Geissler E, et al. Dynamics of cellulose whiskers in agarosegels.1. Polarized dynamic light scattering[J]. Macromolecules,2001,34(15):5275-5279.
    [57]Tanaka H, Takagi S. Phase-coherent light scattering spectroscopy. I Generalprinciple and polarized dynamic light scattering[J]. J. Chem. Phys.,2001,114(14):6286-6295.
    [58]S. Takagi, H. Tanaka. Phase-coherent light scattering spectroscopy. II Depolarizeddynamic light scattering[J]. J. Chem. Phys.,2001,114(14):6296-6302.
    [59]Stefen W, Patkowski A, Glaser H, et al. Depolarized-light-scattering study oforthoterphenyl and comparison with the mode-coupling model[J]. Phys Rev E,2004,49(4):2992-3002.
    [60]Hui Xia, Hongjian Li, Bingchu Yang, Katsuhiro Ishii, et al. Measurement of opticalconstants for dense media by low-coherence dynamic light scattering[J]. OpticsCommunications,2007,11(9):12806-12813.
    [61]D. Magatti, F. Ferri. Fast Multi-Tau Real-Time Software Correlator for DynamicLight Scattering[J]. Appl. Opt.,2001,40(24):4011-4021.
    [62]D. Magatti, F. Ferri.25ns software correlator for photon and fluorescencecorrelation spectroscopy[J]. Rev. Sci. Instrum.,2003,74(2):1135-1144.
    [63]R. Dzakpasu, D. Axelrod. Dynamic light scattering microscopy. A novel opticaltechnique to image submicroscopic motions. II: Experimental applications[J].Biophysical J.2004,87(2):1288-1297.
    [64]S. Takagi, H. Tanaka. Mode-Selective Dynamic Light Scattering Spectroscopy:Application to the Isotropic Phase of Liquid Crystals[J]. Phys. Rev. Lett.,2004,93(25):257802.1-257802.4.
    [65]Dhadwal, Harbans S. Homodyne fiber optic backscatter dynamic light scattering[J].Optics Letters,2007,32(23):3391-3393.
    [66]Varghese B, Rajan V, van Leeuwen T G, et al. W. Discrimination betweenDoppler-shifted and non-shifted light in coherence domain path length resolvedmeasurements of multiply scattered light[J]. Optics Express,2007,15(20):13340-13350.
    [67]Chicea, Dan. Coherent light scattering on nanofluids: computer simulationresults[J]. Applied Optics,2008,47(10):1434-1442.
    [68]Ishii Katsuhiro, Iwai Toshiaki, Nakamura Shinichi. Numerical analysis of apath-length-resolved spectrum of time-varying scattered light field[J]. JOSA A,2008,25(3):718-724.
    [69]Brogioli Doriano, Croccolo Fabrizio, Cassina Valeria. Nano-particlecharacterization by using exposure time-dependent spectrum and scattering in thenear field methods: how to get fast dynamics with low-speed CCD camera[J].Optics Express,2008,16(25):20272-20282.
    [70]Wang Huarui, Shen Jianqi. Size measurement of nano-particles using self-mixingeffect[J]. Chinese Optics Letters,2008,6(11):871-874.
    [71]B. Chu. Laser Light Scattering[M]. New York: Academic Press,1974.
    [72]B. J. Berne, R. Pecora. Dynamic Light Scattering with Applications to Chemistry,Biology and Physics[M]. New York: Willey-Interscience,1976.
    [73]H.Z. Cummins, E.R. Pike. Photon Correlation Spectroscopy and Velocimetry[M].New York: Plenum Press,1977.
    [74]V. Degiorgio, M. Corti, M. Giglio. Light Scattering in Liquids and MacromolecularSolutions[M]. New York: Plenum Press,1980.
    [75]S. H. Chen, B. Chu, R. Nossal. Scattering Techniques Applied to Supramolecularand Nonequilibrium Systems[M]. New York: Plenum Press,1981.
    [76]B. E. Dahneke. Measurement of Suspended Particles by Quasi-Elastic LightScattering[M]. New York: John Wiley&Sons,1983.
