用户名: 密码: 验证码:
颜色分区的片状立方氮化硼单晶的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立方氮化硼(cubic boron nitride, cBN)晶体,是一种人工合成的III-V族半导体材料,目前,人们还没有发现天然存在的cBN晶体。研究表明,cBN的禁带宽度(~6.4eV)是III-V族化合物和IV族元素半导体中最大的,硬度和热导率仅次于金刚石。作为电子材料和光电子材料,cBN具有广阔的应用前景,所以在材料的制备、物理性质的研究及应用等方面受到人们的极大关注。但由于生长条件苛刻,很难获得高质量、大尺寸的cBN单晶或薄膜材料,这极大地限制了相关的研究进展。
     本论文以一种高温高压条件下合成的具有颜色分区的片状cBN单晶(商品型号:210型)为研究对象,该样品外露的8个表面均为{111}晶面,其中上下两个大面相互平行,平整光滑,且易于解理加工,很适合作为电子器件和光电器件的衬底材料。因此有必要对这种cBN晶体的物理和化学性质进行深入的研究。
     本文主要采用化学腐蚀、形貌观测、X射线光电子谱(X-ray photoelectronspectroscopy, XPS)、拉曼(Raman)光谱等手段,对210型cBN单晶样品的表面极性、杂质和缺陷等进行了研究,得到一些有意义的研究结果。全文共分六章。
     第一章主要从cBN合成及其半导体特性研究等方面介绍了相关的研究进展和研究所面临的困难,并概括了本论文的主要研究工作。
     第二章主要介绍了目前已知cBN基本的物理和化学性质,制备工艺以及一些主要的应用研究。
     第三章主要研究了210型cBN晶体的化学腐蚀、表面形貌、I-V特性等与表面极性的关系,并找到了一种方便、快捷、非破坏性的判断210型cBN单晶表面极性的方法——显微镜观察法。
     本文使用的210型cBN晶体是具有明显颜色分区的片状样品,所有外露的晶面都是{111}面。其中上下两个大面相互平行,六个小侧面两两相对且相互平行。在显微镜下观察cBN的六边形大面,会发现三个三角形琥珀色区域和三个三角形透明区域相间且对称分布,六个三角形有共同的顶点,位于样品的中央。
     研究结果表明:熔融的NaOH能够腐蚀cBN晶体,{111}N面的腐蚀速度快,腐蚀坑为三角形或六边形,且腐蚀坑尺寸较大。而{111}B面的腐蚀速度慢,腐蚀坑均为三角形,腐蚀坑较小,且特别密集。进一步观察发现:与透明区连接的侧面为{111}B面,与琥珀色区域连接的侧面为{111}N面;与侧面为{111}N面成钝角的大面为{111}B面,与侧面为{111}N面成锐角的大面是{111}N面。于是,只需显微镜观察就能确定这种颜色分区的片状cBN晶体表面极性,而不再需要化学腐蚀。
     将cBN晶体沿{110}面解理并在熔融的NaOH中腐蚀后发现:{110}面的腐蚀形貌有两种:一种是没有出现腐蚀坑,并且表面光滑平整。因为{110}面腐蚀速度相同,不存在各向异性,因此观察不到腐蚀坑;另一种是在{110}面观察到条状的腐蚀坑。
     210型cBN共面I-V特性结果表明: N面的表面漏电流明显比B面的表面漏电流大。
     第四章主要通过XPS谱分析了cBN晶体中的杂质、缺陷及其化学态。结果表明:cBN晶体中含有C、O、Si杂质。Si含量极少,可能来自于hBN原材料。Ar离子溅射后,O杂质的含量急剧降低,表明O杂质源于cBN晶体的表面吸附和沾污。溅射后cBN中依然含有大量的C杂质(~6at%),说明除了部分的C杂质以表面吸附和沾污形式存在外,还有相当一部分的C杂质存在于cBN晶体内,这些C杂质最可能来自于cBN晶体生长室的石墨壁。通过峰型拟合和化学态分析可知:C在cBN晶体中占据了氮的位置(CN),成为受主杂质。Ar离子溅射前后,B和N的原子比均大于1,化学计量比的偏离说明在cBN晶体中存在N空位(VN),VN属于施主陷阱。VN-CN可形成施主-受主对,不仅影响cBN的电学特性,也影响cBN晶体的发光特性,使得cBN发光谱复杂化。进一步研究可知,XPS谱也受cBN晶体表面极性的影响。溅射前,N面比B面的B:N比低;溅射后,B面的B:N比降低,而N面的B:N比升高。从溅射前C1s谱的拟合结果可看出,N面可能存在C-N-B键,或者N面的缺陷较多;B面可能存在C-B-N键。
     第五章主要研究了210型cBN单晶的Raman光谱。结果表明:cBN晶体的Raman也表现出与B、N面极性相关的特点。对于(111)B面,只观察到TO模(1053cm~(-1))和LO模(1305cm~(-1)53cm~(-1)处还观);测而到对边于峰(结11构1)。N面从,等除离了子激TO元模—和LO L O声模子,相在互作92用5c、m-1,955cm~(-1),12局域模、富硼、wBN及无序引起的拉曼散射(disorder-activated Raman scattering,DARS)五个方面分析边峰的来源。{111} N面的缺陷多,因此,远离布里渊区中心的声子也可能发生散射,导致边峰的出现。925cm~(-1)处的峰可视为布里渊区K点的TO模式TO(K),955cm~(-1)附近的峰和Q点的TO声子能量接近TO(Q)。1253cm~(-1)处的拉曼峰和布里渊区特殊点的声子频率吻合的不好,但可能是布里渊区非对称点的声子对cBN拉曼光谱综合贡献的结果。因此,认为1253cm~(-1)处的拉曼峰也是由DARS引起的。{111}B面没有边峰,因为B面的缺陷少,没有DARS现象出现。
     最后,第六章对以上研究结果做出了总结。
Cubic boron nitride (cBN) crystal is a synthetic III-V semiconductor material,and natural cubic boron nitride (cBN) crystals have not been found in nature so far.cBN single crystals, with the widest bandgap(6.4eV) in III-V compounds and IVelemental semiconductor, have many interesting properties, such as high hardness andthermal conductivity only second to diamond. As electrical or optoelectronic material,cBN has extensive applications. So, many researchers are interested in the synthesis,physical properties and application of cBN. But, due to rigorous growing conditions,it is difficult to get high-quality and large-size cBN single crystals or film materials.These factors prevent the related researches from making progress.
