用户名: 密码: 验证码:
多壁碳纳米管负载TiO_2对氯苯的吸附与光降解作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以甲基橙为模拟污染物,采用溶胶-凝胶法进行了复合光催化剂(MWNTs/TiO2)的优化制备,结果表明:在煅烧温度500℃、煅烧时间3h、溶胶体系pH值为3、固着剂聚苯乙烯磺酸钠投加量5g/L及L20-40型多壁碳纳米管(MWNTs)用量为纳米二氧化钛(TiO2)质量1.5%的工艺条件下制备的复合光催化剂光催化活性最高。由扫描电镜观察发现,MWNTs负载纳米TiO2后,MWNTs管壁表面包裹着一层厚厚的、分布均匀的纳米TiO2,外壁直径也由20-40nm增粗至60-80nm左右。借助EDX可以看出MWNTs/TiO2中含有Ti、C、O、Na和S几种元素,其中主要以Ti、O和C元素为主。通过表面分析仪确定纯化后MWNTs与优化后MWNTs/TiO2的比表面积分别为80.103m2/g和39:610m2/g:MWNTs表面孔径主要属于细孔范围,而MWNTs/TiO2的表面孔径主要属于中孔范围。通过FTIR定性分析表面官能团可知,在纯化后MWNTs与优化后MWNTs/TiO2的表面均主要存在羟基(-OH)、羰基(-C=O)、羧基(-COOH)等含氧官能团。MWNTs具有较强吸收峰,而MWNTs/TiO2的吸收峰相对来说明显减少、减弱。
     用优化后制备的MWNTs/TiO2与纳米Ti02对1,2,4-三氯苯进行光催化降解对比实验,结果发现此两种光催化降解均可用一级反应来描述。MWNTs/TiO2对1,2,4-三氯苯的光催化反应速率常数为0.0196h-1,比纳米TiO2提高了63.3%左右。用优化后制备的MWNTs/TiO2对甲基橙和1,2,4-三氯苯进行光催化降解对比实验,结果发现MWNTs/TiO2对甲基橙和1,2,4-三氯苯的光催化降解反应速率常数分别为0.0367h-1和0.0196h-1,比纳米TiO2分别提高了146%和63.3%左右。在实验室优化条件下制备的复合光催化剂对氯苯类化合物同样具有较好的光催化降解效果。
     用MWNTs及MWNTs/TiO2对三氯苯进行吸附研究对比实验,结果表明:在相同条件下,MWNTs及MWNTs/TiO2对1,2,3-三氯苯的最大吸附量分别为71.8mg/g和3.0mg/g。MWNTs及MWNTs/TiO2对1,2,3-三氯苯的吸附动力学曲线基本一致,两种吸附反应均可用假二级动力学方程来描述,其速率常数分别为0.0836g·mg-1·min-1和0.4159g·mg-1·min-1,说明MWNTs/TiO2具有更强的吸附驱动力。两种吸附热力学均遵循Freundlich方程,且都为自发吸热反应。MWNTs及MWNTs/TiO2与三氯苯之间的强吸附作用力是由疏水作用、氢键作用和MWNTs及MWNTs/TiO2表面与三氯苯苯环之间的π电子共轭作用等共同作用的结果,但可能主要是通过π电子共轭作用而实现的。
     以典型氯苯类化合物为目标去除物,研究MWNTs/TiO2对其光催化降解及协同作用,结果表明:MWNTs/TiO2对六氯苯和五氯苯的光催化降解速率常数分别为0.0664h-1和0.0670h-1,明显高于其它氯苯类化合物。而1,4-二氯苯的光催化降解反应速率常数仅为0.0430h-1,在典型氯苯类化合物中最小。典型氯苯类化合物1,2,4-三氯苯、1,2,4,5-四氯苯、五氯苯及六氯苯的主要光催化降解路径分别为:1,2,4-TCB→1,4-DCB;1,2,4,5-TeCB→1,2,4-TCB→1,4-DCB; PeCB→1,2,4,5-TeCB→1,2,4-TCB→1,4-DCB;HCB→PeCB→1,2,4,5-TeCB→1,2,4-TCB→1,4-DCB。将MWNTs和纳米TiO2复合之后,MWNTs/TiO2对1,2,3-TCB的去除效果得到明显提高,充分体现出其对氯苯类化合物的吸附与光降解协同作用。溶液中温度或pH值降低,将有利于MWNTs/TiO2对1,2,3-TCB去除;MWNTs/TiO2投加量增多或紫外光光强增大将提高MWNTs/TiO2对1,2,3-TCB去除率。
     因此,利用MWNTs/TiO2对水中氯苯类化合物的吸附与光降解协同作用,快速、彻底去除该类有机化合物将具有广阔的市场应用前景。
In this research, using methyl orange as a model pollutant, the composite photocatalysts (MWNTs/TiO2) were optimized prepared by the Sol-Gel method. The results show that, photocatalytic activity of the composite photocatalysts was highest, which was calcinated at temperature of500℃for3h, when pH=3, pss dosage=5g/L and the amount of multi-walled carbon nanotubes was1.5%of nano-TiO2mass. The SEM images shows that nano-TiO2was evenly coated on the surface of the multi-walled carbon nanotubes after it was attached on mutil-walled carbon nanotubes. Its outer diameter was thickened from20-40nm to about60-80nm. It could be seen that MWNTS/TiO2contained Ti, C, O, Na and S elements, mainly to Ti, O