用户名: 密码: 验证码:
固体催化大豆油化学改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物油的化学改性是拓宽其在工业领域应用的前提,其分子结构特性决定了链端酯基的酯交换和碳链中双键的环氧化两种基础改性反应。改善两种基础反应过程的核心在于新型固体催化剂的开发使用。本论文以大豆油为底物,针对酯交换反应,制备了以水滑石为前驱物的固体碱催化剂,重点研究了其对大豆油和乙二醇的酯交换反应的催化性能;针对环氧化反应,选取埃洛石纳米管(HNTs)为载体,进行磷钨杂多酸({PO_4[W(O)(O_2)_2]_4}~(3-))和甲基三氧化铼(MTO)两种高效催化剂的固体负载化,重点研究了两种负载型固体催化剂对以H_2O_2为氧化剂的大豆油环氧化反应的催化性能。主要研究内容及结论如下:
     对于酯交换反应的固体碱催化剂,首先采用共沉淀法制备了晶型良好、晶相单一的铝锂水滑石(Li-Al LDHs),经煅烧后,Li-Al LDHs层状结构坍塌,得到大比表面积大孔容的铝锂双金属复合氧化物(Li-Al LDO)。为了抑制Li-Al LDHs的记忆效应,进一步采用硅烷偶联剂Z6020进行改性。改性后的Li-Al LDO仍保持其多孔结构,并且平均孔径扩大。Li-Al LDO(Cat-1)和改性的Li-Al LDO (Cat-2)作为固体碱催化剂,均能在无溶剂条件下催化大豆油乙二醇酯交换反应,且Cat-1和Cat-2均可重复利用4次。在反应温度160℃,醇油摩尔比10:1,催化剂用量5wt%,搅拌速率1000rpm,反应时间2小时条件下,Li-Al LDO和改性的Li-AlLDO催化酯交换反应产物的收率均达到93%以上。但硅烷偶联剂改性可以大大降低催化剂的再生温度, Cat-1的再生温度为450℃,而Cat-2的再生温度为120℃。再生三次后Cat-1和Cat-2仍可用于催化大豆油乙二醇酯交换反应。
     对于过氧磷钨杂多酸的负载,首先采用硅烷偶联剂Z-6020对HNTs载体表面进行氨基化改性,再采用季铵化试剂一溴己烷和碘甲烷将氨基进行季铵化处理,在HNTs载体表面接枝上季铵阳离子。通过离子交换作用,将{PO_4[W(O)(O_2)_2]_4}~(3-)负载到季铵化改性的HNTs表面,HNTs与{PO_4[W(O)(O_2)_2]_4}~(3-)催化剂通过离子键相连。所得到的负载型{PO_4[W(O)(O_2)_2]_4}~(3-)固体催化剂,在无溶剂条件下催化大豆油环氧化反应。机械搅拌与超声波振荡并用的方式加强了大豆油-H_2O_2-负载型{PO_4[W(O)(O_2)_2]_4}~(3-)固体催化剂三相反应体系的传质过程,提高了双键转化率和环氧大豆油收率。催化剂制备过程中加入相转移试剂三正辛基甲基氯化铵可以提高催化效率,增加双键转化率和环氧大豆油收率。负载型{PO_4[W(O)(O_2)_2]_4}~(3-)固体催化剂具有良好的可重复利用性,并且再生过程简单。催化剂重复利用3次后仍能催化大豆油环氧化反应。失活催化剂重新负载{PO_4[W(O)(O_2)_2]_4}~(3-)活性中心和相转移试剂即可恢复催化活性,实现再生。
     对于甲基三氧化铼的负载,首先利用埃洛石表面羟基,先将活性表面原子转移自由基聚合(SI-ATRP)的引发剂锚定到表面,然后在埃洛石表面引发4-乙烯基吡啶(4-VP)活性聚合。表面接枝的聚4-乙烯基吡啶(P-4VP)聚合物链表现出分子量单分散性,其长度可以通过调节聚合反应时间来控制。负载过程中MTO中的Re原子与吡啶环上的N原子配位,利用配位作用的可化学计量特性实现了MTO催化剂负载量的可控性。所制备的负载型MTO固体催化剂可以催化大豆油环氧化反应,得到环氧大豆油产物。且选择性很高,无副反应发生。
Chemical modification is the premise to industrial application of plant oils.Transesterification and epoxidation are two fundamental reactions of chemical modification whichare dependent on moleculer structure of plant oils. Synthesis and application of novel solidcatalysts is the core to improve the two chemical modification reactions. In the thesis, solid basecatalysts for transesterification were synthesized using layered double hydroxides (LDHs) as theprecursor and its catalytic behavior in the transesterification of soybean oil by ethylene glycol wasstudied. Two supported catalysts for epoxidation were prepared via immobilization of peroxophosphotungstic acid and methyltrioxorhenium (MTO) onto halloysite nanotubes (HNTs) and itscatalytic behaviors in epoxidation of soybean oil using H_2O_2as oxidant were studied. The relatedexperiments and results are summarized as follow:
     For solid base catalysts, crystalline Li-Al LDHs was synthesized through coprecipitation andLi-Al layered double oxide (Li-Al LDO) with larger specific area and pore size was obtained aftercalcining of Li-Al LDHs. To suppress the memory effect of Li-Al LDHs, Li-Al LDO was furthermodified with silane coupling agent Z6020and the modification caused increasing of pore size.Both Li-Al LDO (Cat-1) and modified Li-Al LDO (Cat-2) as catalysts can catalyze thesolvent-free transesterification of soybean oil by ethylene glycol and can be used for4circles.Modification with Z6020can obviously decrease the temperature for regeneration of the catalysts,from450℃for Cat-1to120℃for Cat-2. After three times regeneration, both Cat-1and Cat-2still can catalyze the transesterification of soybean oil. Reaction at160℃for2h at1000rpmstirring rate,10:1ethylene glycol to soybean oil molar ratio, and5wt%catalyst, the yield reachedmore than93%for both Cat-1and Cat-2, respectively.
     The immobilization of peroxo phosphotungstic acid ({PO_4[W(O)(O_2)_2]_4}~(3-)) onto HNTsincluded three steps. First, amine groups were anchored onto HNTs through modification with Z-6020. Then amine groups were quaternary-ammonated with CH3I and CH2Br(CH2)4CH3toproduce cationic ions. Finally,{PO_4[W(O)(O_2)_2]_4}~(3-)was immobilized onto HNTs via ion exchange.In solvent-free epoxidation of soybean oil catalyzed by supported {PO_4[W(O)(O_2)_2]_4}~(3-), thecombination of mechanical stirring and ultrasonication was helpful to accelerate the mass transferamong soybean oil-H_2O_2-supported {PO_4[W(O)(O_2)_2]_4}~(3-)catalysts three phases. The introductionof phase transfer agent (methyl tri-n-octyl ammonium chloride) during immobliztion of{PO_4[W(O)(O_2)_2]_4}~(3-)was also helpful to increase the catalytic efficiency. The supported{PO_4[W(O)(O_2)_2]_4}~(3-)still had good catalytic activity after three circles and the deactivated catalystcan be reloaded with {PO_4[W(O)(O_2)_2]_4}~(3-)to recover the activity.