     Color zoning and plate-like cBN single crystals (labeled as:#210) under highpressure and high temperature (HPHT) were studied in this dissertation. The cBNsample has eight surfaces, which are all {111} planes. The upper and lower faces,which are parallel and bigger than other faces, are very smooth and flat, so that suchcBN samples are very suitable for substrates of electronic and optoelectronic devices.Therefore, it is very necessary to study on physical and chemical properties of cBNcrystals.
     The paper mainly studied surface polarity, impurities, defects of cBN singlecrystals by means of chemical corrosion, morphology, XPS and Raman. Somesignificant results were obtained. The dissertation includes six chapters.
     In chapter one, synthesis and semiconductor characteristics of cBN crystals aresummarized. And my main research results of the whole thesis are outlined too.
     In chapter two, physical and chemical properties, preparation technologies and some main application researches of cBN crystals are introduced.
     In chapter three, the relationships between chemical corrosion, surfacemorphology, I-V characteristics and surface polarity are considered. we found aconvenient, rapid and nondestructive method to distinguish the surface polarity ofcBN—microscopic observation.
     Actual cBN single crystal is color zoning and plate-like sample, whose surfacesare {111} planes. Top and bottom planes are parallel and bigger than side planes. Thesix side planes are parallel and have approximately equal areas. Meanwhile, the cBNcrystals exhibited color zoning: three triangular amber regions and three triangulartransparent regions, and they are interval and symmetric distribution. The six triangleshave common vertex, which located in the central of sample.
     The results show that cBN crystals can be corroded by molten NaOH. Thecorrosion rate of {111}N plane is fast. Etching pits on {111}N faces are triangular orhexagonal, and the sizes are larger than those of {111}B faces. However, etching pitson {111}B faces are triangular and small. Further observation results indicate that: theside faces adjacent the transparent region are {111}B planes, the side faces adjacentamber regions are {111}N planes; if the angle between one of big surfaces and the{111}N side faces is obtuse, then this big surface is {111}B plane, and the other bigsurface which makes an acute angle with the {111}N side faces is {111}N face. Thus,a convenient method was found to distinguish surface polarity of the color zoning andplate-like cBN crystals by using microscopic observation.
     We cleaved cBN crystal along {110}planes. There are two corrosionmorphologies on {110}planes. One is that the cleavage surface of cBN crystal issmooth and flat, and no etching pits are observed because of the isotropic corrosionspeed. The other is that strip-shaped etching pits are found on the {110} cleavagesurface.
     The coplanar I-V characteristics of cBN crystals show that the leakage current of{111}N faces is bigger than that of {111}B faces.
     In chapter four, impurities, defects and chemical states are analyzed by XPS spectra. It turned out that cBN crystals include C, O, Si besides B and N. A trait of Sipresumably comes from hBN raw materials. Most O elements exist as absorbates onthe surface, because they decrease rapidly after Ar ion sputtering. Around6at%C isstill unexpectedly observed after sputtering in our experiments. So there should be agreat deal of C impurities in cBN samples. Carbon probably comes from the graphitewalls of the growth chamber. According to the peak fit and the analysis of thechemical states, carbon can occupy the nitrogen lattice position (CN) as acceptorimpurity. The atomic ratio of B to N (B: N) before and after sputtering is greater than1, and the deviations from stoichiometry indicate that the existence of N vacancies(VN) as donors. CN-VNas donor-acceptor complex will not only affect the electricalproperties of cBN because of the impurity compensation, but also complicate thestructure of luminescence spectra of cBN single crystals based on the mechanism ofdonor-acceptor pair luminescence.
