用户名: 密码: 验证码:
谷胱甘肽及衍生物与金属离子相互作用理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
还原性谷胱甘肽(GSH)是细胞内普遍存在的含巯基三肽,在机体防御体系中起重要作用,主要包括清除自由基,防止机体发生脂质氧化,与外源物质或重金属离子结合形成复合物,从而起到解毒的作用。细胞内GSH浓度的降低会引起如糖尿病、人体免疫缺陷病毒感染、囊性纤维变性、急性呼吸窘迫综合症和肾功能衰竭等疾病。对于金属离子,特别是对巯基具有高亲和力的金属离子,通过与GSH结合排出体外,从而也使体内的GSH的含量大大降低。因此,金属与GSH结合是许多金属离子的生物代谢和毒性反应的一个组成部分。而且GSH含有巯基、氨基、羧基、酰胺基等多种配位基团,是研究生物分子与金属离子之间相互作用较理想的模型。因此,研究谷胱甘肽与金属离子的相互作用对探索金属离子在体内生理功能和毒性机理有重要意义。
     本文以还原型的GSH为研究对象,采用量子化学方法从理论上对GSH及衍生物与金属离子的相互作用及其光谱性质进行了理论研究。通过对金属离子与GSH相互作用的研究为金属离子生理作用和毒性机理提供理论依据;通过研究Zn~(2+)与谷胱甘肽-邻苯二甲醛(GSH-OPA)的相互作用及其光谱性质,对锌离子增强GSH-OPA荧光的实验现象进行理论解释。主要内容有:
     (1)采用密度泛函理论(DFT)计算方法以及AIM和NBO分析方法系统的研究了GSH与碱金属离子(Li~+, Na~+, K~+)、碱土金属离子(Be~(2+), Mg~(2+), Ca~(2+))和Al~(3+)离子相互作用。探讨了金属离子与GSH的结合位点、形成复合物结构和结合能的大小,分析了不同金属离子对GSH构型的影响。研究结果显示:碱土金属离子(Be~(2+), Mg~(2+), Ca~(2+))与GSH的结合能大于碱金属离子(Li~+, Na~+, K~+)与GSH的结合能,碱金属和碱土金属离子都倾向于与GSH分子中的氧原子结合,其次是与N原子,最后是S原子。而且,金属离子与GSH的结合会破坏GSH分子内的氢键,形成新的氢键,甚至使GSH分子内的氢质子发生迁移。与碱金属和碱土金属不同,Al~(3+)在与GSH相互作用过程改变了GSH的骨架结构,部分复合物中巯基的S原子与相邻的酰基氧原子以共价键形式结合,形成了一个五元环。而且,在部分复合物中GSH末端的羧基发生脱羧现象。
     (2)采用密度泛函理论(DFT)计算和NBO分析的方法,从几何结构、相互作用能、GSH变形能、金属离子与GSH的给体原子之间的Wiberg键级、键杂化轨道和电荷分析等方面讨论了二价过渡金属离子(Cr~(2+), Mn~(2+), Fe~(2+), Co~(2+), Ni~(2+), Cu~(2+), Zn~(2+), Cd~(2+), Hg~(2+))和Pb~(2+)与GSH的相互作用。金属离子与GSH的结合能的大小与金属离子的离子势的大小、金属离子的价电子排布、给体原子的类型、配位原子的数目及作用位点都有关。当金属离子与GSH配位方式相同时,同周期过渡金属离子(Cr~(2+), Mn~(2+), Fe~(2+), Co~(2+), Ni~(2+), Cu~(2+),Zn~(2+))与GSH相互作用大小的变化趋势是:Cu~(2+)≥Ni~(2+)> Co~(2+)> Fe~(2+)> Cr~(2+)> Zn~(2+)> Mn~(2+)。对于同族过渡金属离子(Zn~(2+), Cd~(2+), Hg~(2+))与GSH相互作用的大小顺序是Zn~(2+)≥Hg~(2+)>Cd~(2+)。NBO分析表明金属离子在与GSH形成复合物的过程中都发生了从配体到金属离子的电荷转移,电荷主要转移到3d和4s轨道,电荷转移量的多少也与其价电子组态有关。Cu~(2+)与GSH之间转移电荷最多,使GSH发生氧化反应的趋势最大,而且部分复合物中Cu~(2+)已经被还原为Cu+。具有d10价电子结构的过渡金属离子(Zn~(2+), Cd~(2+), Hg~(2+))在与GSH型相互作用过程中转移电荷相对较少,电荷主要转移到更高一层的s轨道。Wiberg键级分析表明金属离子(Cr~(2+), Mn~(2+), Fe~(2+), Co~(2+), Ni~(2+), Cu~(2+), Zn~(2+), Cd~(2+), Hg~(2+), Pb~(2+))与GSH的配位原子都具有较强的共价性,其中Zn~(2+)、 Cd~(2+)、 Hg~(2+)和Pb~(2+)与S原子的共价性最强。
     (3)考察了金属离子的氧化价态、GSH的构型和溶剂化效应对金属离与GSH相互作用的影响,为进一步理解高价态和低价态的同种金属离子在生物体中的生理功能和毒性提供理论依据。在这部分内容中,我们同时模拟了在气相和生物环境内稳定存在的两种构型的GSH(中性和两性离子)与不同价态金属离子(Cr~(2+)、Cr~(3+)、Cr~(6+)、Cu~(2+)、Cu~+、 Hg~(2+)、Hg~+)的相互作用情况。同种金属离子的复合物中,金属离子的电荷越高,半径越小,结合能越大,使GSH的变形程度也越大。金属Cr6+在气相和液相条件与GSH作用都促使了GSH的骨架断裂,发生分子脱羧,这个结果和实验报道Cr6+的毒性大于Cr~(2+)、Cr~(3+),且能使DNA链发生断裂是一致的。NBO分析表明,在复合物中Cr3+和Cr~(2+)与GSH的O原子之间的共价性大于与S和N原子,Cu~(2+)、Cu+、Hg~(2+)和Hg~+与S、N原子的共价成分大于与O原子。对于铜离子而言,低价态的离子与S、N的共价成分大于高价态的离子。汞离子无论是高价态还是低价态都表现出与S有较强的亲和性,但是Hg~(2+)对S的亲和能力大于Hg~+。与气相计算结果相比,考虑溶剂化效应之后,金属离子与GSH两性离子作用的结合能相对于在气相条件下与中性的GSH相互作用大大降低。而且,对于与GSH的氧原子结合能力大,相互作用中以静电作用为主的金属离子(Cr3+和Cr~(2+)),水溶剂对其结合能的影响最为明显。由于汞离子半径较大,溶剂对其相互作用的影响也很大,一价汞(Hg+)在水液中与GSH两性离子形成的复合物不稳定。
     (4)为了更好的理解邻苯二甲醛(OPA)荧光测定GSH的机理以及Zn~(2+)离子对GSH-OPA体系的荧光增强作用,我们从理论上研究了GSH-OPA以及Zn~(2+)与GSH-OPA形成的复合物(GSH-OPA-Zn)的基态和激发态几何结构、吸收和发射光谱性质。采用DFT和HF对基态电子结构优化,在优化好的基态结构基础上采用单电子激发组态相互作用(CIS)对激发态电子结构进行优化,然后通过含时密度泛函方法(TD-DFT)计算GSH-OPA和GSH-OPA-Zn的吸收和发射光谱性质。光谱计算得到的结果和实验报道非常接近,在气相、水和甲醇中,GSH-OPA的最大吸收波长分别是334.6、331.7和331.6nm,实验报道值为340nm左右(在甲醇和水的混合溶液中)。GSH-OPA-Zn在气相有一个明显的LMCT吸收峰(729.2nm),在水和甲醇中729.2nm处的吸收发生明显的蓝移,分别移至430和460nm。GSH-OPA的发射光谱相对吸收光谱发生了红移,在气相中的最大发射波长为381nm;在水和甲醇中,发射波长位置未发生大的变化,但是振子的强度有所增加。在水和甲醇中,Zn~(2+)的存在并没有使GSH-OPA发射光谱的波长发生位移(主要由π→π*激发引起),但振子强度有所增加。从基态和激发态构型的分析表明Zn~(2+)与GSH-OPA形成复合物后降低了GSH-OPA分子的柔性,增加了分子的刚性,从而增强了GSH-OPA的最大发射波长的振子强度
Reduced glutathione (GSH), a thiol-containing tripeptide, γ-Glu-Cys-Gly, is the most important low molecularweight antioxidant. Glutathione also plays an important role in the complexation and elimination of some toxicmetals from organisms. Due to its important bioactivity and pharmaceutical applications, glutathione has beentargeted by researcher in many fields. Moreover, glutathione molecule possesses all kinds of biological donoratoms: two carboxyls, one thiol, one amino, and two pairs of carbonyl and amide donors within two peptide bonds.Thus, the coordination chemistry of glutathione is of vital importance as it serves as a model system for bindingmetal ions of larger peptide and protein molecules.