     In immobilization of MTO, Poly (4-vinylpyridine)(P-4VP) brushes of different length wasgrafted onto HNTs by living surface-initiated atom transfer radical polymerization (SI-ATRP) andthen MTO was immobilized via coordination of MTO with N in pyridine. As the length of P-4VPbrushes can be adjusted by varying the polymerization time, and the coordination of MTO with Nin pyridine was stoichiometric, controlled immobilization of MTO was realized. Thus resultedsupported MTO is effective for epoxidation of soybean oils. The conversion of soybean oilincreased with MTO loadings, keeping the high selectivity.
引文
[1] O'Donnell A, Dweib MA, Wool RP. Natural fiber composites with plant oil-based resin.Composites Science and Technology2004,64,1135-1145.
    [2] Marchetti JM, Miguel VU, Errazu AF. Possible methods for biodiesel production. Renew SustEnergy Rev2007,11,1300–1311.
    [3] Khot SN, Lascala JJ, Can E, Morye SS, et al. Development and application of triglyceride-based polymers and composites. J Appl Polym Sci2001,82,703-723.
    [4] Nimcevic D, Puntigam R, W rgetter M, Gapes J R. Preparation of rapeseed oil esters of loweraliphatic alcohols. J Am Oil Chem Soc2000,77,275-280.
    [5] Freedman B, Butterfield RO, Pryde EH. Transesterification kinetics of soybean oil. J Am OilChem Soc1986,63,1375-1380.
    [6] Sonntag NOV. Reactions of fats and fatty acids. Bailey's industrial oil and fat products. vol.1,4th edition, ed. Swern D, John Wiley&Sons, New York,1979.
    [7] Schwab AW, Dykstra GJ, Selke E, Sorenson SC, Pryde EH. Diesel fuel from thermaldecomposition of soybean oil. J Am Oil Chem Soc1988,65,1781-1786.
    [8] Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JJG. Synthesis of biodieselvia acid catalysis. Ind Eng Chem Res2005,44,5353–63.
    [9] Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry,catalysts, and engineering. Chem Rev2006,106,4044-4048.
    [10] Chai F, Cao F, Zhai F, et a1. Transesterification of vegetable oil to biodiesel using aheteropolyacid solid catalyst. Adv Synth Catal2007,349,1057-1065.
    [11] Furuta SS, Matsuhashi H, Arata KS. Biodiesel fuel production with solid superacid catalysisin fixed bed reactor under atmospheric pressure. Catal Commun2005,5,721-723.
    [12] Joan FD, Bourahla K, Rahmouni M, et al. Catalysed esterifications in room temperature ionicliquids with acidic co unteranion as recyclable reaction media. Catal Commun2002,3,185-190.
    [13] Ha SH, Lan MN, Lee SH, et al. Lipase-catalyzed biodiesel production from soybean oil inionic liquids. Enzyme Microb Tech2007,41,480-483.
    [14] Vicente G,Manfnez M,Aracil J.Integmted biodiesel production:a comparison of differenthomogeneous catalysts systems.Bioresource Technol2004,92,297-305.
    [15] Karmee SK,Chadha A.Preparation of biodiesel from crude oil of Pongamiapinnata.Bioresource Technol2005,96,1425-1429.
    [16] Foidl N, Foidl G, Sanchez M, et al. Jatropha curcas L. as a source for the production ofbiofuel in Nicaragua. Bioresource Technol1996,58,77-82.
    [17] Suppes GJ, Dasari MA, Doskocil EJ, et al.Transesterification of soybean oil with zeolite andmetal catalysts. Appl Catal A Gen2004,257,213-223.
    [18] Ebiura T, Echizen T, Ishikawa A, et al.Selective transesterification of triolein with methanolto methyl oleate and glycerol using loaded with alkali metal salt as a solid-base catalyst. ApplCatal A-Gen2005,283,111-116.
    [19] Kose O, Tuter M, Aksoy H A. Immobilized Candida Antarctica lipase-catalyzed alcoholysisof cotton seed oil in a solvent-free medium. Bioresource Technol2002,83,125-129.
    [20] Noureddini H, Gao X, Philkalla RS. Immobilized Pseudomonascepacia lipase for biodieselfuel production from soybean oil.Bioresource Technol2005,96,769-777.
    [21] Goh KH, LimTT, Dong Z. Application of layered double hydroxides for removal ofoxyanions: A review. Water Research2008,42,1343-1368.
    [22] Bergaya F, Theng BKG, Lagaly G. Layered Double Hydroxides. Chapter13.1:1021-1095.
    [23] Bone JS.Development and characterisation of the interlayer chemistry of layered doublehydroxides[Ph D], University of Exter, June,1995.
    [24] Othman MR, Kim J. The study of the conversion of intercalated compounds synthesized froma sol-gel procedure.Journal of sol-gel science and technology2008,47,274-282.
    [25] Boclair JW, Braterman PS, Jiang J, Lou S, Yarberry F. Layered double hydroxide stability.2.Formation of Cr(III)-containing layered double hydroxides directly from solution. ChemMater1999,11,303-307.
    [26] Valente JS, Figueras F, Gravelle M, Kumbhar P, Lopez J, Besse JP. Basic properties of themixed oxides obtained by thermal decomposition of hydrotalcites containing differentmetallic compositions. J Catal2000,189,370-381.
    [27] Miyata S. Physico-chemical properties of synthetic hydrotalcites in relation to composition.Clay Clay Mine1980,28,50–56.
    [28] Kooli F, Depege C, Ennaqadi A, Roy A, Besse JP. Rehydration of Zn–Al layered doublehydroxides. Clay Clay Miner1997,45,92–98.
    [29] Tichit D, Das N, Coq B, Durand R. Preparation of Zr-containing layered double hydroxidesand characterization of the acido-basic properties of their mixed oxides. Chem Mater2002,14,1530-1538.
    [30] Bellotto M, Rebours B, Clause O, et al. Hydrotalcite decomposition mechanism: a clue to thestructure and reactivity of spinel-like mixed oxides. J Phys Chem1996,100,8535-8542.
    [31] Zeng HY, Deng X, Wang YJ, et al.Preparation of Mg-Al hydrotalcite by urea method andits catalytic activity for transesterification.AICHE J2009,5,1229-1235.
    [32] Fogg AM, Dunn J S, O’Hare D. Selective ion-exchange intercalation of isomericdicarboxylate anions into the layered double hydroxide [LiAl2(OH)6]Cl·H2O. Chem Mater1998,10,351-355.