and C elements based, via EDX. Determined by the surface analyzer, specific surface area of the purified MWNTs and the optimized MWNTs/TiO2were80.103m2/g and39.610m2/g respectively; MWNTs surface is mainly micro pore diameter range, and MWNTs/TiO2is mainly medium pore diameter range. Qualitative analysis by FTIR, it shows that the oxygen-containing functional groups of the purified MWNTs and optimized MWNTs/TiO2mainly existed on the surface are hydroxyl (-OH), carbonyl (-C=O), carboxyl (-COOH), etc. MWNTs has a strong absorption peak, while the absorption peak of MWNTS/TiO2has been reduced and weakened relatively.
     Using the optimized prepared MWNTs/TiO2and nano-TiO2, the results of the comparative experiment revealed that both the photocatalytic degradation of1,2,4-trichlorobenzene can be used to describe by the first order reaction. The photocatalytic reaction rate constant of MWNTs/TiO2on1,2,4-trichlorobenzene was0.0196h-1, which was increased by about63.3%compared to that with nano-TiO2-The comparative experiments of photocatalytic degradation were studied, by the optimized MWNTs/TiO2on methyl orange and1,2,4-trichlorobenzene. The results were found that photocatalytic degradation reaction rate constants of MWNTs/TiO2on methyl orange and1,2,4-trichlorobenzene were0.0367h-1and0.0196h-1, which was increased by14.6%and63.3%compared to that with nano-TiO2respectively. Under optimal conditions the prepation of the composite photocatalyst had good photocatalytic degradation effects on chlorobenzenes.
     The comparative experiments of the adsorption of trichlorobenzene by MWNTs and MWNTs/TiO2were studied, and the results showed that, under the same conditions, the maximum adsorption capacities of1,2,3-trichlorobenzene were71.8mg/g by MWNTs and3.0mg/g by MWNTs/TiO2. the adsorption kinetics curve of the adsorption of1,2,3-trichlorobenzene by MWNTs and MWNTs/TiO2was agreement, the two adsorption reaction can be used to describe by the pseudo second order kinetic equation, the rate constants were0.0836g-mg-1·min-1and0.4159g·mg-1·min-1, shows a stronger adsorption driving force of MWNTS/TiO2. This two kinds of equations are both following the Freundlich adsorption thermodynamics, and both be the spontaneous endothermic reaction. The strong adsorption of MWNTs and MWNTs/TiO2on trichlorobenzene base on the hydrophobic force, hydrogen bonding and the π electron conjugation between surface of MWNTs or MWNTs/TiO2and trichlorobenzene benzene. But it may be mainly through the effect of π electron conjugation achieved.