     Further studies show that XPS spectra were influenced by surface polarity. Theatomic ratio of B: N for {111}B face is bigger than that of N face before sputtering.After sputtering, the atomic ratio of B: N for {111}B face drops, the atomic ratio of B:N for {111}N face rises. According to fitting results of C1s, C-N-B bonding or moredefects may exist on the surface of {111}N plane, C-B-N bonding may be on thesurface of {111}B plane.
     In chapter five, Raman spectra were studied for#210cBN crystals. The resultsshow that Raman spectrum is also related with surface polarity. For the {111}B plane,only TO and LO modes were observed. However, the broad bands at925,955and1253cm~(-1), were discovered for {111}N face besides TO and LO modes. Ramanspectra were analyzed based on LO phonon-plasmon interaction, local mode, richboron, wBN and disorder-activated Raman scattering (DARS) aspects respectively.{111}N face has more defects. So, the broad bands appear as a result of the scatteringof phonons all over the Brilliouin Zone, The bands at925and955cm~(-1)are ascribed tothe TO mode of K and Q points in the Brillouin Zone, respectively. Raman peak at1253cm~(-1)does not correspond to special point of the Brillouin Zone, but, it may also be caused by DARS. The broad bands were not observed on {111}B face because ofless defects.
     At last, the sixth chapter makes a summary of the above research contents.
引文
[1]R.H. Wentorf. Cubic Form of Boron Nitride [J]. J. Chem. Phys.,1957,26:956.
    [2]陈光华,邓金祥.新型电子薄膜材料[M].北京:化学工业出版社;2002.
    [3]杨树人,殷景志(译).先进半导体材料性能与数据手册[M].北京:化学工业出版社;2003.
    [4]R.H.Wentorf. Synthesis of the Cubic Form of Boron Nitride[J]. J. Chem. Phys.,1961,34(3):809-812.
    [5]F. P. Bundy, R.H. Wentorf. Direct Transformation of Hexagonal Boron Nitride toDenser Forms [J]. J. Chem. Phys.,1963,38:1144-1149.
    [6]O.Mishima, S.Yamaoka, O.Fukunaga. Crystal growth of cubic boron nitride bytemperature difference method at-55kbar and-1800°C[J]. J. Appl. Phys.,1987,61(8):2822-2825.
    [7]M. Kagamida, H. Kanda, M. Akaishi, A. Nukui, T. Osawa, S. Yamaoka. Crystalgrowth of cubic boron nitride using Li3BN2solvent under high temperature andpressure[J]. J. Cryst. Growth,1989,94:261-269.
    [8]T.Taniguchi, J.Tanaka, O.Mishima, T.Ohsawa, S.Yamaoka. High pressure synthesisof semiconducting Be-doped polycrystalline cubic boron nitride and its electricalproperties[J]. Appl. Phys. Lett.,1993,62(6):576-578.
    [9]M.Akaishi, T. Satoh, M. Ishii, T. Taniguchi, S. Yamaoka. Synthesis of translucentsintered cubic boron nitride[J]. J. Mater. Sci. Lett.,1993,12:1883-1885.
    [10]T.Taniguchi, S. Yamaoka. Spontaneous nucleation of cubic boron nitride singlecrystal by temperature gradient method under high pressure[J]. J. Cryst. Growth,2001,222(3):549-557.
    [11]Yonghui Du, Zuopeng Su, Dapeng Yang, Xuxin Yang, Xiaorui Ji, Xiliang Gong,et al. Synthesis of black cBN single crystal in hBN–Li3N–B system[J]. Mater. Lett.,2007,61:3409-3412.
    [12]M. Soko owski. Deposition of wurtzite type boron nitride layers by reactive pulseplasma crystallization[J]. J. Cryst. Growth,1979,46(1):136-138.
    [13]H. Hofs ss, C. Ronning, U. Griesmeier, M. Gross, S. Reinke, M. Kuhr. Cubicboron nitride films grown by low energy B+and N+ion beam deposition[J]. Appl.Phys. Lett.,1995,67(1):46-48.
    [14]S. Amagi, D. Takahashi, T. Yoshida. Threshold sheath potential for the nucleationand growth of cubic boron nitride by inductively coupled plasma enhancedchemical-vapor deposition[J]. Appl. Phys. Lett.,1997,70:946-948.
    [15]F. Qian, V. Nagabushnam, R.K. Singh. Pulsed laser deposition of cubic boronnitride films on silicon substrates[J]. Appl. Phys. Lett.,1993,63(3):317-319.
    [16]M.P. Johansson, L. Hultman, S. Daaud, K. Bewilogua, H. Lüthje, A. Schütze, et al.Microstructure of BN: C films deposited on Si substrates by reactive sputtering froma B a C target[J]. Thin Solid Films,1996,287:193-201.
    [17]D.J. Kester, R. Messier. Phase control of cubic boron nitride thin films[J]. J. Appl.Phys.,1992,72(2):504-513.