    [33] Martin J, Pinnavaia TJ. Layered double hydroxides as supported anionic reagents halide-ionreactivity in zinc chromium hexahydroxide halide hydrates [Zn2Cr(OH)6X.nH2O](X=Cl, I).J Am Chem Soc1986,108,541-542.
    [34] Cavani F, Trifiro F, Vaccari A. Hyfrotalcite-type anionic clays: preparation, properties andapplications. Catal Today1991,11,173-301.
    [35] Shumaker JL, Crofcheck C, Tackett SA. Jimenez ES, Morgan T, Ji Y, Crocker M, Toops T.Biodiesel synthesis using calcined layered double hydroxide catalysts. J App Catal B-Environ2008,82,120-130.
    [36] Xie W, Peng H, Chen L. Calcined Mg–Al hydrotalcites as solid base catalysts formethanolysis of soybean oil. J Mol Catal A-Chem2006,246,24-32.
    [37] Cantrell DG, Gillie LJ, Lee AF, Wilson K. Structure-Reactivity Correlations in MgAlHydrotalcite Catalysts for Biodiesel Synthesis. Appl Catal A-Gen2005,287,183-190.
    [38] Tantirungrotechai J, Chotmongkolsap P, Pohmakotr M, Synthesis, characterization, andactivity in transesterification of mesoporous Mg–Al mixed-metal oxides. Micropor MesoporMat2010,128,41-47.
    [39] Shumaker JL, Crofcheck C, Tackett SA, Jimenez ES, Crocker M. Biodiesel production fromsoybean oil using calcined Li–Al layered double hydroxide catalysts. Catal Lett2007,115,56-61.
    [40] Cantrell DG, Gillie LJ, Lee AF, Wilson K. Structure-Reactivity Correlations in MgAlHydrotalcite Catalysts for Biodiesel Synthesis. Appl Catal A-Gen2005,287,183-190.
    [41] Barakos N, Papayannakos N. Transesterification of triglycerides in high and low quality oilfeeds over an HT2hydrotalcite catalyst. Bioresource Technol2008,99,5037-5042.
    [42] Warabi Y, Kusdiana D, Saka S. Reactivity of triglycerides and fatty acids of rapeseed oil insupercritical alcohols.Bioresource Technol2004,9l,283-287.
    [43] Bunyakiat K, Makmee S, Sawangkeaw R, et al. Continuous production of biodiesel viatransesterification from vegetable oils in supercritical methanol. Energ Fuel2006,20,812-817.
    [44] Cao W, Han H, Zhang J. Preparation of biodiesel from soybean oil using supercriticalmethanol and co-solvent. Fuel2005,84,347-351.
    [45] Lee I, Johnson LA, Hammond EG. Use of branched-chain esters to reduce the crystallizationtemperature of biodiesel. J Am Oil Chem Soc1995,72,1155-1160.
    [46] Kildiran G, OYucel S, Turkay S. In-situ alcoholysis of soybean oil. J Am Oil Chem Soc1996,73,225-228.
    [47]张颖,郭铠.环氧大豆油的发展.广州化工2005,23,11-12.
    [48] Fi era SS, Jankovic M, PetrovicêZS, et al. Kinetics of in situ epoxidation of soybean oil inbulk catalyzed by ion exchange resin. J Am Oil Chem Soc2001,78,725-731.
    [49] Goud VV, Patwardhan AV, Pradhan NC. Kinetics of in situ poxidation of natural unsaturatedtriglycerides catalyzed by acidic ion exchange resin. Ind Eng Chem Res2007,46,3078-3085.
    [50] Warwel S, Klaas MR. Chemo-enzymatic epoxidation of unsaturated carboxylic acids. J MolCatal B-Enzym1995,1,29-35.
    [51] B1ée E, Schuber F. Efficient Epoxidation of unsaturated fatty acids by a hydroperoxide-dependent oxygenase. J Biol Chem1990,265,12887-12894.
    [52] Piazza GJ,Foglia TA,Nu ez A. Epoxidation of fatty acids with membrane-supportedperoxygenase. Biotechnol Lett2000,22,217-221.
    [53] Campanella A,Baltanas MA, Capel-Sanchez M C, et al. Soybean oil epoxidation withhydrogen peroxide using an amorphous Ti/SiO2catalyst. Green Chem2004,6,330-334.
    [54] Guidotti M, Ravasio N, Psaro R, et al. Epoxidation of unsaturated FAMEs obtained fromvegetable source over Ti (IV)-grafted silica catalysts: A comparison between ordered andnon-ordered mesoporous materials. J Mol Catal A-Chem2006,250,218-225.
    [55] Bernini R, Mincione E, et al. Dimethyl carbonate: an environmentally friendly solvent forhydrogen peroxide (H2O2)/methyltrioxorhenium (CH3ReO3, MTO) catalytic oxidations.Tetrahedron2007,63,6895–6900.
    [56] Vassell KA, Espenson JH. Oxidation of organic sulfides by electrophilically activatedhydrogen peroxide: the catalytic ability of methylrhenium trioxide. Inorg Chem1994,33,5491-5498.
    [57] Kuhn FZ, Scherbaum A, Herrmann WA. Methyltrioxorhenium and its applications in olefinoxidation, metathesis and aldehyde olefination. J Organomet Chem2004,689,4149–4164.
    [58] Rudolph J, Reddy KL, Chiang JP, Sharpless KB. Highly efficient epoxidation of olefins usingaqueous H2O2and catalytic methyltrioxorhenium/pyridine: pyridine-mediated ligandacceleration. J Am Chem Soc1997,119,6189-6190.
    [59] Nabavizadeh SM, Rashidi M. Lewis acidity of Methyltrioxorhenium (VII)(MTO) based onthe relative binding strengths of N-Donors. J Am Chem Soc2006,128,351-357.
    [60] Herrmann WA, Fischer RW, Marz DW. Methyltriox-rheniumas catalyst for olefin oxidatin.Angew Chem Int Edit1991,30,1638-1641.
    [61] Herrmann WA, Fischer RW, Rauch MU, Scherer W. Alkylrhenium oxides as homogeneousepoxidation catalysts: activity, selectivity, stability, deactivation. J Mol Catal1994,86,243-266.
    [62] Zhu Z, Espenson JH. Oxidation of alkynes by hydrogen peroxide catalyzed by methylrheniumtrioxide. J Org Chem1995,60,7728-7732.
    [63] Al-Ajlouni AM, Espenson JH. Epoxidation of styrenes by hydrogen peroxide as catalyzed bymethylrhenium trioxide. J Am Chem Soc1995,117,9243-9250.
    [64] Coperet C, Adolfsson H, Sharpless KB. A simple and efficient method for epoxidation ofterminal alkenes. Chem Commun1997,1565-1566.
    [65] Wang WD, Espenson JH. Effects of pyridine and its derivatives on the equilibria and kineticspertaining to epoxidation reactions catalyzed by methyltrioxorhenium. J Am Chem Soc1998,120,11335-11341.