     Using typical chlorobenzenes as the target removal, the experiments were studied for photocatalytic degradation and the synergistic reaction of MWNTs/TiO2, it was found that, the photocatalytic degradation rate constants of HCB and PeCB by MWNTs/TiO2were0.0664h-1and0.0670h-1, and this data significantly higher than other chlorobenzenes. However, the data of1,4-DCB was only0.0430h-1, which was the lowest in typical chlorobenzenes. Its typical chlorobenzenes1,2,4-TCB,1,2,4,5-TeCB, PeCB and HCB photocatalytic degradation of the main path are:1,2,4-TCB→1,4-DCB;1,2,4,5-TeCB→1,2,4-TCB→1,4-DCB;PeCB→1,2,4,5-TeCB→1,2,4-TCB→1,4-DCB;HCB→PeCB→1,2,4,5-TeCB→1,2,4-TCB→1,4-DCB. After composite the MWNTs and nano-Ti02, the result of removaling1,2,3-TCB has been markedly improved, which fully reflects that MWNTs/TiO2has the adsorption and photodegradation synergistic reaction. The solution temperature or pH values decreasing, will help MWNTs/TiO2to removal1,2,3-TCB; increasing the dosage of MWNTs/TiO2or the intensity of UV light will help MWNTs/TiO2to removal1,2,3TCB.
     Therefore, using the adsorption and photodegradation synergistic reaction of the MWNTs/TiO2to removal chlorobenzene compounds speedy and completely will have a broad market prospect.
引文
[1]Wang M J, Jones K C. Behaviour and fate of chlorobenzens (CBs) introduced into soil-plant systems bysewage sludge application:a teview. Chemosphere, 1994,28(7):1325-1360
    [2]王连生.环境有机化学.北京:化学工业出版社,2004,804
    [3]Hansch C, Leo A, Taft R W. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem.Soc,1994, (2):1777-1791
    [4]章思规.实用精细化学品手册有机卷.北京:化学出版社,1996,6-9
    [5]《中国商品大辞典》编辑委员会.中国商品大辞典.北京:中国商业出版社1994,1156-1157
    [6]Wang M, McGrath S P, Jones K C. The chlorobenzens content of archived sewage sludges. Sci Total Environ,1992,121 (2):159-175
    [7]Bailey R E. Global hexachlorobenzens emission. Chemosphere,2001,43(2): 167-182
    [8]李国刚.持久性有机污染物在中国的环境监测现状.中国环境监测,2004,20(4):53-60
    [9]Jonathan L B. Hexachlorobenzens in the global environment:Emissions, levels, distribution, trends and processes. Science of the Total Enviroment,2005, 349(1-3):1-44
    [10]王硕,戴炳业,张岩.氯苯类化合物测定方法的研究现状.天津科学大学学报,2008,23(1):83-86
    [11]Mattbew M L, Don M. An assessment of the environmental fate and exposure of benzenes and the chlorobenzens in Canada.Chemosphere,1999,38(8): 1777-1796
    [12]周文敏,佛得黔,孙宗光.水中有限控制污染物黑名单.中国环境监测,1990,6(4):1-3
    [13]高伟,吴凤清,罗臻等.Ti02晶型与光催化活性关系的研究.高等学校化学学报,2001,22(4):660-662
    [14]胡枭,胡永梅,樊耀波等.土壤中氯苯类化合物的迁移行为.环境科学,2000,21(6):13-18
    [15]Lee C, Fang M. Sources and disitribution of cholorobenzens and hexachlor-obutadiene in surficial sediments along the coast of Southwestern Taiwan. Chemosphere,1997,35(9):2039-2050
    [16]Lee C, Song H, Fang M. Concentrations of chlorobenzens, hexachlorobutadiene, and heavy metals in surfacial sediments of Kaohsiung coast, Taiwan. Chemosphere,2000,41(6):889-899