    [18]X. Jiang, J. Philip, W. Zhang, P. Hess, S. Matsumoto. Hardness and Young’smodulus of high-quality cubic boron nitride films grown by chemical vapordeposition[J]. J. Appl. Phys.,2003,93(3):1515-1519.
    [19]R. H.Wentorf. Preparation of Semiconducting Cubic Boron Nitride[J]. J. Chem.Phys.,1962,36(8):1990-1199.
    [20]H. Philipp, E. Taft. Optical properties of diamond in the vacuum ultraviolet[J].Phys. Rev.,1962,127(1):159.
    [21]V. A.Fomichev, M. A.Rumsh. Investigation of X-ray spectra of hexagonal andcubic boron nitride[J]. J. Phys. Chem. Solids,1968,29(6):1015-1024.
    [22]R. M.Chrenko. ultraviolet and infrared spectra of cubic boron nitride[J]. SolidState Commun.,1974,14:511-515.
    [23]I.S. Bam, V.M. Davidenko. Electrical properties of cubic boron nitride[J]. Sov.Phys. Semicond,1976,10(3):331-332.
    [24]A.M. Zaitsev, A.A. Melnikov, V.B. Shipilo, E.M.Shishonok.Cathodoluminescence of Electron Irradiated Cubic Boron Nitride[J]. Phys. Stat.Sol.(a),1986,94:K125-K127.
    [25]O.Mishima, J. Tanaka, S. Yamaoka, O. Fukunaga. High-temperature cubic boronnitride p-N junction diode made at high pressure[J]. Science1987,238:181-183.
    [26]A.I. Lukomskii, V.B. Shipilo, E.M. Shishonok, N.G. Anichenko. RamanScattering of Cubic Boron Nitride[J]. Phys. Stat. Sol.(a),1987,102:K137-K139.
    [27]O. Mishima, K. Era, J. Tanaka, S. Yamaoka. ultraviolet light-emitting diode acubic boron nitride pn junction made at high pressure.pdf[J]. Appl. Phys. Lett.,1988,53(11):962-964.
    [28]N. Miyata, K. Moriki, O. Mishima, M. Fujisawa, T. Hattori. Optical constants ofcubic boron nitride[J]. Physical Review B,1989,40(17):12028.
    [29]T. Kobayashi, O. Mishima, M. Iwaki, H. Sakairi, M. Aono. Crystallographicpolarity of ideomorphic faces on a cubic boron nitride[J]. Nucl. Instrum. Meth. B,1990,45(1-4):208-211.
    [30]O.Mishima. Growth and polar properties of cubic boron nitride[J]. Applications ofdiamond films and related materials,1991:647-651.
    [31]A. D. Alvarenga, M. Grimsditch, A. Polian. Raman scattering from cubic boronnitride up to1600K[J]. J. Appl. Phys.,1992,72(5):1955-1956.
    [32]T. Werninghaus, J. Hahn, F. Richter, D.R.T. Zahn. Raman spectroscopyinvestigation of size effects in cubic boron nitride[J]. Appl. Phys. Lett.,1997,70(8):958-960.
    [33]张铁臣,王明光,郭伟力,刘建亭,高春晓,邹广田.片状立方氮化硼合成及其导电特性研究[J].高压物理学报,1998,12(3):168-173.
    [34]H.Tomokage, N. Nomura, T. Taniguchi, T. Ando. Electron-beam-induced currentson beryllium-doped cubic boron nitride single crystal[J]. Diam. Relat. Mater.,2000,9:605-608.
    [35]Takashi Taniguchi, T. Teraji, S. Koizumi, K. Watanabe, S. Yamaoka. Appearanceof n-Type Semiconducting Properties of cBN Single Crystals Grown at HighPressure[J]. Jpn. J. Appl. Phys.,2002,41(2A):L109-L111.
    [36]T.Taniguchi, K. Watanabe, S. Koizumi, I. Sakaguchi, T. Sekiguchi, S. Yamaoka.Ultraviolet light emission from self-organized p–n domains in cubic boron nitridebulk single crystals grown under high pressure[J]. Appl. Phys. Lett.,2002,81(22):4145-4145.
    [37]T.Taniguchi, Satoshi Koizumi, Kenji Watanabe, Isao Sakaguchi, TakashiSekiguchi, S. Yamaoka. High pressure synthesis of UV-light emitting cubic boronnitride single crystals[J]. Diam. Relat. Mater.,2003,12:1098-1102.
    [38]C.X. Wang, G.W. Yang, T.C. Zhang, H.W. Liu, Y.H. Han, J.F. Luo, et al.High-quality heterojunction between p-type diamond single-crystal film and n-typecubic boron nitride bulk single crystal[J]. Appl. Phys. Lett.,2003,83(23):4854-4856.
    [39]E.M. Shishonok, T. Taniguchi, K. Watanabe, H. Haneda, H. Kanda.Low-frequency Raman scattering of Be-doped cubic boron nitride[J]. Diam. Relat.Mater.,2003,12:1133-1137.