    [66] Adam W, Saha-M ller CR, Weichold O. NaY zeolite as host for the selective heterogeneousoxidation of silanes and olefins with hydrogen peroxide catalyzed by methyltrioxorhenium. JOrg Chem2000,65,2897-2899.
    [67] Nunes CD, Pillinger M, Valente AA, Goncolves IS, Rocha J, Ferreira P, Ku¨hn FE. Synthesisand characterization of methyltrioxorhenium(VII) immobilized in bipyridyl-functionalizedmesoporous silica. Eur J Inorg Chem2002,1100-1107.
    [68] Li M, Espenson JH. Kinetic study of epoxidations by urea–hydrogen peroxide catalyzed bymethyltrioxorhenium (VII) on niobia. J Mol Catal A2004,208,123-128.
    [69] Bouh AO, Espenson JH. Epoxidation reactions with urea–hydrogen peroxide catalyzed bymethyltrioxorhenium (VII) on niobia. J Mol Catal A2003,200,43-47.
    [70] Bein T, Huber C, Moller K, Wu CG, Xu L. Methyltrioxorhenium encapsulated in zeolite Y:Tunable olefin metathesis catalyst. Chem Mater1997,9,2252-2254.
    [71] Neumann R, Wang TJ. Methyltrioxorhenium supported on silica tethered with polyethers ascatalyst for the epoxidation of alkenes with hydrogen peroxide. Chem Commun1997,1915-1916.
    [72] Buffon R, Choplin A, Leconte M, Basset JM, Touroude R, Herrmann WA. Surfaceorganometallic chemistry of rhenium: Attempts to characterize a surface carbene in metathesisof olefins with the catalyst CH3ReO3/Nb2O5. J Mol Catal1992,72, L7-L10.
    [73] Herrmann WA, Fritz-Meyer-Weg DM, Wagner KJG, Weichselbaumer G, Fischer RW. Use oforganorhenium compounds for the oxidation of multiple C-C-bonds, oxidation processes basedtheron and novel organorhenium compounds. US Patent5,155,274(1992).
    [74] Saladino R, Neri V, Pellicia AR, Caminiti R, Sadun C. Preparation and structuralcharacterization of polymer-supported methylrhenium trioxide systems as efficient andselective catalysts for the epoxidation of olefins. J Org Chem2002,67,1323-1332.
    [75] Refvik MD, Larock RC. The chemistry of metathesized soybean oil. J Am Oil Chem Soc.1999,76,99-102.
    [76] Du G, Tekin A, Hammond EG, Woo LK. Catalytic epoxidation of methyl linoleate. J Am OilChem Soc2004,81,477-480.
    [77] Jiang P,Chen M, et al.. Novel two-phase catalysis with organometallic compounds forepoxidation of vegetable oils by hydrogen peroxide. J Am Oil Chem Soc2010,87,83–91.
    [78] Gerbase AE, Gregório JR, Martinelli M, Brasil MC, Mendes ANF. Epoxidation of soybean oilby the methyltrioxorhenium-CH2Cl2/H2O2catalytic biphasic system. J Am Oil Chem Soc2002,79,179-181.
    [79] Thematic issue on―Polyoxometalates‖, Chem Rev1998,98,1.
    [80]许林,胡长文,王恩波,等.石油化工.1997,26,632-638.
    [81]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1997.
    [82] Kholdeeva OA, Trubitsina TA, Timofeeva MN, et a1. The role of protons in cyclohexeneoxidation with H2O2catalysed by Ti(IV)-Monosubstituted Keggin polyoxometalate.J MolCatal A-Chem2005,232,173-178.
    [83] Okuhara T, Mizuno N, Misono M. Catalytic chemistry of heteropoly compounds. Adv Catal1996,41,113-252.
    [84] Kozhevnikov IV, Sinnema A, Jansen RJJ, Pamin K, Bekkum H. New acid catalyst comprisingheteropoly acid on a mesoporous molecular sieve MCM-41. Catal Lett1995,30,241-252.
    [85] Lee JK, Song IK, Lee WY, Kim JJ. Modification of12-molybdophosphoric acid catalyst byblending with polysulfone and its catalytic activity for2-propanol conversion reaction. J MolCatal A-Chem1996,104,311-318.
    [86] Imamura S, Sasaki H, Shono M, Kanai H. Structure of Molybdenum Supported on
    [alpha]-,[gamma]-, and [chi]-Aluminas in Relation to Its Epoxidation Activity. J Catal1998,177,72-81.
    [87] Kovalchuk T, Sfihi H, Zaitsev V, Fraissard J. Recyclable solid catalysts for epoxidation ofalkenes. J Catal2007,249,1-14.
    [88] Hoegaerts D, Sels BF, Vos DED, Verpoortet F, Jacobs PA. Heterogeneous tungsten-basedcatalysts for the epoxidation of bulky olefins. Catal Today2000,60,209-218.
    [89] Vassilev K, Stamenova R, Tsvetanov C. Epoxidation of styrene with hydrogen peroxide inthe presence of polymer-supported quaternary ammonium salts and peroxo complexes of W(VI). React Funct Polym2000,46,165-173.
    [90] Payne Gb,Williams P H. Mechanism of the tungstic acid catalyzed hydroxylation of olefins. JOrg Chem1959,24,1212-1214.
    [91] Veniurello C, Alneri E, Rieei M. A new effeetive catalytic system for epoxidation of olefinsby hydrogen peroxide under phase transfer conditions. J Org Chem1983,48,3831-3833.
    [92] Ventturello C, Aloisio D R, Bart J C, et al. New peroxotungsten heteropoly anion with specialoxidizing properties, synthesis and structure of tetrahexylarnnlonium tetra(diperoxotungsto)phosphate(3-). J Mol Catal1985,32,107-110.
    [93] Ishii Y, Yamawaki K, Ura T, et al. Hydrogen peroxide oxidation catalyzed by heteropoly acidscombined with cetylpyridinium chloride epoxidation of olefins and allylie alcohols,ketonization of alcohols and diols, and oxidative cleavage of l,2-Diols and olefins. J OrgChem1988,53,3587-3593.
    [94] Xi ZW, Zhou N, Sun Y. Reaction-controlled phase-transfer catalysis for propyleneepoxidation to propylene oxide. Science2001,292,1139-1141.
    [95] Gelbard G, Gauducheau T, Vidal E, et al. Epoxidation with peroxotungstic acid immobilisedonto silica-grafted phosphoramides. J Mol Catal A-Chem2002,182-183,257-266.
    [96] Kautz CQ, Ryan PC. The10to7halloysite transition in a tropical soil sequence, CostaRica. Clay Clay Miner2003,51,252-263.
    [97] Theng BKG, Wells N. Assessing the capacity of some New Zealand clays for decolourizingvegetable oil and butter. Appl Clay Sci1995,9,321-326.