    [17]Oliver B G, Nicole K D. Chlorobenzens in sediments, water and selected fish from Lakes Superior, Huron, Erie and Ontaro. Environ Sci Technol,1982, 16(8):532-536
    [18]Schwarzenbach R P, Mnlnar-Kubica E, Giger W, et al. Distribution, residence time and fluxes of tetrarchloroethylene and 1,4-dichlorobenzens in Lake Zurich, Switzerland. Environ Sci Technol,1979,13(11):1367-1373
    [19]Rogers H R, Campbell J A, Crathorne B, et al. The occurrence of chlorobenzenes and permethrins in twelve UK sewage sludges. Water Res,1989,23(7):913-921
    [20]蔡全英,莫测辉,吴启堂等.部分城市污泥中氯苯类化合物的初步研究.环境化学,2002,21(2):139-143
    [21]万大娟,李顺义,舒月红等.耕作土壤中多氯代有机污染物的含量与分布特征-以珠江三角洲部分地区为例.环境科学学报,2005,25(8):1078-1084
    [22]郑明辉,包志成,张兵等.大同市地表水及工业水废水中氯苯和酚类化合物的监测.中国环境监测,2000,16(4):35-38
    [23]Boyd E M, Killham K, Wright J, et al. Toxicity assessment of xenobiotic contaminated groundwater Using lux modified pseudomonas fluorescens. Chemosphere,1997,35(9):196-198
    [24]周霞,余刚,张祖麟等.北京通惠河水和表层沉积物中氯苯类有机污染现状.环境科学,2005,26(2):117-120
    [25]Masunaga S, Urushigawa Y, Yonezawa Y. The behavior of chlorobenzens in Ise Bay estimated from their concentration in various environmental media. Wat Res, 1991,25(3):289-297
    [26]Meharg A A, Wright J, Osborn D. Chlorobenzes in rivers draining industrial catchments. Sci Toal Environ,2000,251(1):243-253
    [27]Wang M, Jones K C. Occurrence of Chlorobenzens in nine United Kingdom retail vegetables. J Agric Food Chem,1994,42(10):2322-2328
    [28]Oliver B G, Niimi A J. Biocentration of chlorobenzens from water by rainbow trout:Correlations with partition coefficients and environmental residuces. Eviron Sci Tec,1983,17(5):287-291
    [29]Lebel G L, Williams D T. Determination of halogenated contaminants in human adipose tissue. J Assoc of Anal Chem,1986,69(3):451-458
    [30]Williams D T, Lebel G L, Junkins E. Organohalogen residues in human autopsy samples from six Ontario municipalities. J Assoc of Anal Chem,1988, 71(2):410-414
    [31]Jan J. Chlorobenzens residues in human fat and milk bull. Environ Contam Toxicol,1983,30(1):595-599
    [32]Mattbew M L, Don M. An assessment of the environmental fate and exposure of benzenes and the chlorobenzens in Canada. Chemosphere,1999,38(8): 1777-1796
    [33]Peter P, Lutz B, Petra Keil, et al. Chlorobenzens and hexachlorocyc-lohexanes(HCHs) in the atmosphere of a UK estuary. Mar Pollut Bull,1989, 20(6):276-281
    [34]Rogers H R, Crathorne B, Leatherland T M. Occurrence of chlorobenzens isomers in the water colum of a UK estuary. Mar Pollut Bull,1989, 20(5):276-281
    [35]Mark H H, Carrie L M, Michille,T D. Seasonal and spatial trends of certain chlorobenzens isomers in the Michigan atmosphere. Atmospheric Enviroment, 1997,31(4):567-573
    [36]Prelra W E, Rostad C E, Chiou C T, et al. Contamination of estuarine water, biota and sediment by halogenated organic compounds:a field study. Environ Sci Technol,1988,22(7):772-778