    [77]R. Pecora. Dynamic Light Scattering-Applications of Photon CorrelationSpectroscopy[M]. New York: Plenum Press,1985.
    [78]K.S. Schmitz. An Introduction to Dynamic Light Scattering by Macromolecules[M].New York: Academic,1990.
    [79]W. Brown. Dynamic Light Scattering: the Method and Some Applications[M].Clarendon Press, Oxford,1993
    [80]E. R. Pike, J. B. Abbiss. Light Scattering and Photon Correlation Spectroscopy[M].Nether land: Kluwer Academic Publishers,1997.
    [81]Reng liang Xu. Particle characterization light scattering method[M]. Netheland:Kluwer academic pulishers,2000.
    [82]Redouane Borsali, Robert Pecora. Soft Matter Characterization[M]. SpringerNetherlands,2008.
    [83]Y.G.Burya, I.K.Yudin, V.A.Dechabo, et al. Colloidal Properties of Crude OilsStudied by Dynamic Light-Scattering[J]. International Journal of Thermophysics,2001,22(5):1397-1410.
    [84]Ansari Rafat R., Giblin Frank King, F. James, et al. Noninvasive and remotedetection of cataracts during space exploration with dynamic light scattering[A].Proc. SPIE Int. Soc. Opt. Eng[C],2001,4245:129-134.
    [85]B. Luppi, T. Cerchiara, F. Bigucci, et al. Polymeric nanoparticles composed of fattyacids and polyvinylalcohol for topical application of sunscreens[J]. J. of Pharmacyand Phannacology,2004,56(3):407-411.
    [86]Tungittiplakorn Warapong, Lion Leonard W, Cohen Claude, et al. Engineeredpolymeric nanoparticles for soil remediation[J]. Environmental Science&Technology,2004,38(5):1605-1610.
    [87]Mojca Vilfan, Alenka Mertelj, Martin Opic. Dynamic light scattering measurementsof azimuthal and zenithal anchoring of nematic liquid crystals[J]. Phys. Rev. E,2002,65(4):04171.
    [88]GB/T19627-2005/ISO13321:1996.粒度分析光子相关光谱法[S].中华人民共和国国家标准.2005-08-01.
    [89]L.F. Rojas, R. Vavrin, C. Urban, et al. Particle dynamics in concentrated colloidalsuspensions[J]. Faraday Discuss.2003,123,385-400.
    [90]J. Tothova, B. Brutovsky, V. Lisy. Draining and concentration effects in dynamiclight scattering from nonentangled polymers in solution[J]. Laser Physics,2007,17(4):443-447.
    [91]G. D. Phillies. Experiment demonstration of multiple-scattering suppression inquasielastic-light-scattering spectroscopy by homodyne coincidence technique[J],Phys. Rev. A,1981,24(4):1939-1942.
    [92]J. C. Jonsson, G. B. Smith, G. A. Niklasson. Experimental and Monte Carlo analysisof isotropic multiple Mie scattering[J]. Optics Communications,2004,240(1-3):9-17.
    [93]E. D. Hirleman. General solution to the inverse near-forward-scattering particlesizing problem in multiple-scattering environments: theory[J]. Appl. Opt.,1991,30(33):4832-4838.
    [94]A. A. Kokhanovsky, R. Weichert, et al. Angular spectrum of light transmittedthrough turbid media: theory and experiment[J]. Appl. Opt.,2001,40(16):2595-2600.
    [95]A. A. Kokhanovsky, R. Weichert. Multiple light scattering in laser particle sizing[J].Appl. Opt.,2001,40(9):1507-1513.
    [96]Kerker M. The scattering of light and other electromagnetic radiation[M]. NewYork: Academic Press,1969.
    [97]P. Pusey, R. Tough. Particle Interaction in Dynamic Light Scattering[M]. New York:Plenum,1985.
    [98]H. S. Dhadwal, W. W. Wilson, et al. Dynamic light scattering studies of BSA andlysozyme using a backscatter fiber optic system[A]. Nossal R J, Pecora R, et al.Proceedings of Static and Dynamic Light Scattering in Medicine and Biology[C].New York: SPIE,1993.