    [98] Lin ZX, Puls RW. Adsorption, desorption and oxidation of arsenic affected by clay mineralsand aging process. Environmental Geology2000,39,753-759.
    [99] Guimaraes L, Enyashin AN, Seifert G, Duarte HA.11th International Conference onAdvanceed Materials. Rio de Janeiro Brazil. September20-25,2009.
    [100] Tae JW, Jang BS, Kim JR, Kim Il, Park DW. Catalytic degradation of polystyrene usingacid-treated halloysite clays. Solid State Ionics2004,172,129-133.
    [101] Ramírez SB, Fernández EVR, Albero JS, Escribano AS, Blas MMP, Montiel AG. Use ofnanotubes of natural halloysite as catalyst support in the atom transfer radical polymerizationof methyl methacrylate. Micropor Mesopor Mater2009,120,132-140.
    [102] Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ. Functionalizationof halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem-C2008,112,15742-15751.
    [103] Wang LP, Wang YP, Pei XW, Peng B. Synthesis of poly(methylmethacrylate)-b-poly(N-isopropylacrylamide) amphiphilic diblock copolymer brushes on halloysite substrate viareverse ATRP. React Funct Polym2008,68,649–655.
    [104] Saladino R, Neri V, Mincione E, Filippone P. Selective oxidation of phenol and anisolederivatives to quinones with hydrogen peroxide and polymer-supported methylrheniumtrioxide systems. Tetrahedron2002,58,8493~8500.
    [105] Sales H, Cesquini R, Sato S, Mandelli D, Schuchardt U. Epoxidation of soybean oilcatalysed by CH3ReO3/H2O2. Studies in Surface Science and Catalysis2000,130B(International Congress on Catalysis,2000, Pt. B):1661-1666.
    [106] Matyjaszewsky K. Lifetimes of polystyrene chains in atom transfer radical polymerization.Macromolecules1999,32,9051-9053.
    [107] Cheng ZP, Zhang LF, Zhu XL, Kang ET, Neoh KG. Organic/inorganic hybrid nanospherescoated with palladium/P-4VP shells from surface-Initiated atom transfer radicalpolymerization. J Polym Sci A-Polym Chem2008,46,2119-2131.
    [108] Li D, He Q, Cui Y, Li J. Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine). Chem Mater2007,19,412-417.
    [109] Williams CK, Hillmeyer MA. Polymers from renewable resources: a perspective for aspecial issue of polymer reviews. Polym Rev2008,48,1-10.
    [110] Ragauskas AJ, Williams CK, Davison BH, et al. The path forward for biofuels andbiomaterials. Science2006,311,484-489.
    [111] Mohanty AK, Misra M, Drzal LT. Sustainable bio-composites from renewable esources:opportunities and challenges in the green materials world. J Polym Environ2002,10,19-26.
    [112] Smith PC, Ngothai Y, Nguyen QD, et al. Alkoxylation of biodiesel and its impact onlow-temperature properties. Fuel2009,88,605-612.
    [113] Hanh HD, Dong NT, Okitsu K, Nishimura R, Maeda Y. Biodiesel production throughtransesterification of triolein with various alcohols in an ultrasonic field. Renew Energ2009,34,766–768.
    [114] Boss P, Oommen TV. New insulating fluids for transformers based on biodegradable higholeic vegetable oil and ester fluid. IEEE Colloquium on Insulating Liquids1999,7,1-10.
    [115]赵望初.电力变压器的防火.电力建设1996,9,14-17.
    [116] Oommen TV.Vegetable oils for liquid filled transformers. IEEE Electrical InsulationMagazine2002,18(1),6-11.
    [117]李晓虎,李剑,孙才新等.植物油中提取的环保液体绝缘材料.重庆大学学报:自然科学报2005,28(1),36-41.
    [118]姚智勤.生物降解润滑脂的研究.化工环保2004,24,66-69.
    [119] Oommen TV. Electrical transformers containing electrical insulation fluids comprising higholeic acid oil compositions. US Patent5,949,017,1999.
    [120] Cannon GS. Soybean based transformer oil and transmission line fluid. US Patent5,958,851,1999.
    [121] Boss P, Oommen TV. New insulating fluids for transformers based on iodegradable higholeic vegetable oil and ester fluid. IEE Colloquium on Insulating Liquids1999,7,1-10.
    [122] Claiborne CC, Walsh EJ, Oommen TV. An agriculturally based biodegradable dielectricfruid. Transmission and distribution conference. Apr,1999IEEE, Vol.2, pp876-881.
    [123] Oommen TV, Claiborne CC, Walsh EJ. Introduction of a new fully biodegradable dielectricfluid. Texile, Fiber and Film Industry Technical Conference. May1998IEEE, pp1-4.
    [124] McShane CP, Rapp KJ, Corkaran JL, Gauger GA, Luksich J. Aging of paper insulation innatural ester dielectric fluid. Transmission and distribution conference and exposition.2001,2,675-679.
    [125] Steren OO. Tribological properties of some vegetable oils and fats. Lubr Eng1989,45,685-690.
    [126] Sonntag NOV. Esterification and interesterification. J Am Oil Chem Soc1979,56,751-754.
    [127]Erhan SZ, Sharma BK, Liu Z, Adhvayu A. Lubricant base stock potential of chemicallymodified vegetable oils. J Agric Food Chem2008,56,8919–8925.
    [128] Lathi PS,Mattiasson B. Green approach for the preparation of biodegradable lubricant basestock from epoxidized vegetable oil. Appl Catal B-Environ,2007,69,207-212.
    [129] Uosukainen E, Linko YY, L ms M, Tervakangas T, Linko P. Transesterification oftrimethylolpropane and rapeseed oil methyl ester to environmentally acceptable lubricants. JAm Oil Chem Soc1998,75,1557-1563.
    [130]石万聪,石志博,蒋平平.增塑剂生产方法及应用.北京:化学工业出版社.2002.
    [131] Gerard L, Juan CR, Marina G, et al. Plant oils as platform chemicals for polyurethanesynthesis: current state-of-the-art. Biomacromolecules2008,11,825-835.
    [132] Miso SD,Zhang SP,Su ZG,et al. A novel vegetable oil–lactate hybrid monomer forsynthesis of high-Tg polyurethanes. J Polym Sci A-Polym Chem2010,48,243-250.
    [133] Annelise EG, Cesar LP, Ana POC. Dynamic mechanical and thermal behavior of epoxyresins based on soybean oil. J Am Oil Chem Soc2002,79,797-802.
    [134] Demengeot EAC, Baliutaviciene I, Ostrauskaite J, et al. Crosslinking of epoxidized naturaloils with diepoxy reactive diluents. J Appl Polym Sci2010,115,2028-2038.
    [1] D. Nimcevic, R. Puntigam, M.W rgetter, J.R. Gapes, Preparation of rapeseed oil esters oflower aliphatic alcohols, J. Am. Oil Chem. Soc.2000,77,275-280.