     In order to better understand the physiological function of the metal ions and the defence mech anism of GSHagainst metal ion toxicity, in this article, a thorough and comparative study of the interactions of metal ions withGSH are conducted using quantum chemistry. Moreover, In order to better understand spectra property of theGSH-OPA and the effect of metal ion on it, the electronic vertical singlet transition energies of the GSH-OPA andthe coordination complex of GSH-OPA with Zn (labeled GSH-OPA-Zn) are also presented in this work. The mainresults are as follows:
     (1) Density functional theory methods, AIM and NBO analysis were applied to explore the interaction ofglutathione with metal cations (Li~+, Na~+, K~+, Be~(2+), Mg~(2+), Ca~(2+), Al~(3+)). The different affinity of the studied metalions for different position of GSH, the structure of the complexes, the influence of the metal ions on the structureof GSH have been quantitatively characterized, which are helpful to understand the specific coordination propertyof metal ion in organism. The results show that the intramolecular hydrogen bonds of GSH are broken, newhydrogen bonds are formed, and the hydrogen transfer happened during the coordination process of metal ionswith GSH. Further, the alkali (Li~+, Na~+, K~+) and alkaline earth metal (Be~(2+), Mg~(2+), Ca~(2+)) are inclined tocoordination with oxygen atom of GSH. The trivalent cation Al~(3+)behaves differently with alkali (Li~+, Na~+, K~+)and alkaline metal ions (Be~(2+), Mg~(2+), Ca~(2+)). The change of the GSH structure is significant in presence of Al~(3+)ion.Firstly, the Al~(3+)ion may activate the carboxyl dissociating from GSH. Secondly, it was found that the S atom andO (26) atom of carbonyl was inclined to form covalent bond in Aluminum complexes.
     (2) The coordination of GSH with transition metal ions (Cr~(2+), Mn~(2+), Fe~(2+), Co~(2+), Ni~(2+), Cu~(2+), Zn~(2+), Cd~(2+), Hg~(2+))and Pb~(2+)are explored using density functional theory method. Through analyze the interaction energies betweenions and GSH, the deformation energies of GSH, the Wiberg Bond Index between acceptor and the donor, hybridbond orbital of complexes and the charge transfer between metal ion and GSH, We discuss the influence of metalions on the structure of GSH and the origin of metal ions selectivity. It is found that the trend of binding energies,deformed energies and the amount of charge transfer are not different in various binding mode. Generally, thebinding energies of Ni~(2+)and Cu~(2+)with GSH are relatively large, Cd~(2+)、Hg~(2+)and Pb~(2+)are relatively small.Moreover, Zn~(2+)、Cd~(2+)、Hg~(2+)and Pb~(2+)are inclined to coordinate with the S atom of GSH, but Cr~(2+)and Mn~(2+)tend tobind with the N and O atom. Furthermore, the Cu~(2+)and Ni~(2+)exhibit strong oxidation to GSH.
     (3) In order to understanding the toxicity of metal ion of different valence state, we investigated thecoordination behavior of metal ions (Cr~(2+)、Cr3+、Cr6+、Cu~(2+)、Cu+、Hg~(2+)、Hg+) with GSH using density functionalmethod in gas and water. Two different forms of GSH, corresponding to the prevalent ones in gas-phase (neutralGSH) and in aqueous solution (zwitterionic GSH) are also taken into account. The binding energies of metal ionswith GSH would depend on the size, the charge and the coordination number of the cation, as well as the bindingsite in GSH. Larger the charge of metal ion is, bigger the deformation of GSH is. In presence of Cr6+, themolecular skeleton of GSH is broken and the carboxyl dissociated from GSH no matter in gas phase or in aqueous solution. In the complexes of Cr3+and Cr~(2+), the covalent bonding degree of metal ion with O atom is higher thanthat with S or N atom. However, the Cu~(2+), Cu+, Hg~(2+)and Hg+have higher covalent degree with S and N than thatwith O atom in the complexes. The binding energies of metal ion with zwitterionic GSH in aqueous are muchsmaller than that of the metal ions with the neutral GSH (“basket-like” conformation) in gas phase. Furthermore,the influence of aqueous on the binding energies are various for different metal ion complexes.
     (4) In order to better understand spectra property of the GSH-OPA and the effect of metal ion on it, theelectronic vertical singlet transition energies of the GSH-OPA and the coordination complex of GSH-OPA withZn (labeled GSH-OPA-Zn) are presented in this work. The computed absorption maximum of GSH-OPA in gasphase, water and methanol are334.6,331.7and331.6nm, respectively, which compare well with the experimentalvalue (340nm). Coordination of Zn~(2+)to GSH-OPA makes the absorption spectra red shift and gives rise to a newligand-to-metal charge transfer transition at729nm. The red shift of absorption spectra calculated in water andmethanol is smaller than in vacuum. However, the emission band of GSH-OPA at380nm is not observedred-shifted in presence of Zn (Ⅱ) ion. The maximum emission band of GSH-OPA-Zn can be assigned to theGSH-OPA intraligand π*→π transition. The difference of maximum emission band of GSH-OPA andGSH-OPA-Zn are not significant in water and methanol. The computed maximum absorption of GSH-OPA atabout328nm and emission band at380nm compare well with the experimental value. The analysis of thestructure of GSH-OPA and GSH-OPA-Zn indicated that the enhancement of fluorescence of GSH-OPA by Zn~(2+)could be due to the decrease of flexibility of GSH-OPA in present of Zn~(2+).
引文
[1]杨频,杨斌盛.金属离子与生物大分子的相互作用[J].化学通报,1992,12:7-10.
    [2]胡常英,马清河,刘丽娜,等.金属离子与生命活动[J].生物学通报,2005,40(8):6-7.
    [3]张辉.镉对细胞钙稳态的影响及其机制[J].郴州医学高等专科学校学报,2002,34(1):52-56
    [4]邵美贞.镁的基础与临床[M].成都:四川科学技术出版社,1996.2-8.
    [5] G. S. Han, W. I. Wu, G. M. Carman, The Saccharomyces cerevisiae Lipin Homolog Is a Mg2+dependentPhosphatidate Phosphatase Enzyme [J], J. Biol. Chem.,2006,281(4):9210-9218.
    [6]刘金香.生命元素镁保护心脏的功能及其机理[J].微量元素与健康研究,2001, l8(4):75-76.
    [7]宣爱国,黄开勋.金属离子在神经系统中的作用[J].化学世界,2003,6:334-336.
    [8]邵子厚.金属离子的生物效应[J].生物科学信息,1991,3(5):11-16.
    [9]常宝志,黄莛莛,凌红卫,等.铜离子的医学应用[J].中华医学研究杂志,2006,4:382-383.
    [10]张晓玲,刘剑,黄弘,等.钴离子与人体健康和微生物的关系[J].国际口腔医学杂志,2008,35(2):29-31.
    [11]李青仁,苏斌,李胜钏.微量元素钴、镍与人体健康[J].广东微量元素科学,2008,15(1)66-72.
    [12] G. Bitton, K.Jung, B. Koopman, Evaluation of a microplate assay specific for heavy metal toxicity,1994,27(1):25-28.
    [13] P.B. Tchounwou, C. Newsome, J. Williams, et al, Copper-induced cytotoxicity and transcriptional activationof stress genes in human liver carcinoma cells [J]. Met. Ions. Biol.Med.,2008,10:285–290.