    [99]G. D. Phillies, Suppression of multiple scattering effects in quasielastic lightscattering by homodyne cross-correlation techniques[J]. J. of Chem. Phys.,1981,74(1):260-262.
    [100] M. Drewel, J. Ahrens, U. Podschus. Decorrelation of multiple scattering forarbitrary scattering angle[J]. Journal of Society American,1990,7(2):206-210.
    [101] Lisa B. Aberle, Peter Hulstede, Simone Wiegand, et al. Effective suppression ofmultiply scattering light in static and dynamic light scattering[J]. Applied Optics,1998,37(27):6511-6523.
    [102] P.N. Pusey. Suppression of multiple scattering by photon cross-correlationtechniques[J]. Current Opinion in Colloid&Interface Science,1999,4(3):177-185.
    [103] J rg-Michael Schr der, Simone Wiegand. Experimental suppression ofmultiple scattering: E.ect on dynamic and static scattering data[J]. Phys. Chem.Chem. Phys.,2000,2,1493-1495.
    [104] J rg-Michael Schr der, Simone Wiegand. Suppression of Multiple Scatteringin a Depolarized Light-Scattering Experiment Using the One-Beam Setup[J]. SoftMaterials,2003,1(1):53-61.
    [105] J rg-Michael Schr der, Simone Wiegand. Suppression of multiple scatteringfor the critical mixture polystyrene/cyclohexane: Application of the one-beam crosscorrelation technique[J]. J. of Chem. Phys.,2003,118(24):11307-11314.
    [106] Evguenia Sevenard and Wolffram Schr er. Correlation functions of singly andmultiply scattered light analysed by the3-D cross-correlation technique[J]. Phys.Chem. Chem. Phys.,2002,4:1900-1906.
    [107] Dhadwal H. S., Ansari, R. R., et al. A fiber-optic probe for particle sizing inconcentrated suspension[J]. Review of Scientific Instrument,1991,62(12):2963-2968.
    [108] Horn, D. Single-mode fibers in fiber-optic quasielastic light scattering: a studyof the dynamics of concentration latex dispersions[J]. Journal of chemistry physics.2000,94(10):6429-6443.
    [109] A. W. Willemse, H. G. Merkus, B. Scarlett. Development of On-linemeasurement and control techniques for fine grinding and dispersion process[A]. Inproceedings world congress particle technology[C]. Brighton,1998,7:206-210.
    [110] Paulo R. Bargo, Scott A. Prahl, Steven L. Jacques. Collection Efficiency of aSingle Optical Fiber in Turbid Media[J]. Applied Optics,2003,42(16):3187-3197.
    [111] P. R. Bargo, S.A. Prahl, S.L. Jacques, Optical properties effects upon thecollection efficiency of optical fibers in different probe configurations[J]. SelectedTopics in Quantum Electronics, IEEE J. of,2003,9(2):314-321.
    [112]黄伟, E. R. PIKE.光纤在光子相关光谱中的研究[J].物理学报,2001,50(8):1507-1511.
    [113]娄本浊,王少清,张华东,等.光纤式动态光散射系统综述[J].光学仪器.2007,29(1):89-94.
    [114] Bizheva K K, SiegelA M, Boas D A. Path length resolved dynamic lightscattering in highly scattering random media: the transition todiffusing wavespectroscopy[J], Physical Review,1998,58(6):7664-7667.
    [115] G. Popescu, A. Dogariu. Dynamic light scattering in localized coherencevolumes[J], Optical Society of American,2001,26(8):551-553.
    [116] Takagi S, Tanaka H. Mode selective dynamic light scattering spectroscopy:application to the isotropic phase of liquid crystals[J], Phys. Rev. Lett.,2004,93(25):257802.1-257802.4.
    [117]申晋.亚微米及纳米颗粒的动态光散射测量技术研究[D].上海:上海理工大学博士学位论文.2003.