    [40]T. Taniguchi, K. Watanabe, S. Koizumi. Defect characterization of cBN singlecrystals grown under HP/HT[J]. Phys. Stat. Sol.(a),2004,201(11):2573-2577.
    [41]Q. P.Dou, H.T. Ma, G. Jia, Z.G. Chen, K. Cao, C. Ren, et al. Light emission fromcBN crystal synthesized at high pressure and high temperature[J]. Appl. Phys. Lett.,2006,88:154102.
    [42]J.Kaneko, T. Taniguchi, S. Kawamura, K. Satou, F. Fujita, a. Homma, et al.Development of a radiation detector made of a cubic boron nitride polycrystal[J].Nucl. Instrum. Meth. A,2007,576(2-3):417-421.
    [43]A.Soltani, H.A. Barkad, M. Mattalah, B. Benbakhti, J.D. Jaeger, Y.M. Chong, etal.193nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors[J].Appl. Phys. Lett.,2008,92:053501.
    [44]E. M. Shishonok, S.V. Leonchik, A. Braud, J.W. Steeds, O.R. Abdullaev, A.S.Yakunin, et al. Photoluminescence of micropowders of europium-doped cubic boronnitride[J]. J. Opt. Technol.,2010,77(12):788-795.
    [45]Takatoshi Yamada, Christoph E. Nebel, T. Taniguchi3. Field electron emissionproperties of n-type (111)-oriented single crystal cubic boron nitride [J]. J. Vac. Sci.Technol. B.2011,29(2):02B115.
    [46]S. Wang, G. Jia, X. Liu, S. Chi, J. Zhu, Y. Gao, et al. Measurement of the linearelectro-optic tensor of cubic boron nitride single crystals[J]. Chin. Opt. Lett.,2012,10(4):041602.
    [47]C.X. Wang, H.W. Liu, X. Li, T.C. Zhang, Y.H. Han, J.F. Luo, et al. Preparation ofohmic n-type cubic boron nitride contacts[J]. J Phys-condens. Mat.,2002,14:10937-10940.
    [48]A. Werbowy, J. Szmidt, A. Sokolowska, A. Olszyna, S. Mitura. Fabrication andproperties of Mo contacts to amorphous cubic boron nitride (a-cBN) layers[J]. Diam.Relat. Mater.,1996,5(9):1017-1020.
    [49]H. Yin, H. Boyen, X. Zhang, P. Ziemann. Fabrication of ohmic Au/Cr contacts ontop of cubic Boron Nitride films[J]. Diam. Relat. Mater.,2007,16(1):46-49.
    [50]W.Orellana, H. Chacham. Energetics of carbon and oxygen impurities and theirinteraction with vacancies in cubic boron nitride[J]. Phys. Rev. B,2000,62(15):10135-10141.
    [51]E. M.Shishonok. Raman scattering of light in doped cubic boron nitride[J]. J.Appl. Spectrosc.,2004,71(6):880-887.
    [52]H.Sachdev, R.Haubner, H.N th, B.Lux. Investigation of the c-BN/h-BN phasetransformation at normal pressure[J]. Diam. Relat. Mater.,1997,6:286-292.
    [53]H.Sachdev. Influence of impurities on the morphology and Raman spectra ofcubic boron nitride [J]. Diam. Relat. Mater.,2003,12(8):1275–1286.
    [54]W.H. Balmain. J. Prakt. Chem.,1842,27:422.
    [55]T. Sugino, K. Tanioka, S. Kawasaki, J. Shirafuji. Electron emission fromnanocrystalline boron nitride films synthesized by plasma-assisted chemical vapordeposition[J]. Diam. Relat. Mater.,1998,7:632-635.
    [56]K. Watanabe, T. Taniguchi, H. Kanda. Direct-bandgap properties and evidence forultraviolet lasing of hexagonal boron nitride single crystal[J]. Nat. mater.,2004,3(6):404-409.
    [57]Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi. Deep ultraviolet light-emittinghexagonal boron nitride synthesized at atmospheric pressure[J]. Science2007,317:932-934.
    [58]Z. Yu, K. Inagawa, Z. Jin. Tribological properties of c-BN coatings in vacuum athigh temperature[J]. Surf. Coat. Tech.,1994,70:147-150.
    [59]Yong-Nian Xu, W. Y. Ching. Calculation of ground-state and optical properties ofboron nitrides in the hexagonal, cubic, and wurtzite structures[J]. Phys. Rev. B,1991,44(15):7787-7798.
    [60]L. Kleinman, J.C. Phillips. Crystal Potential and Energy Bands of Semiconductors.II. Self-Consistent Calculations for Cubic Boron Nitride[J]. Phys. Rev.,1960,117(2):460-464.
    [61]F. Bassani, M. Yoshimine. Electronic Band Structure of Group IV Elements andof III-V Compounds[J]. Phys. Rev.,1963,130(1):20-33.
    [62]A. Zunger, A.J. Freeman. Ab initio self-consistent study of the electronic structureand properties of cubic boron nitride[J]. Phys. Rev. B,1978,17(4):2030-2042.