    [14] S. Wang, X. Shi. Molecular mechanisms of metal toxicity and carcinogenesis [J]. Mol. Cell. Biochem.2001,222(1-2):3–9
    [15] N. Eracal, H. Gurer-Orhan, N. Aykin-Burns, Toxic Metals and Oxidative Stress Part I: Mechanisms Involvedin Metal-induced Oxidative Damage,2001,1(6):529-539.
    [16] A. K. Patlolla, C. Barnes, C. Yedjou, et al. Oxidative stress, DNA damage and antioxidant enzyme activityinduced by hexavalent chromium in Sprague Dawley rats. Environ.Toxicol.2009,24(1):66–73
    [17] Tchounwou PB, Yedjou CG, Foxx D, et al. Lead-induced cytotoxicity and transcriptional activation of stressgenes in human liver carcinoma cells (HepG2). Mol. Cell. Biochem.2004,255(1-2):161–170
    [18] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction [J].Annu RevPlant Biol,2004,55:373–399.
    [19] Benavides MP, Gallego SM, Tomaro ML, Cadmium toxicity in plants [J]. Braz. J. Plant. Physiol.2005,17:21–34
    [20] Cho UH, Seo NH, Oxidative stress in Arabidopsis thaliana exposed to cadmium in due to hydrogen peroxideaccumulation [J]. Plant. Sci.2005,168(1):113–120.
    [21] Ali W, Isayenkov SV, Zhao FJ, et al. Arsenite transport in plants. Cell Mol Life Sci.2009,66(14):2329–2339
    [22] Dizdaroglu M, Jaruga P, Birincioglu M, et al. Free radical-induced damage to DNA: mechanisms andmeasurement. Free.Radic. Biol. Med.2002,32(11):1102–1115
    [23] D. R Livingstone. Contaminant-stimulated reactive oxygen species production and oxidative damage inaquatic organisms. Mar. Pollut. Bull.2001,42(8):656–66.
    [24]将明,沈涛,徐辉碧,等,金属离子对蛋白质的折叠、识别、自组装及功能的影响[J].化学进展,2002,14(4):263-272.
    [25]周崇松,兰昌云,范必威,等,金属离子在生命过程中的作用机制[J],广州化学,2005,30(1):58-64.
    [26] Wu G,Fang YZ,Yang S,et al.Glutatione metabolism and its implications for health [J]. J. Nutrition.2004,134(3):489-92.
    [27] A. Maister, M.E Anderson, Glutathione. Annu.Rev. Biochem.1983,52:711-760.
    [28]A. Kr el, W.Bal, Coordination chemistry of glutathione,Acta.Biochim.Pol.1999,46:567-580.
    [29] N.Ballatori, Glutathione mercaptides as transport forms of metals. Adv. pharm.1994,27271-296.
    [30] Bode AM, Liang HQ, Green EH, et al. Ascorbic acid recycling in Nb2lymphoma cell: implications for tumorprogression [J].Free. Radic. Biol. Med.1999,26:136-47.
    [31] Jenner P.Oxidative stress in Parkinson'sdisease.Ann. Neurol.2003,53(3):S26-S38.
    [32]曾绍汉,阮湘元,蔡明招.谷胱甘肽与金属离子相互作用研究进展[J].中国公共卫生,2009,25:882-884.
    [33]刘萍,林乐文,郑嘉烈,等.高效液相色谱发测定组织中谷胱甘肽[J].中国公共卫生,1995,10:473-474.
    [34]卢永科,川岛明,堀井郁夫,等.顺铂对大鼠肝细胞毒性及谷胱甘肽的保护作用[J].中国公共卫生,2004,20(2):440-441.
    [35]张树功,倪嘉缵,武登国.稀土谷胱甘肽配合物红外和Raman光谱研究[J].化学学报.1989,1:74-77.
    [36]任吉民,景凤英,裴奉奎,等.谷胱甘肽与稀土离子作用的13CNMR研究[J].化学学报,1994,52:711-715.
    [37] Podany i B, R eid RS. NM R study of the conform ations of free and lanthanide-complexed glutathione inaquesous solution [J]. Am. Chem. Soc.1988,110:3805-3810.
    [38] Vicky M, Farideh J. Mercury (Ⅱ) complex form ation with glutath ione in alkalin e aqueous solution [J]. J.Biol. Lnorg. Chem.,2008,13(4):541-553.
    [39] Aviva L, Zhang L, Lay P A. Structure and react ivity of achromium (Ⅴ) glutathione complex [J]. Inorg.Chem.,2003,42(3):767-784.
    [40]杨培慧,张文豪,赵秋香,等.铬(Ⅵ)与谷胱甘肽作用及其中间态配合物形成的电化学表征[J].无机化学学报,2005,21:495-499.
    [41]阮湘元,曾绍汉,蔡明招,等.谷胱甘肽-Cd、Cu()配合物在硅片表面形貌的AFM分析[J].2009,26:1498-1500.
    [42]陈光巨.量子化学[M].上海:华东理工大学出版社,2008,85-116.
    [43] JA Pople, DL Beveridge, PA Dobosh. Molecular orbital theory of the electronic structure of organiccompounds. II. Spin densities in paramagnetic species [J]. Am. Chem. Soc.,1968,90(16):4201–4209.
    [44]陈念陔.量子化学理论基础[M].北京:高等教育出版社,2002,16-178.
    [45] MJS Dewar, CH Reynolds. An improved set of mndo parameters for sulfur [J]. J. Comput. Chem.1986,7(2):140-143.
    [46] MJS Dewar, YC Yuan. AM1parameters for sulfur [J]. Inorg. Chem.1990,29(19):3881-3890.
    [47] MJS Dewar, YC Yuan. AM1studies of E2reactions.2. Regioselectivity, stereochemistry, kinetic isotopeeffects, and competition with SN2reactions [J]. J. AM.Chem. Soc.1990,112(6):2095-2105.
    [48] JJP Stewart. Optimization of parameters for semiempirical methods. III Extension of PM3to Be, Mg, Zn, Ga,Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi [J]. J. Copmut. Chem.1991,12(3):320-341.
    [49] JJP Stewart. Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3to more main group elements [J]. J. Mol. Model.2004,10(2):155-164.
    [50] LA Eriksson, J Wang, RJ Boyd, et al. A comparative study of the hypergine structures of neutral nitrogenoxides: DFT vs CISD results [J]. J Phys. Chem.1994,98(3):729-799.
    [51] E Kraka, D Cremer. CCSD (T) investigation of the bergman cyclization of enediyne. Relative stablilty of O-.m, and p-Didehydrobenzene [J]. J. Am. Chem. Soc.1994,116(11):4929-4936.
    [52] MJ Vilkas, Y Ishikawa, K Koc. Relativistic multireference many-body perturbation theory forquasidegenerate systems: Energy levels of ions of the oxygen isoelectronic sequence [J].1999,60(4):2808-2821.
    [53] J poner, P Hobza. MP2and CCSD (T) study on hydrogen bonding, aromatic stacking and nonaromaticstacking [J]. Chem. Phys. Lett.1997,267(3-4):263-270.
    [54] R.J.Bartleet,I.Shavitt.Comparison of high-order many-body perturbation theory and configuration interactionfor H2O [J]. Chem. Phys.Lett.,1977,50:190-198.
    [55] R.J.Bartleet,H.Sekino,G.D.Purvis III.Comparison of MBPT and coupled-cluster methods with full CI.Importance of triplet excitation and infinite summation [J].Chem.Phys.Lett.,1983,98:66-71.
    [56] K.Raghavachari,J.A.Pople,E.S.Replogle,etc.Fifth order Moeller-Plesset perturbation theory: comparison ofexisting correlation methods and implementation of new methods correct to fifth order[J]. J. Phys. Chem.,1990,94:5579-5586.
    [57] W Kohn, AD Becke, RG Parr. Density Functional Theory of Electronic Structure [J]. J. Phys.Chem.,1996,100(31):12974–12980.
    [58] Becke A D. Basis-set-free density-functional quantum chemistry [J]. Int. J. Quant. Chem.1989,36:599-609.
    [59] Perdew J P, Density-functional approximation for the correlation energy of the inhomogeneous electron gas.[J]. Phys. Rev. B.1986,33:8822-8824.
    [60] Y. Zhao, D. G. Truhlar. Density functional for noncovalent interaction energies of biological importance [J].J. Chem. Theory Comput.2007,3(1):289-300.