    [118]郑刚,李孟超,刘铁英,等.求解多峰颗粒尺寸分布的一种反计算方法[J].光电工程,2002,29(1):45-47.
    [119]郑刚,李孟超,刘铁英,等.颗粒粒度在线测量的多对波长消光法[J].仪器仪表学报,2000,21(4):434-436.
    [120]郑刚,范利民,李孟超,等.测量多峰分布模式颗粒尺寸的一种计算方法[J].仪器仪表学报,2002,23(1):77-80.
    [121]郑刚,申晋,孙国强,等.对动态光散射颗粒测量技术中几个问题的讨论[J].上海理工大学学报,2002,24(4):313-318.
    [122] Jin Shen,Gang Zheng, Guoqiang Sun, et al. Fractal character of dynamic lightscattering of particles[J]. Part. Part. Syst. Charact.2004,21(5):411-414.
    [123] Shen Jin, Zheng Gang, Sun Guoqiang, et al. Influence of some opticalcomponents on dynamic light scattering experiments[J]. Proceedings of7thInternational Conference on Measurement and Control Granular Materials, Aug.20-22,2003:178-180.
    [124] Shen Jin, Zheng Gang, Zhuang Songlin, et al. Accurate particle sizemeasurement by using truncated signal in PCS particle sizing system[J].化工学报2002,53(S):320-322.
    [125]申晋,郑刚,柏雪源,等.基于动态光散射信号分形的颗粒测量技术研究[J].仪器仪表学报2004,25(4):421-423.
    [126]申晋,郑刚,李孟超,等.PCS颗粒测量技术中软件相关方法的研究[J].仪器仪表学报.2003,24(6):585-588.
    [127]申晋,郑刚,李孟超,等.用光子相关光谱法测量多分散颗粒系的颗粒粒度分布[J].光学仪器,2003,25(4):3-6.
    [128]申晋,郑刚,孙国强,庄松林.基于labVIEW的纳米颗粒动态散射光模拟[J].光电工程2002,29(s):43-45.
    [129]吴立敏,王晓艳.纳米、亚微米颗粒粒度的测量——光子相关光谱法[J].上海计量测试,2003,30(3):15-18.
    [130]刘铁根,张凡,孟卓.纳米粒子大小及其分布检测方法的研究现状与发展[J].光学技术,2005,31(1):96-100.
    [131]李峰.动态光散射理论及其在纳米级粒子测量中的应用[D].杭州:浙江大学,1999:53.
    [132]郭永彩,王远,高潮,等.基于动态光散射法的亚微米级微粒粒度测量[J].重庆大学学报(自然科学版),2006,29(2):35-37.
    [133]喻雷寿,杨冠玲,何振江,等.动态光散射发展与理论分析[J].中国粉体技术,2005,11(4):102-108.
    [134]任中京.颗粒测试技术的进展与展望[J].过程工程学报,2004,4(z1):1-6.
    [135] G C hiric o, M. Gardella. Photon cross-correlation spectroscopy to10-nsresolution[J]. Appl. Opt.,1999,38(10),2059-2067.
    [136] J. S. Eid, J. D. Muller, E. Gratton. Data acquistion card for fluctuationcorrelation spectroscopy allowing full access to the detected photon sequence[J].Review of scientific instruments,2000,71(2):361-368.
    [137] Benjamin Chu, Tianbo Liu. Characterization of nanoparticles by scatteringtechniques[J]. Journal of Nanoparticle Research,2000,2(1):29-41.
    [138] N. G. Khlebtsov. On the Dependence of the Light Scattering Intensity on theAveraged Size of Polydisperse Particles[J]. Colloid Journal,2003,65(5):652-655.
    [139]杨晖,郑刚,李孟超,等.高浓度超细颗粒的后向PCS测量技术研究[J].光子学报,2009,38(1):179-183.
    [140] Hui YANG, Gang ZHENG, Meng-chao LI. A new cheaper Dynamic LightScattering particle sizing method using Counting Board[J]. Lasers in Engineering,2008,18(3-4):153-161.