    [37]李建梁.纳米碳管的高频电性量测分析及电路模型建立:[国立清华大学硕士论文].台湾:国立清华大学工程与系统科学系,2005,6
    [38]Bacon R. Growth, Structure and Properties of Graphite Whiskers. J Appl Phys, 1960,31(2):283-290
    [39]Oberlin A, Endo M. Exposed SWNTs during the growth of crossing the tubes. J Cryst Growth,1976,32(1):335-349
    [40]Wiles P G, Brahamson J A. Carbon fibre layers on arc electrodes-I:Their properties and cool-down behaviour. Carbon,1978,16(5):341-349
    [41]刘华.气相生长碳纤维的结构及生长机理的研究.[中国科学院金属研究所硕士论文].沈阳:中国科学院金属研究所,1985,2-18
    [42]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(1):56-58
    [43]赵娜.碳纳米管对水中PPCPs的吸附研究:[北京化工大学硕士论文].北京:北京化工大学环境科学与工程学院,2009,5-8
    [44]Shibuta Y, Maruyama S. Molecular dynamics of the generation process of double-walled carbon nanotubes from peapods. Heat Transfer-Asian Research, 2006,35(4):254-264
    [45]刘立柱.有机苯或酚类在碳纳米管上的吸附研究:[黑龙江大学硕士论文].哈尔滨:黑龙江大学化学化工与材料学院,2008,4-10
    [46]彭先佳,贾建军,栾兆坤等.碳纳米管在水处理材料领域的应用.化学进展,2009,21(9):1987-1992
    [47]Yan-Hui Li, Shuguang Wang, Zhaokun Luanc, et al. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon,2003, 41(5):1057-1062
    [48]Yan-Hui Li, Zechao Dib, Jun Ding,et al. Adsorption thermodynamic, kinetic and desorption studies of Pb2+on carbon nanotubes. Water Research 2005,39(4): 605-609
    [49]Yan-Hui Li, Jun Ding, Zhao-kun Luan,et al. Competitive adsorption of Pb,Cu and Cd ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 2003,41(14):2787-2792
    [50]Changlun Chen, Xueliang Li, Donglin Zhao,et al. Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. Colloids and Surfaces A:Physicochem Eng Aspects,2007, 302(1-3):449-454
    [51]Chungsying Lu, Huantsung Chiu. Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+from aqueous solution. Chem Eng J,2008, 139(2):462-468
    [52]Yan-Hui Li, Shuguang Wang, Xianfeng Zhang.et al. Adsorption of fluoride from water by aligned carbon nanotubes Mater. Res Bull,2003,38(9-10):469-476
    [53]Yan-Hui Li, Shuguang Wang, Jinquan Wei, et al. Lead adsorption on carbon nanotubes Chem. Phys Lett,2002,357(3-4):263-266
    [54]王浪云,涂江平,杨友志等.多壁纳米碳管/Cu基复合材料的摩擦磨损特性.中国有色金属学报,2001,11(3):367-371
    [55]卢艳霞.碳纳米管在催化剂载体中的应用研究进展.河南化工2007,24(1):18-21
    [56]黄德超,黄德欢.碳纳米管材料及应用.物理学进展,2004,24(3):274-288
    [57]刘守新,刘鸿.光催化及光电催化基础与应用.北京:化学工业出版社,2006,1-17
    [58]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 power. Am Chem Soc,1997,99(1):303-309
    [59]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社, 2002,16-28
    [60]Huber R, Moser J E, Gratzel M, et al. Observation of photoinduced electron transfer in dye/semiconductor colloidal systems with different coupling strengths. Chem Phys,2002,285(1):39-45
    [61]刘守新,刘鸿.光催化及光电催化基础与应用.北京:化学工业出版社,2006,168-175
    [62]T K Kim, M N Lee. Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films,2005,475(2):171-177
    [63]Sopyan I, Watanabe M, Murasawa S, et al. Efficient TiO2 powder and film photocatalysts rutile crystal structure. Chem Lett,1996,289(1):69-70