    [63]A. Agui, S. Shin, M. Fujisawa, Y. Tezuka, T. Ishii, Y. Muramatsu, et al. Resonantsoft-x-ray emission study in relation to the band structure of cBN[J]. Phys. Rev. B,1997,55(4):2073-2078.
    [64]D. A.Evans, A. G.McGlynn, B. M.Towlson, M.Gunn, D.Jones, T. E.Jenkins, et al.Determination of the optical band-gap energy of cubic and hexagonal boron nitrideusing luminescence excitation spectroscopy[J]. J. Phys.:Condens. Matter,2008,20:075233.
    [65]Y. L. Zhou, J. F. Zhi, P. F. Wang, Y. M. Chong, Y. S. Zou, W. J. Zhang, et al.Surface functionalization of cubic boron nitride films for biological sensingapplications [J]. Appl. Phys. Lett.,2008,92(16):163105.
    [66]N. Miyata, K. Moriki, O. Mishima, M. Fujisawa, T. Hattori. Optical constants ofcubic boron nitride[J]. Phys. Rev. B,1989,40(17):12028.
    [67]张铁臣,邹广田.立方氮化硼[M].长春:吉林大学出版社;1993. p.30.
    [68]王爽.立方氮化硼单晶电致双折射及电致真空紫外发射的研究[D].长春:吉林大学;2012.p.60.
    [69]W.J.Zhang, H. Kanda, S. Matsumoto. Cathodoluminescence of cubic boronnitride films deposited by chemical vapor deposition[J]. Appl. Phys. Lett.,2002,81(18):3356-3356.
    [70]C. Manfredotti, E. Vittone, A. Lo Giudice, C. Paolini, F. Fizzotti, G. Dinca, et al.Ionoluminescence in CVD diamond and in cubic boron nitride[J]. Diam. Relat. Mater.,2001,10:568-573.
    [71]O.Kutsay, C. Yan, Y.M. Chong, Q. Ye, I. Bello, W.J. Zhang, et al. Studying cubicboron nitride by Raman and infrared spectroscopies[J]. Diam. Relat. Mater.,2010,19:968-971.
    [72]B. He, G.H. Chen, Z.Z. Li, J.X. Deng, W.J. Zhang. P-BN/n-Si HeterojunctionPrepared by Beryllium ion Implantation[J]. Chinese Phys. Lett.,2008,25(1):219-222.
    [73]H.Tomokage, N. Nomura, T. Taniguchi, A. Toshihiro. Electron-beam-inducedcurrents on beryllium-doped cubic boron nitride single crystal[J]. Diam. Relat. Mater.,2000,9:605-608.
    [74]K. Liao, W. Wang, C. Kong. Study on microstructure and semiconductingproperties of doped c-BN-containing films[J]. Surf. Coat. Tech.,2001,141(2):216-219.
    [75]K. Nose, H. Oba, T. Yoshida. Electric conductivity of boron nitride thin filmsenhanced by in situ doping of zinc [J]. Appl. Phys. Lett.,2006,89(11):112124.
    [76]Ming.Lu, A. Bousetta, A. Bensaoula, K. Waters, J.A. Schultz. Electrical propertiesof boron nitride thin films grown by neutralized nitrogen ion assisted vapordeposition[J]. Appl. Phys. Lett.,1996,68(5):622-624.
    [77]D. Litvinov, C.A. Taylor, R. Clarke. Semiconducting cubic boron nitride[J]. Diam.Relat. Mater.,1998,7(2):360-364.
    [78]Takashi Taniguchi, T. Teraji, S. Koizumi, K. Watanabe, S. Yamaoka. Appearanceof n-Type Semiconducting Properties of cBN Single Crystals Grown at HighPressure[J]. Japanese Journal of Applied Physics,2002,41(Part2, No.2A):L109-L111.
    [79]A.Halperin, A. Katzir. electrical conductivity absorption and luminescencemeasurements in cubic boron nitride[J]. J.Phys. Chem. Solids,1975,36:89-93.
    [80]T.Taniguchi, J. Tanaka, O. Mishima, T. Ohsawa, S. Yamaoka. Non-linearcurrent-voltage characteristics of Be-doped cubic-BN polycrystals synthesized at highpressure[J]. Diam. Relat. Mater.,1993,2:1473-1478.
    [81]A. Werbowy, J. Szmidt, A. Sokolowska, A. Olszyna, S. Mitura. Fabrication andproperties of Mo contacts to amorphous cubic boron nitride (a-cBN) layers[J]. Diam.Relat. Mater.,1996,5:1017-1020.
    [82]C. Kimura, T. Yamamoto, T. Sugino. Study on electrical characteristics ofmetal/boron nitride/metal and boron nitride/silicon structures[J]. Diam. Relat. Mater.,2001,10:1404-1407.
    [83]H. Fujii, H. Nakae, K. Okada. Interfacial reaction wetting in the boronnitride/molten aluminum system[J]. Acta metall. mater.,1993,41(10):2963-2971.