    [141]杨晖,郑刚,李孟超,等.提高动态光散射测量系统信噪比的一种方法[J].仪器仪表学报.2008,29(8):1750-1755.
    [142]杨晖,郑刚,孙国强,等.动态光散射光源的偏振态对测量结果的影响[J].光学技术,2009,34(1):50-52.
    [143]杨晖,郑刚,张荣福,等.用LabVIEW实现基于光子计数的动态光散射系统[J].光子学报,2007,36:170-173.
    [144] Hui YANG, Gang ZHENG, Meng-chao LI. The Optimal Detector Aperture inPhoton Correlation Spectroscopy Experiments[J]. Lasers in Engineering,2007,17(1-2):75-82.
    [145]杨晖,郑刚,李孟超,等.动态光散射系统最佳光接收孔径比的研究[J].光子学报,2008,37(8):1539-1543.
    [146]赵凯华,陈熙谋.电磁学[M].北京:高等教育出版社,1986.
    [147] A. Einstein. Investigation of Theory of the Brownian Movement[M]. NewYork: Dover Publications,1956.
    [148] M. J. Perrin. Brownian Movement and Molecular Reality[M], London: Taylorand Francis,1910.
    [149] S. Papoulis. Probability Random Variables, and Stochastic Processes[M], NewYork: McGraw-Hill Book Company,1965.
    [150]汪志诚,热力学[M].北京:人民教育出版社,1980.
    [151] A. N. T.kihonov, V. Y. Arsenin. Solutions of ill-posed problems[M]. V. H.Winston&Sons, Washington,1977.
    [152][J. Honerkamp. ill-posed problems in rheology[J]. Rheol. Acta.,1989,28(5):363-371.
    [153]钟坦谊,邓中兴.第一类Fredholm积分方程的Hermite数值解[J].工程数学学报,1999,16(2):99-103.
    [154]李春芳,赵葆常. Fredholm.第一类积分方程数值解的可靠性[J].应用科学学报,1998,16(3):285-290.
    [155] S. W. Provencher. A constrained regularization method for inverting datarepresented by linear algebraic or integral equation[J]. Comput. Phy. Commun.,1982,27(3):213-227
    [156] S. W. Provencher. CONTIN: A general purpose constrained regularizationprogram for inverting noisy linear algebraic and integral equations[J]. Comput. Phy.Commun.,1982,27(3):229-242
    [157] J. G. McWhirter. A stabilized model-fitting approach to the processing of laseranemometry and other photon-correlation data[J]. Optica Acta,1980,27(1):83-105
    [158] N. Ostrowsky, D. Sornette. Exponential sampling method for light scatteringpolydispersity analysis[J]. Optica Acta,1981,28(8):1050-1070
    [159] T. G.. Braginskaya, P. D. Dobichin, M. I. Ivanova, et al. Analysis of thepolydispersity by photon correlation spectroscopy. Regularization procedure[J].Phys. Scr.,1983,28(1):73-79
    [160] M. Bertero, P. Brianzi, E. R. Pike, et al. Light scattering polydispersity analysisof molecular diffusion by Laplace transform inversion in weighted space. J. Chem.Phys.1985,82(3):1551-1554
    [161] H. S. Dhadwal. Regularized inversion of the Laplace integral equation-polydispersity analysis in photon correlation spectroscopy. Part. Part. Syst. Charact.,1989,6(1):28-33.
    [162] D. A. Ross, T. H. Nguyen. Spectral properties of the regularized inversion ofthe Laplace transform. Part. Part. Syst. Charact.,1990,7(1-4):80-86.
    [163] J. G. McWhirter, E. R. Pike. On the numerical inversion of the Laplacetransform and similar Fredholm integral equations of the first kind[J]. J. Phys. A:Math. Gen.,1978,11(9):1729-1745.
    [164] J. R. Vega, L. M. Gugliotta, V. D. G. Gonzalez et al. Latex particle sizedistribution by dynamic light scattering: Novel data processing for multianglemeasurements[J]. Journal of Colloid and Interface Science,2003,261(1):74-81.