    [64]Sclafani A, Herrmann J M. Compasion of the photoelectronic and photocatalysic activities of varlous anatase and rutile forms of titania in pure liquid organic prase and in aqueous solution. J Phys Chem,1996,100(32):13655-13661
    [65]Beydoun D, Amal R, Low G, et al. Role of nanoparticle in photocatalysis. Nanoparticle Research,1999,1(1):439-458
    [66]Bilkley I B, Gonzalez C T, Lee J S, et al. A structural investigation of titanium dioxide photocatalysis. Colid State Chem,1991,92(1):178-190
    [67]李志军,王红英.纳米二氧化钛的制备方法.山西化工,2006,26(2):47-49
    [68]Leinen D, fernandez A, Espios J R, et al. Ion beam induced chemical vapor deposition for the preparation of thin film oxides. Thin Solid Films,1994, 241(2):198-201
    [69]李文军,李文荻,赵君芙等.低压MOCVD法制备TiO2薄膜的研究.微细加工技术,2000,1(3):63-69
    [70]Hoffimann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev,1995,95(1):69-96
    [71]Goswami D Y. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes. Solar Ener Engineering, 1997,119(2):101-107
    [72]罗菊仙,赵中一.半导体多相光催化氧化技术在环境保护中的应用研究进展.地球科学-中国地质大学学报,2000,25(5):536-541
    [73]Tanaka K. Effect of crystallinity of TiO2 on its photocatalytic action. Chem Phys Lett,1991,187(1-2):73-76
    [74]Nazceruddin M K, Kay A, Rodicio L. Conversion of light to electricity by cis-x2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II)charge-transfer sensitizers(X=Cl-,Br-,I-,CN-,andSCN-)on nanocrystalllines TiO2 electrodes. J Amer Chem Soc,1993,115(14):6382-6390
    [75]Henrik L, Hakam R, Sven S. Electron transport properties in dye-sensitized nanocrystalline TiO2 films. Phys Chem,1996,100(81):3084-3088
    [76]Satoshi Takeda, Susumu Suzuki, Hidefumi Odaka et al. Photocatalytic TiO2 thin film deposited onto glass by DC magnentron sputtering. Thin Solid Films,2001, 392(2):169-173
    [77]董昊,张永熙,杨熙良等.直流反应磁控溅射制备二氧化钛薄膜的光催化性能研究.真空科学与技术,2000,20(4):252-255
    [78]Maira A J, Yeung K L, Lee C Y, et al. Size effects in gasphase photo-oxidation of trichhoroethylene using nanometersized TiO2 catalysts. J Cataly,2000, 192(1):185
    [79]李浩洋,高恩君,闻兰等.纳米二氧化钛的制备及对金属离子吸附研究进展.当代化工,2006,35(2):84-86
    [80]马军委,张海波,董振波等.纳米二氧化钛制备方法的研究发展.无机盐工业,2006,38(10):5-7
    [81]徐兆瑜.纳米的新功能及其应用进展.化工技术与开发,2003,32(6):27-32
    [82]于向阳,程继健,杜永娟.二氧化钛光催化材料.化学世界,2000,41(11):567-570
    [83]Venkata S R K, Machiraju Subrahmanyamb, Pierre Boule. Immobilized TiO2 photocatalyst during long-term use:decrease of its activity. Applied Catalysis B:Enviromental,2004,49(1):239-249
    [84]Michael A, Gonzalez, Garry Howell. Photocatalytics elective oxidation of hydrocarbons in the aqueous phase. Joural of Catalysis,1999,83(1):159-162
    [85]陈士夫,赵梦月,陶跃武.光催化降解有机磷农药的研究.环境科学,1995,16(5):61-63
    [86]钟慬,刑卫红,徐南平等.废水中有机污染物高级氧化过程的降解.化工进展,1998,17(4):51-53
    [87]武正簧.TiO2薄膜在光催化下处理含铬废水.太原理工大学学报,1999,30(3):289-290
    [88]Maira A J, Yeung K L, Lee C Y,et al. Size effects in gas-phasephoto-oxidation of trichloroethylene using nanometer sized TiO2 catalysis. Journal of Catalysis, 2000,192(1):185-196