    [61] M. Kasha, H. R. Rawls, A. El-Bayoumi. The exition model in molecular spectroscopy [J]. Pure Appl. Chem.1965,11:371-390.
    [62] SR Langhoff, ER Davidson. Configuration interaction calculations on the nitrogen molecule [J]. Int. J. Quant.Chem.1974,8(1):61-72.
    [63] JA Ihalainen, J Linnanto, P Myllyperki. Energy Transfer in LH2of Rhodospirillum Molischianum, Studiedby Subpicosecond Spectroscopy and Configuration Interaction Exciton Calculations [J]. J. Phys. Chem.B,2001,105(40), pp9849–9856.
    [64] M. Head-Gordon, R J. Rico, M. Oumi, et al. A doubles correction to electronic states from configurationinteration in the space of single substitutions [J].1994,219(1-2):21-29.
    [65] B. O. Roos, Ab initio methods in quantum chemistry-Ⅱ [J]. J. Am. Chem. Soc.1995,117:774-778.
    [66] J Gauss, JF Stanton. Analytic CCSD (T) second derivatives [J]. Chem. Phys. Lett.1997,276(1-2):70-77.
    [67] JD Watts, J Gauss, RJ Bartlett. Open-shell analytical energy gradients for triple excitation many-body,coupled-cluster methods: MBPT(4), CCSD+T(CCSD),CCSD(T),and QCISD(T)[J]. Chem. Phys. Lett.1992,200(1-2):1-7.
    [68] H. So, H.G. Martin, J. B.Rodney, Configuration Interaction Singles, Time-Dependent Hartree–Fock,andTime-Dependent Density Functional Theory for The Electronic Excited States of ExtendedSystems[J].J.Chem.Phys.,1999,111(24):10774-10786.
    [69] A Rosa, EJ Baerends, SJA van Gisbergen, et al. Electronic Spectra of M(CO)6(M=Cr, Mo, W) Revisited bya Relativistic TDDFT Approach [J]. J. Am. Chem. Soc.,1999,121(44):10356–10365.
    [70] C Adamo, V Barone. A TDDFT study of the electronic spectrum of s-tetrazine in the gas-phase and inaqueous solution [J]. Chem. Phys. Lett.2000,330(1-2):152-160.
    [71] R W Marshman, P A Shapley. Comparative reactivity of isoelectronic nitrido, methylimido, and oxocomplexes of osmium(VI)[J]. J. Am. Chem. Soc.,1990,112(23):8369-8378.
    [72] C. M. Che and W. K Cheng.Novel UV-vis spectral feature and electrochemical behavior of high valentosmium(VI) dioxo complex of1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (TMC).J.Am.Chem.Soc,1986,108(15):4644-4645.
    [73] L. Onsager, Electric moments of molecules in liquids [J]. J. Am. Chem. Soc.1936,58(8):1486
    [74] JB Foresman, TA Keith, KB Wiberg, et al. Solvent effects.5. Influence of cavity shape, truncation ofelectrostatics, and electron correlation on ab initio reaction field calculations [J]. J. Phys.Chem.,1996,100(40):16098–16104.
    [75] NS Bayliss, EG McRae. Solvent Effects in Organic Spectra: Dipole Forces and the Franck CondonPrinciple[J]. J. Phys. Chem.,1954,58(11):1002–1006.
    [76] M. W. Wong, K. B. Wiberge, M. J. Frisch. Solvent effects.2. Medium effect on the structure, energy, chargedensity, and vibrational frequencies of sulfamic acid [J]. J. Am. Chem. Soc.1992,114(2):523-529.
    [77] S. Miertus, E. Scrocco, J. Tomasi. Electrostatic interaction of a solute with a continuum [J]. J. Chem. Phys.19981,55(1):117-129.
    [78] B Mennucci, J Tomasi, R Cammi, et al. Polarizable Continuum Model (PCM) Calculations of Solvent Effectson Optical Rotations of Chiral Molecules [J]. J. Phys. Chem. A,2002,106(25):6102–6113.
    [79] J Tomasi, R Cammi, B Mennucci. Medium effects on the properties of chemical systems: An overview ofrecent formulations in the polarizable continuum model (PCM)[J]. Int. J. Quant. Chem.1999,75(4-5):783-803.
    [80] V Barone, M Cossi, Quantum calculation of molecular energies and energy gradients in solution by aconductor solvent model [J]. J. Phys. Chem, A.1998,102(11):1995-2001.
    [81] C Amovilli, B Mennucci, Self-consistent-field calculation of pauli repulsion and dispersion contributions tothe salvation free energy in the polarizable continuum model [J]. J. Phys. Chem. B,1997,106(6):1051-1057.
    [82] K. Azizi, M. A. Safarpour, M. Keykhaee, et al. DFT-based QSAR study of alkanols and alkanthiols using theconductor-like polarizable continuum model (CPCM). J. Mol. Model.2009,15(12):1509-1515.
    [83] T Hattori, T Toraishi, T Tsuneda, et al. Chemical exchange reaction of glycinatocopper(Ⅱ) complex in water:Atheoretical study [J]. J. Phys. Chem. A.2005,109(45):10403-10409.
    [84] Y. Takano, K. N. Houk. Benchmarking the conductor-like polarizable continuum model (CPCM) forAqueous Solvation free energies of neutral and lonic organic molecules [J]. J. Chem. Theory. Comput.2005,1(1):70-77.
    [85] J.H. Jensen, MS Gordon. Conformational potential energy surface of glycine: a theoretical study [J]. J.Am.Chem. Sol.1991,113(21):7917-7924.
    [86] AG Császár. Conformers of gaseous glycine [J]. J.Am. Chem. Sol.1992,114(24):9568-9575.
    [87] AG Császár. Conformmers of gaseous α-Alanine [J]. J. Phys. Chem.1996,100(9):3541-3551.
    [88] HM Sulzbach, PR Schleyer, HF Schaefer, Research Article Interrelationship between Conformation andTheoretical Chemical Shifts. Case Study on Glycine and Glycine Amide [J]. J. Am. Chem. Soc.1994,116(9):3967-3972.
    [89] IR Gould, WD Cornell, IH Hillier, A quantum Mechanical Investigation of the Conformational Energetics ofthe Alanine and Glycine Dipeptides in the Gas Phase and in Aqueous Solution [J]. J. Am. Chem. Soc,1994,116(20):9250-9256.
    [90] S Gronert, RAJ O’Hair, Ab initio studies of amino acid conformations.1. The conformers of alanine, serine,cycseine [J]. J. Am. Chem. Soc.1995,117(7):2017-2081.
    [91] J Rak, P Skurski, J Simons, et al. Low-energy tautomers and conformers of neutral and protonated arginine[J]. J. Am. Chem. Soc.2001,123(47):11695-11707.
    [92]黄志坚,氨基酸的构型和性质研究[D]:[博士学位论文].安徽:中国科技大学凝聚态物理,2006.
    [93] D Toroz, T van Mourik, The structure of the gas-phase tyrosine–glycine dipeptide [J]. Mol. Phys.2006,104(4):559-570.
    [94] D Toroz, T van Mourik, The structure of the gas-phase glycine tripeptide [J].Phys. Chem. Chem. Phys.2010,12:3463-3473.
    [95] JM Bakker, C Plützer, I Hünig, et al. Folding Structures of Isolated Peptides as Revealed by Gas-PhaseMid-Infrared Spectroscopy [J]. Chem. Phys. Chem.2005,6(1):120-128.
    [96] AG Abo‐Riziq, JE Bushnell, et al. Discrimination between diastereoisomeric dipeptides by IR–UV doubleresonance spectroscopy and ab initio calculations [J]. Int. J. Quant. Chem.2005,105(4):437-445.
    [97] T Marino, N Russo, M Toscano. Gas-phase metal ion (Li+, Na+, Cu+) affinities of glycine and alanine [J]. J.Iorgan. Biochem.2000,79(1-4):179-185.
    [98] RN Allen, MK Shukla, JV Burda, et al. Theoretical Study of Interaction of Urate with Li+, Na+, K+, Be2+,Mg2+, and Ca2+Metal Cations [J]. J. Phys. Chem. A,2006,110(18):6139-6144.