    [165] G. W. Mulholand, M. K. Donnelly, C. R. Hogwood et al. Measurement of100nm and60nm particle standards by differential mobility analysis[J]. Journal ofResearch of the National Institute of Standards and Technology,2006,111(4):257-312
    [166] L. S. Virtuoso, R.C. O. Sebastiao, J. P. Braga et al. Macromolecular propertiesfrom light-scattering experimental data using linear inverse problem theory[J].International Journal of Quantum Chemistry,2006,106(1):2731-2736.
    [167]刘建学.实用近红外光谱分析技术[M].北京:科学出版社,2008.
    [168] H. Z. Cummins, N. Knable, Y. Yeh. Observation of Diffusion Broadening ofRayleigh Scattered Light[J]. Phys. Rev. Lett.1964,12(6):150-153.
    [169] A. T. Forrester, R. A. Gudmundsen, P. O. Johnson. Photoelectric Mixing ofIncoherent Light[J]. Phys.Rev.,1955,99(6),1691-1700.
    [170] N. C. Ford, G. B. Benedek. Observation of the Spectrum of Light Scatteredfrom a Pure Fluid Near its Critical Point[J]. Phys. Rev. Lett.,1965,15(16):649-653.
    [171]叶子,陆祖康.小粒子动态光散射信号的计算机模拟及分析.光学学报,1996,16(6):755-758.
    [172] Davide Magatti, Fabio Ferri. Fast multi-tau real-time software correlator fordynamic light scattering[J]. Appl. Opt.,2001,40(24):4011-4021.
    [173] D.Magatti, F.Ferri.25ns sotfware correlator for Photon and fluorescencecorrelation spectroscopy[J]. Rev. Sci. Insturm.,2003,74(2):1135-1144.
    [174]张旭东,陆明泉.离散随机信号处理[M].北京:清华大学出版社,2006.
    [175]顾德门(Goodman,J.W.)著,秦克诚等译.统计光学[M].北京:科学出版社,1992.
    [176]高普占.微弱信号检测[M].北京:清华大学出版社,2004.
    [177]程佩青.数字信号处理教程[M].清华大学出版社,北京,2001.
    [178]陆传赉.现代信号处理导论[M].北京:北京邮电大学出版设,2003.
    [179]张贤达.现代信号处理[M].北京:清华大学出版社,2002.
    [180] R. G. W. Brown, A. E. Smart. Practical considerations in photon correlationexperiments[J]. Appl. Opt.,1997,36(30):7480-7492.
    [181]卢春生.光电探测技术及应用[M].北京:机械工业出版社,1992.
    [182] R. Foord, R. Jones, C. J. Oliver et al. The use of photomultiplier tubes forphoton counting[J]. Appl. Opt.,1969,8(10):1975-1989.
    [183] E. Gulari, B. Chu. Photon correlation in the nanosecond range and itsapplications to the evaluation of RCS C31034photomultiplier tubes[J]. Rev. Sci.Instrum.,1977,48:1560-1567.
    [184] H. C. Burstyn. Afterpulsing effects in photon correlation experiments[J]. Rev.Sci. Instrum.,1980,51(10):1431-1433.
    [185] Side-on PMT Photo Counting Heads H6240Series Instruction Manual Vol.3.1.Hamamatsu. Photonics K. K. ELECTRON TUBE CENTER.1998.9.
    [186] M9003Photon Counting Board Instruction Manual, Hamamatsu.
    [187]郑刚,蔡小舒,王乃宁. Mie散射的数值计算[J].应用激光,1992,12(5):221-223.
    [188] Wang, Gang, Xue Yan, Jiang Yun, et al. Influence of sampling rate on theprecision for particle size by dynamic light scattering with analog detection[J],Applied Optics,2007,46(2):234-238.
    [189]王少清,娄本浊,陶冶薇等.动态光散射中光子相关谱测量系统的空间相干性问题[J].应用激光,2004,5(24):279-281.
    [190]波恩M,沃耳夫E.光学原理:光的传播、干涉和衍射的电磁理论[M].杨霞荪等译.7版.北京:北京电子工业出版社,2005:391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700