    [84]H.J. Milledge, E. Nave, F. Weller. Transformation of Cubic Boron Nitride to aGraphitic Form of Hexagonal Boron Nitride[J]. Nature,1959,184:745.
    [85]S.N. Mohammad. Electrical characteristics of thin film cubic boron nitride[J].Solid State Electron.,2002,46(2):203-222.
    [86]L.K. Li, M.J. Jurkovic, W.I. Wang, J.M. Van Hove, P.P. Chow. Surface polaritydependence of Mg doping in GaN grown by molecular-beam epitaxy [J]. Appl. Phys.Lett.,2000,76(13):1740-1742.
    [87]Katsuya Kudaka, Hiroshi Konno, T. Matoba. Some Observation on the crystalc[s8uu8rfb]aiKcc.eB sK oNaf: d Sactsur,bu Gicct. u bKoreer aronnnd, n Je.i tnHrideraegfen[Jte]ir.c. s JAp[Jbn].. i PnJ.hi tAyiops. p sRtlu. Phys.,1965,4(10):767-771.edvi.e Bs,o1f9t9h8e,(5181(12)3)a:n1d56(3161.1)surfaces of
    [89]杨树人,王宗昌,王兢.半导体材料[M].长春:吉林大学出版社;1997.
    [90]王建祺.电子能谱学引论[M].北京:国防工业出版社;1992.
    [91]C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E.Mullenberg. Handbookof x-ray photoelectron spectroscopy[M]. Eden Prairie,Minnesota: Perkin ElmerCorporation;1979.
    [92]W.Orellana, H. Chacham. Atomic geometry and energetics of vacancies andantisites in cubic boron nitride[J]. Appl. Phys. Lett.,1999,74(20):2984-2986.
    [93]P. Piquini, R. Mota, T.M. Schmidt, A. Fazzio. Theoretical studies of native defectsin cubic boron nitride[J]. Phys. Rev. B,1997,56(7):3556-3559.
    [94]I. Gorczyca, A. Svane, N.E. Christensen. Theory of point defects in GaN, AlN,and BN: Relaxation and pressure effects[J]. Phys. Rev. B,1999,60(11):8147-8157.
    [95]C. Guimon, D. Gonbeau, G. Pfister-Guillouzo, O. Dugne, A. Guette, R. Naslain,et al. XPS Study of BN Thin Films Deposited by CVD on SiC Plane Substrates[J].Surf. Interface Anal.,1990,16:440-445.
    [96]D. Schild, S. Ulrich, J. Ye, M. Stüber. XPS investigations of thick,oxygen-containing cubic boron nitride coatings[J]. Solid State Sci.,2010,12(11):1903-1906.
    [97]M.O. Watanabe, S. Itoh, K. Mizushima, T. Sasaki. Bonding characterization ofBC2N thin films[J]. Appl. Phys. Lett.,1996,68(21):2962-2964.
    [98]C. Gómez-Aleixandre, A. Essafti, J.M. Albella. Kinetic Study of the Diborane/Methylamine Reaction: Composition and Structure of CB N Films[J]. J. Phys.Chem. B,2000,104(18):4397-4402.
    [99]K. Hamrin, G. Johansson, U. Gelius, C. Nordling, K. Siegbahn. Valence Bandsand Core Levels of the Isoelectronic Series LiF, BeO, BN, and Graphite Studied byESCA[J]. Phys. Scripta,1970,1:277-280.
    [100]K.S. Park, D.Y. Lee, K.J. Kim, D.W. Moon. Growth mechanism of cubic boronnitride thin films by ion beam assist sputter deposition[J]. J. Vac. Sci. Technol. A,1997,15(3):1041-1047.
    [101]R. Trehan, Y. Lifshitz, J.W. Rabalais. Auger and x-ray electron spectroscopystudies of hBN, cBN, and N2+ion irradiation of boron and boron nitride[J]. J. Vac.Sci. Technol. A,1990,8(6):4026-4032.
    [102]H.J. Milledge, E.Nave, F.H. Weller. Nature,1959,184:715.
    [103]S. Koizumi, T. Inuzuka. Initial Growth Process of Epitaxial Diamond Thin Filmson cBN Single Crystals[J]. Jpn. J. Appl. Phys.,1993,32:3920-3927.
    [104]A. R. Badzian. Cubic boron nitride-diamond mixed crystals[J]. Mat. Res. Bull.,1981,16:1385-1393.
    [105]Y. Wada, Y.K. Yap, M. Yoshimura, Y. Mori, T. Sasaki. The control of B-N andB-C bonds in BCN films synthesized using pulsed laser deposition[J]. Diam. Relat.Mater.,2000,9(3):620-624.
    [106]C. Guan, J. Zhao, F. Jia, C. Zhuang, Y. Bai, X. Jiang. Relationship betweenchemical compositions of magnetron sputtered B–C–N films and variousexperimental parameters[J]. Vacuum,2012,86(10):1499-1504.
    [107]I. Caretti, I. Jiménez, R. Gago, D. Cáceres, B. Abendroth, J.M. Albella.Tribological properties of ternary BCN films with controlled composition andbonding structure[J]. Diam. Relat. Mater.,2004,13(4-8):1532-1537.