    [2] F.R. Abreu, D.G. Lima, E.H. Hamu, C. Wolf, P.A.Z. Suarez, Utilization of metal complexesas catalysts in the transesterification of Brazilian vegetable oils with different alcohols, J.Mol. Catal. A-Chem.2004,209,29-33.
    [3] Y. Warabi, D. Kusdiana, S. Saka, Reactivity of triglycerides and fatty acids of rapeseed oil insupercritical alcohols, Bioresource Technol.2004,91,283-287.
    [4] S. Burt, Essential oils: their antibacterial properties and potential applications in foods-areview, Int. J. Food Microbial.2004,94,223-253.
    [5] A.Willing, Lubricants based on renewable resources-an environmentally compatiblealternative to mineral oil products, Chemosphere2001,43,89-98.
    [6] H.Wagner, R. Luther, T. Mang, Lubricant base fluids based on renewable raw materials theircatalytic manufacture and modification, Appl. Catal. A: Gen.2001,221,429-442.
    [7] A. Corma, S. Iborra, S. Miquel, J. Primo, Catalysts for the production of fine chemicalsproduction of food emulsifiers, monoglycerides, by glycerolysis of fats with solid basecatalysts, J. Catal.1998,173,315-321.
    [8] E. Uosukainen, Y.Y. Linko, M. L ms, T. Tervakangas, P. Linko, Transesterification oftrimethylolpropane and rapeseed oil methyl ester to environmentally acceptable lubricants, J.Am. Oil Chem. Soc.1998,75,1557-1563.
    [9] F. Chai, F. Cao,F. Zhai, Y. Chen, X. Wang, Transesterification of vegetable oil to biodieselusing a heteropolyacid solid catalyst, Adv. Synth. Catal.2007,349,1057-1065.
    [10] S.S. Furuta, H. Matsuhashi, K.S. Arata, Biodiesel fuel production with solid superacidcatalysis in fixed bed reactor under atmospheric pressure, Catal. Commun.2004,5,721-723.
    [11] Y. Liu, E.D. Lotero, J.G. Goodwin, Effect of carbon chain length on esterification ofcarboxylic acids with methanol using acid catalysis, J. Catal.2006,243,221-228.
    [12] Y. Liu, E.D. Lotero, J.G. Goodwin, A comparison of the esterification of acetic acid withmethanol using heterogeneous versus homogeneous acid catalysis, J. Catal.2006,242,278-286.
    [13] S. Pasias, N. Barakos, C. Alexopoulos, Heterogeneously catalyzed esterification of FFAs invegetable oils, Chem. Eng. Technol.2006,29,1365-1371.
    [14] E. Leclercq, A. Finiels, C. Moreau, Transesterification of rapeseed oil in the presence ofbasic zeolites and related solid catalysts, J. Am. Oil. Chem. Soc.2001,78,1161-1165.
    [15] M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, Calcium oxide as a solid basecatalyst for transesterification of soybean oil and its application to biodiesel production, Fuel2008,87,2798-2806.
    [16] A.K. Singh, S.D. Fernando, Reaction kinetics of soybean oil transesterification usingheterogeneous metal oxide catalysts, Chem. Eng. Technol.2007,30,1716-1720.
    [17] J.L. Shumaker, C. Crofcheck, S.A. Tackett, E.S. Jimenez, M. Crocker, Biodiesel productionfrom soybean oil using calcined Li–Al layered double hydroxide catalysts, Catal. Lett.2007,115,56-61.
    [18] J.L. Shumaker, C. Crofcheck, S.A. Tackett, E.S. Jimenez, T. Morgan, Y. Ji, M. Crocker, T.Toops, Biodiesel synthesis using calcined layered double hydroxide catalysts, J. App. Catal.B-Environ.2008,82,120-130.
    [19] W.M. Antunes, C.O. Veloso, C.A. Henriques, Transesterification of soybean oil withmethanol catalyzed by basic solids, Catal. Today2008,133-135,548-554.
    [20] W. Xie, X. Huang, Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnOcatalyst, Catal. Lett.2006,107,53-59.
    [21] E. Rashtizadeh, F.A. Farzaneh, Comparative study of KOH loaded on doublealuminosilicate layers, microporous and mesoporous materials as catalyst for biodieselproduction via transesterification of soybean oil, Fuel2010,89,3393-3398.
    [22] F. Omota, A.C.Dimian, A.Bliek, Fattyacid esterification by reactive distillation: part2-kinetics-based. design for sulphated zirconia catalysts, Chem. Eng. Sci.2003,58,3175-3185.
    [23] G.D. Yadav, A.D. Murkute, Preparation of a novel catalyst UDCaT-5: enhancement inactivity of acid-treated zirconia-effect of treatment with chlorosulfonic acid vis-à-vissulfuric acid, J. Catal.2004,224,218-223.
    [24] F. Cavani, F. Trifiro, A. Vaccari, Hyfrotalcite-type anionic clays: preparation, propertiesand applications, Catal. Today1991,11,173-301.
    [25] W. Xie, H. Peng, L. Chen, Calcined Mg–Al hydrotalcites as solid base catalysts formethanolysis of soybean oil, J. Mol. Catal. A-Chem.2006,246,24-32.
    [26] D.G. Cantrell, L.J. Gillie, A.F. Lee, K. Wilson, Structure-reactivity correlations in MgAlhydrotalcite catalysts for biodiesel synthesis, Appl. Catal. A-Gen.2005,287,183-190.
    [27] J. Tantirungrotechai, P. Chotmongkolsap, M. Pohmakotr, Synthesis, characterization, andactivity in transesterification of mesoporous Mg–Al mixed-metal oxides, Micropor.Mesopor. Mat.2010,128,41–47.
    [28] Goh KH, Lim TT, Dong Z. Application of layered double hydroxides for removal ofoxyanions: A review. Water Research2008,42,1343-1368.
    [29] Shumaker JL, Crofcheck C, Tackett SA, Santillan-Jimenez E, Morgan T, Ji Y,Crocker M, Toops TJ. Biodiesel synthesis using calcined layered double hydroxide catalysts.Applied Catalysis B: Environmental2008,82,120–130.
    [30] Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J,Siemieniewskd T. Reporting physisorption data for gas/solid systems with specialreference to the determination of surface area porosity. Pure Appl. Chem.1982,54,2201-2208.
    [31] Abello′S, Medina F, Tichit D, Pe′rez-Ram′rez J, Sueiras JE, Salagre P, Cesteros Y. Aldolcondensation of campholenic aldehyde and MEK over activated hydrotalcites. AppliedCatalysis B: Environmental2007,70,577–584.