    [99] R Shankar, P Kolandaivel, L Senthilkumar. Interaction studies of cysteine with Li+, Na+, K+, Be2+, Mg2+, Ca2+metal cation [J]. J. Phys. Organ. Chem.2011,24(7):553-567.
    [100] M Kabelác, P Hobza. Na+, Mg2+, and Zn2+Binding to All Tautomers of Adenine, Cytosine, and Thymineand the Eight Most Stable Keto/Enol Tautomers of Guanine [J]. J. Phys. Chem. B,2006,110(29):14515–14523
    [101] EN Koukaras, AD Zdetsis, GE Froundakis. Theoretical study of amino acid interaction with metal organicframeworks [J]. J. Phys. Chem. Lett.,2011,2(4):272–275.
    [102]许雪娥.氨基酸、肽基金属离子复合物构型和性质研究[D]:[博士学位论文].安徽:中国科技大学凝聚态物理,2010.
    [103] L Rulí ek, Z Havlas. Theoretical Studies of Metal Ion Selectivity.1. DFT Calculations of InteractionEnergies of Amino Acid Side Chains with Selected Transition Metal Ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, andHg2+)[J]. J. Am. Chem. Soc.,2000,122(42):10428–10439.
    [104]欧阳芳平,徐慧,何红波,等.蛋白质分子量子化学计算方法的研究进展[J].生物信息学.2004,2:42-46.
    [105]张明波,李国辉.计算化学在生命科学中的应用[J]. e-Science.2010,5:69-74.
    [106] HM Senn, W Thiel. QM/MM methods for biomolecular systems [J]. Angew. Chem. Int. Ed.,2009,48(7):1198-1229.
    [107]周正威,黄运锋,张永生,等.量子计算的研究进展[J].2005,25(4):368-385.
    [108]李卓.高性能计算在理论化学计算中的应用[D]:[硕士学位论文].吉林:吉林大学,2011.
    [109] PEM Siegbahn. The performance of hybrid DFT for mechanisms transition metal complexes in enzymes [J].J.Biol Inorg. Chem.2006,11:695-701.
    [110] PEM Siegbahn, T Borowski. Modeling enzymatic reactions involving transition metals [J]. Acc. Chem. Res.2006,39:729-738.
    [111] SA Kafafi, M Krauss. Ab Initio Determination of the Structure of the Active Site of a Metalloenzyme:MetalSubstitution in Phosphotriesterase Using Density Functional Methods [J]. Int. J. Quant. Chem.1999,75(3):289-299.
    [112] Siegbahn, P. E. M. Mechanisms of Metalloenzymes Studied by Quantum Chemical Methods. Q. Rev.Biophys.2003,36,91-145.
    [113] PEM Siegbahn, MRA Blomberg. Transition-metal systems in biochemistry studied by high-accuracyquantum chemical methods [J]. Chem. Rev.2000,100:421-437.
    [114] Louise-May, P Auffinger, E Westhof. Calculations of nucleic acid conformations [J]. Curr. Opin Chem.Bio.1996,6(3):289-298.
    [115] MA Ditzler, M Otyepka, J poner, et al. Molecular dynamics and quantum mechanics of RNA:Conformational and chemical change we can believe in [J]. Acc. Chem. Res.,2010,43(1):40–47。
    [116] J poner, J Leszczynski, P Hobza. Electronic properties, hydrogen bonding, stacking, and cation binding ofDNA and RNA bases [J]. Biopolymers.2001,61(1):3-31.
    [117] Ditzler, M. A.; Sponer, J.; Walter, N. G. Molecular dynamics suggest multifunctionality of an adenine iminogroup in acid-base catalysis of the hairpin ribozyme. RNA2009,15(4):560–575.
    [118] Razga, F.; Koca, J.; Sponer, J.; Leontis, N. B. Hinge-like motions in RNA kink-turns: The role of the secondA-minor motif and nominally unpaired bases. Biophys. J.2005,88,3466–3485.
    [119] Razga, F.; Koca, J.; Mokdad, A.; Sponer, J. Elastic properties of ribosomal RNA building blocks: Moleculardynamics of the GTPase-associated center rRNA. Nucleic Acids Res.2007,35,4007–4017.
    [120] Krasovska, M. V.; Sefcikova, J.; Spackova, N.; Sponer, J.; Walter, N. G. Structural dynamics of precursorand product of the RNA enzyme from the hepatitis delta virus as revealed by molecular dynamicssimulations. J. Mol. Biol.2005,351,731–748.
    [121] Reblova, K.; Spackova, N.; Stefl, R.; Csaszar, K.; Koca, J.; Leontis, N. B.; Sponer, J. Non-Watson-Crickbasepairing and hydration in RNA motifs: Molecular dynamics of5S rRNA loop E. Biophys. J.2003,84,3564–3582.
    [122]魏凯.一些生物大分子体系的理论化学研究[D]:[博士学位论文].安徽:中国科技大学有机化学.2008.
    [123]李敏杰.核酸自由基性质和损伤机理的量子化学研究[D]:[博士学位论文].安徽:中国科技大学有机化学.2007.
    [124]张愚.金属离子与DNA碱基对相互作用的理论研究[D]:[博士学位论文].武汉:华中科技大学无机化学,2008.
    [125]赵亚英,周立新.气相和溶液中金属离子与腺嘌呤配位选择性的理论研究[J].结构化学,2004,23(5):560-569.
    [126] L wdin PO, Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of DensityMatrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction,
    [127] J. P. Foster, F. Weinhold, Natural hybrid orbitals [J]. J. Am. Chem. Soc.,1980,102(24):7221-7234.
    [128] R. F. W. Bader, A quantum theory of molecular structure and its applications [J]. Chem. Rev.,1991,91(5):893-928.
    [129] K. Raghavachari, R. A. Whiteside, J. A. Pople, et al, Molecular orbital theory of the electronic structure oforganic molecules. J. Am. Chem. Soc.,1981,103(19)5649-5657.
    [1] N. Vyas, A.K. Ojha, A study on interaction of Be2+, Mg2+and Ca2+with phenylalanine: binding energies,metal ion affinities and IR signature of complex stability [J]. Vib. Spectrosc.2011,56(1):42-50.
    [2] S.W. Ragsdale, Metals and their scaffolds to promote difficult enzymatic reactions [J]. Chem. Rev.2006,106(45):3317-3337.
    [3]. L. Rulisek, Z. Havlas, Theoretical studies of metal ion selectivity.1. DFT calculations of interaction energiesof amino acid side chains with selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+)[J].J. Am. Chem. Soc.2000,122(42):10428-10439.
    [4]. J.J.R.Fraústo da Silva, R.J.P. Williams, The biological chemistry of the elements: the inorganic chemistry oflife [M]. Oxford University Press, USA,2001.
    [5]. T. Marino, N. Russo, M. Toscano, Gas-phase metal ion (Li+, Na+, Cu+) affinities of glycine and alanine [J]. J.Inorg. Biochem.2000,79(1-4)179-185.
    [6]. X. Shui, L. McFail-Isom, G.G. Hu, L.D. Williams, The B-DNA dodecamer at high resolution reveals a spineof water on sodium., J. Biochem.1998,37(23):8341-8355.
    [7]. S.V. Verstraeten, L. Aimo, P.I. Oteiza, Aluminium and lead: molecular mechanisms of brain toxicity [J]. Arch.Toxicol.2008,82(11):789-802.
    [8]. K. Murakami, M. Yoshino, Aluminum decreases the glutathione regeneration by the inhibition ofNADP-isocitrate dehydrogenase in mitochondria [J]. J. Cell. Biochem.2004,93(6):1267-1271.
    [9]. A.S. Reddy, G.N. Sastry, Cation [M=H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] interactions with thearomatic motifs of naturally occurring amino acids: a theoretical study [J]. J. Phys. Chem. A.2005,109(39):8893-8903.
    [10]. T. Marino, N. Russo, M. Toscano, Interaction of Li+, Na+, and K+with the proline amino acid. Complexationmodes, potential energy profiles, and metal ion affinities [J]. J. Phys. Chem. B.2003,107(11):2588-2594.
    [11]. M. Monajjemi, R. Ghiasi, M. Sadjadi, Metal-stabilized rare tautomers: N4metalated cytosine (M=Li+, Na+,K+, Rb+and Cs+), theoretical views [J]. Appl. Organomet. Chem.2003,17(8)635-640.