    [108]E.M. Shishonok. Luminescence centers in cubic boron nitride[J]. J. Appl.Spectrosc.,2007,74(2):272-277.
    [109]Henriette Estrade-Szwarckopf. XPS photoemission in carbonaceous materials:A ‘‘defect’’ peak beside the graphitic asymmetric peak[J]. Carbon,2004,42:1713-1721.
    [110]O. Brafman, G. Lengyel, S.S. Mitra, P.J. Gielisse, J.N. Plendl, L.C. Mansur.Raman spectra of AlN, cubic BN and BP[J]. Solid State Commun.,1968,6(8):523-526.
    [111]J.A. Sanjurjo, E. López-Cruz, P. Vogl, M. Cardona. Dependence on volume ofthe phonon frequencies and the ir effective charges of several III-V semiconductors[J].Phys. Rev. B,1983,28(8):4579-4584.
    [112]E. Yakovenko, I. Aleksandrov, A. Goncharov, S. Stishov. Cubic Boron Nitride atHigh Pressures: Equation of State and Raman Light Scattering[J]. Sov. Phys. JETP,1989,95(6):2097-2102.
    [113]P.V. Huong. Structural studies of diamond films and ultrahard materials byRaman and micro-Raman spectroscopies[J]. Diam. Relat. Mater.,1991,1(1):33-41.
    [114]H.Herchen, M. A.Cappelli. Temperature dependence of the cubic boron nitrideRaman lines[J]. Phys. Rev. B,1993,47(21):14193-14199.
    [115]R.M. Erasmus, J.D. Comins, M.L. Fish. Raman and photoluminescence spectraof indented cubic boron nitride and polycrystalline cubic boron nitride[J]. Diam. Relat.Mater.,2000,9:600-604.
    [116]Kenji Watanabe, Takashi Taniguchi, Hisao Kanda, E.M. Shishonok. PolarizedRaman scattering of impurity modes in beryllium-doped cubic boron nitride singlecrystals [J]. Appl. Phys. Lett.,2003,82(18):2972-2974.
    [117]F. Datchi, B. Canny. Raman spectrum of cubic boron nitride at high pressure andtemperature[J]. Phys. Rev. B,2004,69(14):144106.
    [118]P. Kusch, S. Breuer, M. Ramsteiner, L. Geelhaar, H. Riechert, S. Reich. Bandgap of wurtzite GaAs: A resonant Raman study[J]. Phys. Rev. B,2012,86(7):075317.
    [119]M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito. Ramanspectroscopy on isolated single wall carbon nanotubes[J]. Carbon,2002,40(12):2043-2061.
    [120]N. Uzunbajakava, A. Lenferink, Y. Kraan, E. Volokhina, G. Vrensen, J. Greve, etal. Nonresonant confocal Raman imaging of DNA and protein distribution inapoptotic cells[J]. Biophys. J.,2003,84(6):3968-3981.
    [121]D. Michalska, R. Wysokiński. The prediction of Raman spectra of platinum (II)anticancer drugs by density functional theory[J]. Chem. Phys. Lett.,2005,403(1):211-217.
    [122]张光寅,蓝国祥,王玉芳.晶格振动光谱学[M].北京:高等教育出版社;1991.
    [123]沈学础.半导体光谱和光学性质[M].北京:科学出版社;2002.
    [124]H. Herchen, M.A. Cappelli. First-order Raman spectrum of diamond at hightemperatures[J]. Phys. Rev. B,1991,43(14):11740-11744.
    [125]R. Geick, C.H. Perry, G. Rupprecht. Normal Modes in Hexagonal BoronNitride[J]. Phys. Rev.,1966,146(2):543-547.
    [126]Y.N. Xu, W.Y. Ching. Calculation of ground-state and optical properties of boronnitrides in the hexagonal, cubic, and wurtzite structures[J]. Phys. Rev. B,1991,44(15):7787-7798.
    [127]刘文明.半导体物理学[M].长春:吉林人民出版社;1982.
    [128]A. Kaschner, H. Siegle, G. Kaczmarczyk, M. Stra burg, A. Hoffmann, C.Thomsen, et al. Local vibrational modes in Mg-doped GaN grown by molecular beamepitaxy[J]. Appl. Phys. Lett.,1999,74(22):3281-3283.
    [129]Krystian Karch, F. Bechstedt. Ab initio lattice dynamics of BN and AlN:Covalent versus ionic forces[J]. Phys. Rev. B,1997,56(12):7404-7415.
    [130]S.Reich, a. Ferrari, R. Arenal, a. Loiseau, I. Bello, J. Robertson. ResonantRaman scattering in cubic and hexagonal boron nitride[J]. Phys. Rev. B,2005,71(20):205201.
    [131]W. Limmer, W. Ritter, R. Sauer, B. Mensching, C. Liu, B. Rauschenbach. Ramanscattering in ion-implanted GaN[J]. Appl. Phys. Lett.1998,72(20):2589-,2591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700