    [32] Pavel O.D., B rjega Ruxandra, Angelescu E., Popoiu S.,Hydrotalcite-like compounds,solid-base catalysts for cyanoethylation reation. Analele Universit ii din Bucuresti-Chimie,Anul XIV (serie nou), vol. I-II, pg.65-71)
    [33] Melián-Cabrera I., López Granados M. and Fierro J. L. G. Thermal decomposition of ahydrotalcite-containing Cu–Zn–Al precursor: thermal methods combined with an in situDRIFT study. Phys. Chem. Chem. Phys.,2002,4,3122-3127.
    [34] Choy JH, Kwak SY, Park JS. Inorganic layered double hydroxides as nonviral vectors.Angew Chem2000,112,4208.
    [35] Fogg AM, Dunn J S, O’Hare D. Selective ion-exchange intercalation of isomericdicarboxylate anions into the layered double hydroxide [LiAl2(OH)6]Cl·H2O. Chem Mater1998,10,351-355.
    [36] Valente JS, Figueras F, Gravelle M, Kumbhar P, Lopez J, Besse JP. Basic properties of themixed oxides obtained by thermal decomposition of hydrotalcites containing differentmetallic compositions. J Catal2000,189,370-381.
    [37] Ma F, Hanna MA. Biodiesel production: a review. Bioresource Technology1999,70,1-15.
    [38] Wong F, Buchheit RG. Utilizing the structural memory effect of layered double hydroxidesfor sensing water uptake in organic coatings. Progress in Organic Coatings2004,51,91-102
    [1]汪多仁.环氧大豆油的生产应用及市场分析[J].中氮肥,1998,(6):15-16.
    [2] Gerard L, Juan CR, Marina G, et al. Plant oils as platform chemicals for polyurethane synthesis:current state-of-the-art. Biomacromolecules2008,11,825-835.
    [3] Miso SD,Zhang SP,Su ZG,et al. A novel vegetable oil–lactate hybrid monomer for synthesisof high-Tg polyurethanes. J Polym Sci A-Polym Chem2010,48,243-250.
    [4] Annelise EG, Cesar LP, Ana POC. Dynamic mechanical and thermal behavior of epoxy resinsbased on soybean oil. J Am Oil Chem Soc2002,79,797-802.
    [5] Demengeot EAC, Baliutaviciene I, Ostrauskaite J, et al. Crosslinking of epoxidized natural oilswith diepoxy reactive diluents. J Appl Polym Sci2010,115,2028-2038.
    [6] Mizuno N, Yamaguchi K, Kamata K. Epoxidation of olefins with hydrogen peroxide catalyzedby polyoxometalates. Coordin Chem Rev2005,249,1944–1956.
    [7] Herrmann WA, Künh FE, Mattner MR, Multiple bonds between transition metals andmain-group elements,163nitrogen-donor adducts of organorhenium (VII) oxides. JOrganomet Chem1997,538,203-209.
    [8] Wang WD, Espenson JH. Effects of pyridine and its derivatives on the equilibria and kineticspertaining to epoxidation reactions catalyzed by methyltrioxorhenium. J Am Chem Soc1998,120,11335-11341.
    [9] Nunes CD, Pillinger M, Valente AA, Gon alves IS, Rocha J, Ferreira P, Kühn FE. Synthesisand characterization of methyltrioxorhenium(VII) immobilized in bipyridyl-functionalizedmesoporous silica. Eur J Inorg Chem2002,5,1100-1107.
    [10] Jain KR, Kühn FE. Immobilization of organorhenium(VII) oxides. J Organomet Chem2007,692,5532-5540.
    [11] Bein T, Huber C, Moller K, Wu CG, Xu L. Methyltrioxorhenium encapsulated in zeolite Y:tunable olefin metathesis catalyst. Chem Mater1997,9,2252-2254.
    [12] Neumann R, Wang TJ. Methyltrioxorhenium supported on silica tethered with polyethers ascatalyst for the epoxidation of alkenes with hydrogen peroxide. Chem Commun1997,19,1915-1916.
    [13] Saladino R, Carlucci P, Danti MC, Crestini C, Mincione E. Selective oxidation of uracil andadenine derivatives by the catalytic system MeReO3/H2O2and MeReO3/urea hydrogenperoxide. Tetrahedron2000,56,10031-10037.
    [14] Zhang YW, Jiang JQ, Liang QH, Zhang B. Modification of halloysite nanotubes withpoly(styrene–butyl acrylate–acrylic acid) via in situ soap-free graft polymerization. J ApplPolym Sci2010,117,3054-3059.
    [15] Lewis K, Klibanov AM. Surpassing nature: rational design of sterile-surface. MaterialsTrends Biotechnol2005,23,343-348.
    [16] Venturello C, Aloisio RD. Quaternary ammonium tetrakis (diperoxotungsto) phosphates(3-)as a new class of catalysts for efficient alkene epoxidation with hydrogen peroxide. J OrgChem1988,53,1553-1557.
    [17] Poli E, Clacens JM, Barrault J, Yannick P. Solvent-free selective epoxidation of fatty estersover a tungsten-based catalyst. Catal Today2009,140,19-22.
    [18] Hanh HD, Dong NT, Okitsu K, Nishimura R, Maeda Y. Biodiesel production throughtransesterification of triolein with various alcohols in an ultrasonic field. Renew Energ2009,34,766-768.
    [19] Kovalchuk T, Sfihi H, Zaitsev V, Fraissard J. Recyclable solid catalysts for epoxidation ofalkenes. J Catal2007,249,1-14.
    [20] Marney DCO, Russell LJ, Wu DY, Nguyen T, Cramm D, Rigopoulos N, Wright N, GreavesM. The suitability of halloysite nanotubes as a fire retardant for nylon6. PolymerDegradation and Stability.2008,93,1971-1978.
    [21] Benaniba MT, Bensemra NB, Gelbard G. Kinetics of tungsten-catalyzed sunflower oilepoxidation studied by1H NMR. Eur J Lipid Sci Technol2007,109,1186-1193.
    [22] Aerts HAJ, Jacobs PA. Epoxide yield derermination of oils and fatty acid methyl esters using1H NMR. J Am Oil Chem Soc.2004,81,841-846.
    [23] Morgenstern M, Cline J, Meyer S, Cataldo S. Determination of the kinetics of biodieselproduction using proton nuclear magnetic resonance spectroscopy(1H NMR). Energy andFuels.2006,20,1350-1353.
    [24] Gelbard G, Bres O, Vargas RM, Vielfaure F, Schuchardt UF.1H nuclear magnetic resonancedetermination of the yield of the transesterification of rapeseed oil with methanol. J Am OilChem Soc.1995,72,1239-1241.
    [25] Stavarache C, Vinatoru M, Nishimura R, Maeda Y. Fatty acid methyl esters from vegetable oilby means of ultrasonic energy. Ultrason Sonochem2005,12,367-372.
    [1] Zhou M, Zhou J, Li J, Yue S, Bao C, Mink J, Zang S, Ku¨hn FE. MTO Schiff-base complexes:synthesis, structures and catalytic applications in olefin epoxidation. Chem Eur J2007,13,158-166.