    [12]. J. Gu, J. Wang, J. Leszczynski, Iso-guanine quintet complexes coordinated by mono valent cations (Na+, K+,Rb+, and Cs+)[J]. J. Comput. Chem.2007,28(11):1790-1795.
    [13]. J. Gu, J. Leszczynski, Origin of Na+/K+selectivity of the guanine tetraplexes in water: the theoreticalrationale [J]. J. Phys. Chem. A.2002,106(3)529-532.
    [14]. M Kabelác, P Hobza, Na+, Mg2+, and Zn2+binding to all tautomers of adenine, cytosine, and thymine and theeight most stable keto/enol tautomers of guanine: A correlated ab initio quantum chemical study [J]. J.Phys. Chem. B.2006,110(29)14515-14523.
    [15]. J. Chen, H. Ai, Y. Zhao, et al. A theroretical prediction on the ground-state complexes bond by metal ions tothymine base isomers [J]. J. Phys. Organ. Chem.20012,25(2)126-131.
    [16]. M. T. Rodgers, P. B. Armentrout, Noncovalent Interactions of Nucleic Acid Bases (Uracil, Thymine, andAdenine) with Alkali Metal Ions [J]. J. Am. Chem. Soc,2000,122(35)8548-8558
    [17]. A. Lafaye, C. Junot, Y. Pereira, G. Lagniel, J.C. Tabet, E. Ezan, J. Labarre, Combined proteome andmetabolite-profiling analyses reveal surprising insights into yeast sulfur metabolism [J]. J. Biol. Chem.2005,280(26):24723.
    [18] Z.A.Tehrani, A.Fattahi, A. Pourjavadi, DFT study of the interaction of cytidine and2′-deoxycytidine with Li+,Na+, and K+: effects of metal cationization on sugar puckering and stability of the N-glycosidic bond [J].Carbohydr. Res.2009,344(6):771-778.
    [19] R.Shankar, P.Kolandaivel, L.Senthilkumar, Interaction studies of cysteine with Li+, Na+, K+, Be2+, Mg2+, andCa2+metal cation complexes [J]. J. Phys. Organ. Chem,2011,24(7):553-567.
    [20]严伟民,还原性谷胱甘肽在国内的临床应用研究进展[J].中国临床药学杂志,2009,18:190-194.
    [21]胡圣尧,聂志妍,袁勤生,还原性谷胱甘肽的研究进展[J].食品与药品,2009,11:69-71.
    [22] Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J.Chem. Phys.,1993,98(2):5648-5652.
    [23] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional ofthe electron density. Phys. Rev. B,1998,37(2):785-789.
    [24]. X Wang, K Li, X D Yang, et al. Complexation of Al (III) with reduced glutathione in acidic aqueoussolutions, J. Inorg. Biochem.103(2009)657-665.
    [25]. R.C. Dunbar, J.D. Steill, N.C. Polfer, J. Oomens, Dimeric Complexes of Tryptophan with M2+Metal Ions [J].J. Phys Chem. A2009,103(5)845-851.
    [26]. H. Ai, Y. Bu, P. Li, Intramolecular proton transfer induced by divalent alkali earth metal cation in the gasstate, Int. J.Quantum Chem.2003,94(4):205-214.
    [27] Boys S F, Bernardi F. Some procedures with reduced errors [J]. Mol Phys,1970,19:533-540.
    [28] Foster J P, Weinhold F. Natural hybrid orbitals [J]. J Am Chem Soc,1980,102(24):7211–7218.
    [29] Bader RFW. Atoms in Molecules. A Quantum Theory. Oxford, U.K.: Clarendon,1990.2-78.
    [30] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T,Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, RegaN, Petersson GA, Nakatsuji H, HadaM, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T,Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J,Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, MorokumaK, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O,Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, CioslowskiJ, Stefanov BB, Pople JA (2003) Gaussian03. Gaussian, Inc., Pittsburgh PA
    [31] O.Lampela, A.H. Juffer, A.Rauk, Conformational Analysis of Glutathione in Aqueous Solution withMolecular Dynamics [J]. Chem. Phys. Let.2003,107(43)9208-9220..
    [32] Y.J.Ko, H. Wang, X. Li, K.H. Bowen, et al, Intrinsic Neutral and Anionic Structures of Glutathione [J].Chem. Phys. Chem,2009,10(17)3097-3100.
    [33] A. Rauk, D. A. Armstrong, J. Berges, Glutathione radical: Intramolecular H abstraction by the thiyl radical[J]. Can. J. Chem,2001,79(4)405-417.
    [34] V.Z.Y. Ding, S.S.H. Dawson, L.W.Y. Lau, et al, A computational study of glutathione and its fragments:N-acetylcisteinylglycine and [gamma]-glutamylmethylamide [J] Chem Phys. Lett.2011,507(1-3):168-173.
    [35] Ebrahimi A, Roohi H, Habibi M, et al. Characterization of conformers of non-ionized proline on the basis oftopological and NBO analyses: Can nitrogen be a donor of hydrogen bond?[J]. Chem Phys,2006,322(3):289-297
    [36] MacDougall P J, Bader R F W. Atomic properties and the reactivity of carbenes [J]. Can J Chem,1986,64(8):1496–1508
    [37] Szefczyk B, Sokalski W A, Leszczynski J. Optimal methods for calculation of the amount of intermolecularelectron transfer [J]. J Chem Phys,2002,117(15):6952-6958
    [38]Shan Y Y, Ren X H, Wang H J, et al. A theoretical study of the interactions between N, N-dimethylformamide and aromatic hydrocarbons [J]. J Struct Chem2007,18:709-716
    [1] J.S,Prell, T.G.Flick, J. Oomens, et al. Coordination of trivalent metal cations to peptides: Results fromIRMPD spectroscop and theory [J]. J. Phys, Chem A.2010,114(2):854-860.
    [2] R. MacKinnon. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture)[J].Angew. Chem. Int. Ed.2004,43(33):4265-4277
    [3] T.Picaud, A. Desbois. Interaction of Glutathione Reductase with Heavy Metal: The Binding of Hg(II) orCd(II) to the Reduced Enzyme Affects Both the Redox Dithiol Pair and the Flavin [J].Biochemistry.2006,45(51):15829-15837.
    [4] J. Westwater, NF.McLaren, UH.Dormer, et al. The adaptive response of saccharomyces cerevisiae tomercury exposure [J]. Yeast,2002,19(3)223-239.
    [5] N. Ercal, H. Gurer-Orhan, N. Aykin-Burns.Toxic metals and oxidative stress part1:mechanism involvedin metal-induced oxidative damage [J]. Curr. Top. Med. Chem.2001,1(6)529-539.
    [6] R.J.Brennan, R.H.Schiestl. Mutatin research/fundamental and molecular mechanisms of mutagenesis [J].Mutat.Res.356(1996)171-178.
    [7] S.J. Stohs, D.Bagchi. Oxidative mechanisms in the toxicity of metal ions [J]. Free Radical Biol.Med.1995,18(2):321-336.
    [8] M.L.Circu, T.Y. Aw. Reactive oxygen species, cellular redox systems, and apoptosis [J]. Free RadicalBiol. Med.2010,48(6):749-762.
    [9]M.L.Circu, M.P. Moyer, L Harrison, et al. Contribution of glutathione status to oxidant-inducedmitochondrial DNA damage in colonic epithelial cells [J]. Free Radical Biol. Med.2009,47(8)1190-1198.
    [10]P Bradac, E Navarro, N Odzak, et al. Kinetics of cadmium accumulation in perphyton under freshwaterconditions [J]. Environ.Toxicol. Chem.2009,28(10):2108-2116.
    [11] S.S. Leonard, G.K. Harris, X.L.Shi. Metal-induced oxidative stress and signal transduction [J]. Free.Radic. Biol. Med.2004,37(12):1921-1942.
    [12] T.P. Ryan, S.D.Aust. The role of iron oxygen-mediated toxicities [J]. Crit. Rev. Toxiocl.1992,22(2):119-141.
    [13]J.A.Imlay, S.M.Chin, S. Linn. Toxic DNA damage by hydrogen peroxide through the fenton reacitionvivo and in vitro [J]. Science,1998,240(4852):640-642.
    [14]Y.Wang. Bulky DNA lesions induced by reactive oxygen species [J]. Chem.Res.Toxicol,2008,21(2):276-281.
    [15] A. Maister, M.E Anderson. Glutathione, Annu.Rev. Biochem.1983,52:711-760.
    [16] A. Kr el, J Wójcik, M Maciejczyk, et al. May GSH and L-His contribute to intracellular binding ofzinc?[J]. Acta Biochim Pol,1999,46:567-580.
    [17] N.Ballatori,W J Dutczak. Indenticiation and characterization of high and low affinity transport systemsfor reduced glutathione in liver cell canalicular membranes [J]. J. Biolog. Chem.1994,269(31):19731-19737.
    [18]N.Ballatori, S.M.Krance, S. Notenboom, et al. Glutathione dysregulation and the etiology andprogression of human diseases [J]. Biol. Chem.2009,390:191-214.
    [19] J.Chen, M. Delannoy, S.Odwin, et al.Enhanced Mitochondrial Gene Transcript, ATP, Bcl-2ProteinLevels, and Altered Glutathione Distribution in Ethinyl Estradiol-Treated Cultured Female RatHepatocytes [J].Toxicol.Sci.2003,75(2)271-278.
    [20] W. Li, Y.Zhao, I.N.Chou, Alterations in cytoskeletal protein sulfhydryls and cellular glutathione incultured cells exposed to cadmium and nickel ions [J]. Toxicology,1993,77(1-2):65-79.
    [21] D Bagchi, M Bagchi, E A Hassoun, et al. Cadmium-induced excretion of urinary lipid metabolites,DNA damage, glutathione depletion, and hepatic lipid peroxidation in sprague-dawley rats [J].1996,52(2):143-154.
    [22]张树功,倪嘉缵,武登国.稀土谷胱甘肽配合物红外和Raman光谱研究[J].化学学报,1989,47:74-77.
    [23] Vicky M,Farideh J.Mercury(Ⅱ) complex formation with glutathione in alkaline aqueous solution[J].JBiol lnorg Chem,2008,13(4):541-553.
    [24]Aviva L, Zhang LB, Peter LA.Structure and reactivity of a chromium(V) glutathione complex[J].Inorganic Chemistry,2003,42(3):767-784.
    [25]杨培慧,张文豪,赵秋香,等.铬(Ⅵ)与谷胱甘肽作用及其中间态配合物形成的电化学表征[J].无机化学学报,2005,21(4):495-499.
    [26]袭著革,晁福寰,孙咏梅,等.金属离子介导活性氧引起的DNA氧化损失及机制研究[J].环境科学学报,23(2003):662-667.
    [27]J. Bertrán, L. Rodríguez-Santiago, M. Sodupe. The difference nature of bonding in Cu+-glycine andCu2+-glycine[J].J. Phys. Chem. B,1999,103(12):2310-2317.
    [28]A. V. Kachur, C. J. Koch, J. E. Biaglow. Mechanism of copper-catalyzed oxidation of glutathione[J].Free Radical research,1999,28(3):259-269.
    [1] D Sud, G. Mahajan, M. P. Kaur. Agricultural waste material as potential adsorbent for sequesteringheavy metalions from aqueous solutions–A review [J]. Bioresource Technology,2008,99(14):6017-6027.
    [2] D. A. Puleo, W. W. Huh. Acute toxicity of metal ions in cultures of osteogenic cells derived from bonemarrow stromal cells [J]. J.APPL. BIOMATER,1995,6(2):109-116.
    [3] D. Chen, A. K. Ray. Removal of toxic metalions from wastewater by semiconductor photocatalysis [J].Chem. Eng. Sci.,2001,56(4):1561-1570.
    [4] P. A. Brown, S. A.Gill, S. J. Allen. Metal removal from wastewater using peat [J]. Water. Res.,2000,34(16)3907-3916.
    [5] S.L. Stohs, D. Bagchi. Oxidative mechanisms in the toxicity of metal ions [J].Free Radical Biologiy&medicline.1995,18(2):321-336.
    [6] S. S. Sharma, K. J. Dietz, The relationship between metal toxicity and cellular redox imbalance[J],Trends in Plant Science,2009,14(1)43-50.
    [7] K. Jomova, D. Vondrakova, M. Lawson, et al. Metal, oxidative stress and neurodegenerative disorders[J]. Mol. Cell. Biochem.2010,345(1-2):91-104.
    [8] K. Jomova, M. Valko, Advances in metal-induced oxidativestress and human disease [J]. Toxicology,2011,283(2-3):65-87.
    [9] N. L. Pauza, M. J. Cotti, L. Godar. Disturbances on delta aminolevulinate dehydratase (ALA-D)enzyme activity by Pb2+, Cd2+, Cu2+, Mg2+, Zn2+, Na+, K+and Li+: analysis based on coordinationgeometry and acid-base Lewis capacity [J]. J. Inorg. Biochem.2005,99(2):409-414.
    [10] A. Hartwing. Zinc Finger Proteins as Potential Targets for Toxic Metal Ions: Differential Effects onStructure and Function [J]. Antioxidants&Redox Signaling,2001,3(4):625-634.
    [11] T. A. Coban, M. Senturk, M. Ciftci, et al. Effects of some metal ions on human erythrocyte glutathionereductase: an in vitro study [J]. Protein and Peptide Letters,2007,14(10):1027-1031.
    [12]袭著革,晁福寰,孙咏梅,等.金属离子介导活性氧引起DNA氧化损失及机制研究[J].环境科学学报,2003,23:662-667.
    [13] A. Hartwig. Carcinogenicity of metal compounds: possible role of DNA repair inhibition [J].Toxicol.Lett.,1998,102:235-239.
    [14] G. H. Clever, C. Kaul, T. Carell. DNA-metal base pairs [J]. Angew.Chem. Int. Ed.2007,46(13):6226-6236.
    [15] L. B. Paiva, J. G. de Oliveira, P. A. Azevedo, et al, Ecophysiological responses of water hyacinthexposed to Cr3+and Cr6+[J]. Environ. Exp. Bot.2009,56(2-3):403-409.
    [16] V. Dhir. Comparison in the toxicities of cuporous and cupric ion salts on the various organs of ratusnorvegicus and its comparison with the lead [J]. Indian Journal of Forensic Medicine&Toxicology.2012,6:135-138.
    [17] J. Bertran, L. Rodriguez-Santiago, M. Sodupe. The different nature of bonding in Cu+-Glycine andCu2+-Glycline [J]. J. Phys. Chem. B.,1999,103(12):2310-2317.
    [18] Lioyd D R,Phiiiips D H. Oxidative DNA damage mediated by copper,iron and nickei fentonreactions: evidence for site-specificmechanisms in the formation of doubie-strand breaks,8-hydroxydeoxyguanosine and putative intrastrand cross-links [J]. Mutation research,1999,424(1-2):23-36.
    [19Izzotti A,Bagnasco M,Camorano A,et al. DNA fragmentation,DNA-protein crossiinks,32Ppostiabeied nucieotidic modification,and8-hydroxy-2’-deoxyguanosine in the iung but not in theiiver of rats receiving intratracheai instiiiations of chromium. Chemoprevention by oraiN-acetyicysteine[J]. Mutation research,1998,400(1-2):233-244.
    [20]阮建明,M. H. Crant,黄伯云,金属毒性(Ⅰ),粉末冶金材料科学与工程[J].2001,6:12-18.
    [21] Bulat P,Dujic L,Potkonjak B.Activity of glutathlone peroxidase and surperoxide dismutase inworkers occupationally exposed to mercury.Int Arch Occup Environ Health[J],1998,71(104) S37-S39
    [22] Nava M,Romero F,Quiroz Y,et a1.Melatonin attenuates acute renal failure and oxidative stressinduced by mercuric chloride in rats.Am J Physiol Renal Physiol[J],2000,279(5): Fg910-F918
    [23] O. Lampela, A.H. Juffer, A. Rauk, Conformational Analysis of Glutathione in Aqueous Solution withMolecular Dynamics[J]. J. Phys. Chem. A.2003,107(43):9208–9220.
    [24] M Belcastro, T Marino, N Russo, et al. The role of glutathione in cadmium ion detoxification:Coordination modes and binding properties-A density function study.[J].2009,103(1):50-57.