    [2] Herrmann WA, Fischer RW, Marz DW. Methyltriox-rheniumas catalyst for olefin oxidatin.Angew Chem Int Edit1991,30,1638-1641.
    [3] Herrmann WA, Fischer RW, Rauch MU, Scherer W. Alkylrhenium oxides as homogeneousepoxidation catalysts: activity, selectivity, stability, deactivation. J Mol Catal1994,86,243-266.
    [4] Zhu Z, Espenson JH. Oxidation of alkynes by hydrogen peroxide catalyzed by methylrheniumtrioxide. J Org Chem1995,60,7728-7732.
    [5] Al-Ajlouni AM, Espenson JH. Epoxidation of styrenes by hydrogen peroxide as catalyzed bymethylrhenium trioxide. J Am Chem Soc1995,117,9243-9250.
    [6] Refvik MD, Larock RC. The chemistry of metathesized soybean oil. J Am Oil Chem Soc.1999,76,99-102.
    [7] Du G, Tekin A, Hammond EG, Woo LK. Catalytic epoxidation of methyl linoleate. J Am OilChem Soc2004,81,477-480.
    [8] Jiang P,Chen M, et al.. Novel two-phase catalysis with organometallic compounds forepoxidation of vegetable oils by hydrogen peroxide. J Am Oil Chem Soc2010,87,83–91.
    [9] Gerbase AE, Gregório JR, Martinelli M, Brasil MC, Mendes ANF. Epoxidation of soybean oilby the methyltrioxorhenium-CH2Cl2/H2O2catalytic biphasic system. J Am Oil Chem Soc2002,79,179-181.
    [10] Kuhn FZ, Scherbaum A, Herrmann WA. Methyltrioxorhenium and its applications in olefinoxidation, metathesis and aldehyde olefination. J Organomet Chem2004,689,4149–4164.
    [11] Rost AMJ, Herrmann WA,Kuhn FE. Methylrhenium oxides. Tetrahedron Lett2007,48,1775–1779.
    [12] Herrmann WA, Kuhn FE. Organorhenium oxides. Acc Chem Res1997,30,169-180.
    [13] Adam W, Saha-M ller CR, Weichold O. NaY zeolite as host for the selective heterogeneousoxidation of silanes and olefins with hydrogen peroxide catalyzed by methyltrioxorhenium. JOrg Chem2000,65,2897-2899.
    [14] Nunes CD, Pillinger M, Valente AA, Goncolves IS, Rocha J, Ferreira P, Ku¨hn FE. Synthesisand characterization of methyltrioxorhenium(VII) immobilized in bipyridyl-functionalizedmesoporous silica. Eur J Inorg Chem2002,1100-1107.
    [15] Li M, Espenson JH. Kinetic study of epoxidations by urea–hydrogen peroxide catalyzed bymethyltrioxorhenium (VII) on niobia. J Mol Catal A2004,208,123-128.
    [16] Bouh AO, Espenson JH. Epoxidation reactions with urea–hydrogen peroxide catalyzed bymethyltrioxorhenium (VII) on niobia. J Mol Catal A2003,200,43-47.
    [17] Saladino R, Neri V, Pellicia AR, Caminiti R, Sadun C. Preparation and structuralcharacterization of polymer-supported methylrhenium trioxide systems as efficient andselective catalysts for the epoxidation of olefins. J Org Chem2002,67,1323-1332.
    [18] Saladino R, Neri V, Pellicci AR, Mincione E. Selective epoxidation of monoterpenes withH2O2and polymer-supported methylrheniumtrioxide systems. Tetrahedron2003,59,7403-7408.
    [19] Bianchini G, Crucianelli M, Angelis F, Neri V, Saladino R. A novel catalyzed C-H insertionreactions of hydrogen peroxide by poly(4-vinylpyridine)/methyltrioxorhenium systems.Tetrahedron Lett2004,45,2351-2353.
    [20] Veerabadran NG, Price RR, Lvov YM. Clay nanotubes for encapsulation and sustained releaseof drugs. Nano Lett2007,2,115-120.
    [21] Kautz CQ, Ryan PC. The10to7halloysite transition in a tropical soil sequence, CostaRica. Clay Clay Miner2003,51,252-263.
    [22] Theng BKG, Wells N. Assessing the capacity of some New Zealand clays for decolourizingvegetable oil and butter. Appl Clay Sci1995,9,321-326.
    [23] Saladino R, Neri V, Mincione E, Filippone P. Selective oxidation of phenol and anisolederivatives to quinones with hydrogen peroxide and polymer-supported methylrheniumtrioxide systems. Tetrahedron2002,58,8493~8500.
    [24] Sales H, Cesquini R, Sato S, Mandelli D, Schuchardt U. Epoxidation of soybean oil catalysedby CH3ReO3/H2O2. Studies in Surface Science and Catalysis2000,130B (InternationalCongress on Catalysis,2000, Pt. B):1661-1666.
    [25] Matyjaszewsky K. Lifetimes of polystyrene chains in atom transfer radical polymerization.Macromolecules1999,32,9051-9053.
    [26] Matyjaszewsky K. Radical nature of copper catalyzed controlled radical polymerization(ATRP). Macromolecules1998,1,4710-4717.
    [27] Ambade AV, Kumar A. Controlling the degree of branching in vinyl polymerization. ProgPolym Sci2000,25,1141-1170.
    [28] Cheng ZP, Zhang LF, Zhu XL, Kang ET, Neoh KG. Organic/inorganic hybrid nanospherescoated with palladium/P-4VP shells from surface-Initiated atom transfer radical polymerization.J Polym Sci A-Polym Chem2008,46,2119-2131.
    [29] Li D, He Q, Cui Y, Li J. Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine). Chem Mater2007,19,412-417.
    [30] Ciampolini M, Nardi N. Five-coordinated high-spin complexes of bivalent cobalt, nickel, andcopper with tris(2-dimethylaminoethyl)amine. Inorg Chem1996,5,41-44.
    [31]Qin S, Qin D, Ford WT, Herrera JE, Resasco DE. Grafting of poly(4-vinylpyridine) tosingle-walled carbon nanotubes and assembly of multilayer films. Macromolecules2004,37,9963-9967.
    [32] Lina MGR, Aida LVP, Consuelo MC, Gelbard G. Immobilization of methyltrioxorheniumonto tertiary amine and pyridine N-oxide resins. React Funct Polym2005,65,169-181.
    [33] Caner H, Hasipoglu H, Yilmaz O, Yilmaz E. Graft copolymerization of4-vinylpyridine on tochitosan-1. By ceric ion initiation. Eur. Polym. J.1998,34,493-497.
    [34] Turmanova S, Vassilev K, Boneva S. Preparation, structure and properties ofmetal–copolymer complexes of poly-4-vinylpyridine radiation-grafted onto polymer films.Reactive&Functional Polymers2008,68,759–767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700