    [25] V Barone, M Cossi. Quantum Calculation of Molecular Energies and Energy Gradients in Solution bya Conductor Solvent Model J]. J. Phys. Chem, A.1998,102(11):1995-2001.
    [26] Y Takano, K N Houk. Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) forAqueous Solvation Free Energies of Neutral and Ionic Organic Molecules [J]. J. Chem. TheoryComput.2005,1(1):70-77.
    [27] S R Stoyanow, J M Villegas, D P Rillema. Spectroscopic Properties of [Pt2(μ-P2O5H2)4]:4-ATime-Dependent Density Functional Theory and Conductor-like Polarizable Continuum ModelInvestigation [J]. J. Phys. Chem. B.2004,108(32)12175-12180.
    [28] J Tomasi, B Mennucci, R Cammi, Quantum mechanical continuum solvation models [J]. Chem. Rev.2005,105(8):2999-3093.
    [29]岳蕾,周荫庄.具有切割DNA活性的铬配合物,化学进展[J].2009,21:2093-2099.
    [1] C. Jacob, G. Giles, N. M. Giles, et al. Sulfur and Selenium: The Role of Oxidation State in ProteinStructure and Function [J]. Angew. Chem. Int. Ed.2003,42(39),4742-4758.
    [2] H.J. Forman, H. Zhang, A. Rinna, Glutathione: overview of its protective roles, measurement, andbiosynthesis [J]. Molecular aspects of medicine.2009,30(1-2)1-12.
    [3] L. Janes, K. Lisjak, A. Vanzo, Determination of glutathione content in grape juice and wine byhigh-performance liquid chromatography with fluorescence detection [J]. Analytica chimica acta,2010,674(2)239-242.
    [4]R. Masella, R. Di Benedetto, R. Varì,et al, Novel mechanisms of natural antioxidant compounds inbiological systems: involvement of glutathione and glutathione-related enzymes [J]. J. Nutr. Biochem.2005,16(10):577-586.
    [5] G. L. Ellman, Tissue sulfhydryl groups [J]. Arch. Biochem. Biophys,1959,82:70-77.
    [6] F. Teitze, Enzymic methord for quantitative determination of nanogram amounts of total and oxidizedglytathione [J]. Anal. Biochem,1969,27:502-512.
    [7] K. Mahesh, Bhalgat, Rosaria P. Haugland, Zhenjun Diwu, et al.5-(pentafluorobenzoylamino)fluorescenin: A selective substrate for the determination of glutathione concentration and glutathioneS-transferase activity seksiri arttamangkul [J]. Anal. Biochem.1999,269:410-417.
    [8] B. S. Kristal, K. E. Vigneau-Callahan, W. R. Matson. Simultaneous analysis of the majority oflow-molecular-weight, redox-active compounds from mitochondria [J]. Anal. Biochem.1998,263(1):18-25.
    [9] A.P. Senft, T.P. Dalton, H.G. Shertzer, Determining glutathione and glutathione disulfide using thefluorescence probe o-phthalaldehyde [J]. Anal. Biochem.2000,280(1):80-86.
    [10] P.J. Hissin, R. Hilf, A fluorometric method for determination of oxidized and reduced glutathione intissues. Anal. Biochem.1976,74:214-226.
    [11]V.H. Cohn, J. Lyle, A fluorometric assay for glutathione [J]. Anal. Biochem.1966,14(3)434-440.
    [12]A. Pastore, G. Federici, E. Bertini, et al. Analysis of glutathione: implication in redox anddetoxification [J]. Clinica chimica acta.2003,333(1)19-39.
    [13] C. Parmentier, P. Leroy, M. Wellman, et al. Determination of cellular thiols and glutathione-relatedenzyme activities: versatility of high-performance liquid chromatography-spectrofluorimetric detection[J]. J. Chromatogr. B.1998,719(1-2):37-46.
    [14] L. Wang, T. Xia, G. Bian, L. Dong, et al. A highly sensitive assay for spectrofluorimetric determinationof reduced glutathione using organic nano-probes [J]. Spectrochimi. Acta, Part A.2005,61(11-12):2533-2538.
    [15] X. P. Chen, F. Reginald, G. A. Cross, et al. Analysis of Reduced Glutathione Using a Treaction with2,4’-Dichloro-1-(Naphthyl-4-Ethoxy)-S-Triazine (EDTN)[J]. Mikrochim.Acta,1999,130(4):225-231.
    [16]齐剑英,冯德雄,杨培慧,等.锌离子对谷胱甘肽荧光增强的作用[J].暨南大学学报.2002,23:60-63.
    [17]张建莹,齐剑英,杨培慧,等.锌离子增强荧光光谱法测定谷胱甘肽[J].暨南大学学报.2004,25:88-91.
    [18] P. Jiang, Z. Guo, Fluorescent detection of zinc in biological systems: recent development on the designof chemosensors and biosensors. Coordination chemistry reviews2004,248(1-2):205-229.
    [19]N.J. Patmore, Photophysical properties of metal complexes. Annu [J]. Rep. Prog. Chem., Sect. A: Inorg.Chem.2007,103:518-545.
    [20]S.H. Mashraqui, S. Sundaram, T. Khan, et al. Zn2+selective luminescent “off-on” probes derivedfrom diaryl oxadiazole and aza-15-crown-5. Tetrahedron.2007,63(45)11093-11100.
    [21] H. Santacruz, R.E. Navarro, L. Machi, et al. Solution structures of fluorescent Zn (II) complexes withbis (naphthyl amide)-EDTA. Polyhedron.2011,30(5)690-696.
    [22] S. Aoki, D. Kagata, M. Shiro, K. Takeda, et al. Metal chelation-controlled twisted intramolecularcharge transfer and its application to fluorescent sensing of metal ions and anions [J]. J. Am. Chem.Soc.2004,126(41):13377-13390.
    [23] J.B. Foresman, M. Head-Gordon, J.A. Pople, et al. Toward a systematic molecular orbital theory forexcited states [J]. J. Phys. Chem.1992,96(1):135-149.
    [24] M. K. Shukla, J. Leszczynski, A theoretical study of excited-state properties of adenine-thymine andguanine-cytosine base pairs [J]. J. Phys. Chem. A.2002,106(46)4709-4717.
    [25] K.C. Thomapson, N. Miyake. Properties of a new fluorescent cytosine analogue, pyrrolocytosine [J]. J.Phys. Chem. B.2005,109(12):6012-6019.
    [26] F. Furche, R. Ahlrichs, Adiabatic time-dependent density functional methods for excited stateproperties [J]. J. Chem.Phys.2002,117(16):7433-7447.
    [27] Z. Qu, H. Zhu, V. May. Time-dependent density functional theory study of the electronic excitationspectra of chlorophyllide a and pheophorbide a in solvents [J]. J. Phys. Chem. B.2009,113(14)4817-4825.
    [28] M. K. Shukal, J. Leszczynski. TDDFT investigation on nucleic acid bases: comparison withexpriments and standard approach [J]. J. Comput. Chem.2004,25(5):768-778.
    [29] R. So, S. Alavi. Vertcal excitation energies for ribose and deoxyribose nucleosides [J]. J. Comput.Chem.2007,28(11)1776-1782.
    [30] C. Amovilli, V. Barone, R. Cammi, et al. Recent advances in the description of solvent effects with thepolarizable continuum model. Adv. Quantum. Chem.1998,32:227-261.
    [31] M. Cossi, N. Rega, G. Scalmani, et al. Energies, structures, and electronic properties of molecules insolution with the C‐PCM solvation model. J. Comput. Chem.2003,24:669-681.
    [32] Yves Bouteiller, Jean-Christophe Poully, Gilles Grégoire, Evaluation of polarizable continuum modelfor the prediction of vibrational frequencies of biomimetic molecules in solution, Computational andTheoretical Chemistry,2011,966(1-3):220–224.
    [33] A. Rappe, C. Casewit, K. Colwell, et al. UFF, a full periodic table force field for molecular mechanicsand molecular dynamics simulations. Journal of the American Chemical Society,1992,114(25):10024-10035.
    [34] S. Gorelsky, SWizard program. University of Ottawa, Ottawa, Canada (2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700