    [89]Lixin Cao, Aimin Huang, Franz-Josef Spiess, et al. Gas-phase oxidation of 1-butene using nanoscale TiO2 photocatalysis. Journal of Catalysis,1999, 188(1):48-57
    [90]肖汉宁,李玉平.纳米二氧化钛的光催化特性及其应用.陶瓷学报,2001,22(3):191-195
    [91]Xian jia Peng,Yan hui Li,Zhao kun Luan,et al. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters, 2003,376(1-2):154-158
    [92]Liang liang Ji, Wei Chen, Lin Duan, et al. Mechanisms for strong adsorption of tetracycline to carbon nanotubes:A comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol.2009,43(7):2322-2327
    [93]Wei Chen, Duan Lin, Dong qiang Zhu, et al. Adsorption of Polar and Nonpolar Organic Chemicals to Carbon Nanotubes. Environ Sci Technol.2007, 1(24):8295-8300
    [94]Chungsying Lu, Yao Lei Chung, KuanFoo Chang. Adsorption of trihalomethanes from water with carbon nanotubes. Water Research,2005, 39(6):1183-1189
    [95]Wei Chen, Lin Duan, Li lin Wang, et al. Adsorption of Hydroxyl-and Amino-Substituted Aromatics to Carbon Nanotubes. Environ Sci Technol.2008, 42(18):6862-6868
    [96]Gomes H T, Samant P V, Ph Serp, et al. Carbon nanotubes and xerogels as supports of well-dispersed Pt catalysts for environmental applications. Appl Catal B:Environ,2004,54(3):175-182
    [97]孙明礼,孔旭新,于华荣等.碳纳米管对苯酚和α-萘酚的吸附研究.化学世界,2005,46(10):580-582
    [98]Wendong Wang, Philippe S, Philippe K, et al. Visible lightphotodegradation of phenol on MWNTs TiO2 compositecatalysts prepared by a modified sol-gel method. Journalof Molecular Catalysis A:Chemical,2005,235:194-199.
    [99]Shaoxia Yang, Xiang Li, Wanpeng Zhu, et al. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon,2008,46(3):445-452
    [100]Chunyue Cui, Xie Quan, Hongtao Yu, et al. Electrocatalytic hydrodehalogenation of pentachlorophenol at palladized multiwalled carbon nanotubes electrode. Appl Catal B:Environ,2008,80(1-2):122-128
    [101]Mao Y, Schoneich C, Asmus K D J. Study of mechanism in the titanium dioxide photocatalytic oxidation of chloric ether. Environ J Phys Chem,1991, 95:80-89
    [102]Yunfu Sun, Joseph J, Pignatello. Evidence for a surface dual hole-radical mechanism in the titanium dioxide photocatalytic oxidation of 2,4-D. Environ Sci Technol,1995, (29):2065-2072
    [103]冷文华,张莉,成少安等.负载二氧化钛光催化降解水中对氯苯胺(PCA).环境科学,2000,21(6):46-50
    [104]张颖,钟炳,刘朗SO42-/TiO2超强催化剂的XPS研究.染料化学学报,1997,25(2):180-184
    [105]王怡中,符雁,汤鸿霄.甲基橙溶液多相光催化降解研究.环境科学,1998,19(1):1-4
    [106]赵进才,张丰雷.二氧化钛微粒存在下表面活性剂光催化分解机理的研究.感光科学与光化学,1996,14(3):269-273
    [107]Hidaka H, Horikoshi S, Ajisaka K, et al. Fate of amino acids upon exposure to aqueous titania irradiated with UV-A and UV-B radiation Photocatalyzed formation of NH3, NO3-, and CO2. J Photochem photobiol A,1997,108(2): 197-205
    [108]陈士夫,梁新,陶跃武.光催化降解磷酸酯农药的研究.感光科学与光化学,2000,18(1):7-11
    [109]葛飞,易辰俞,陈鹏.TiO2固定膜光催化降解甲胺磷农药废水.中国给水排水,2001,17(10):9-11
    [110]朱春媚,陈双全,杨曦等.几种难降解有机废水的光化学处理研究.环境科学学报,1998,18(4):30-35
    [111]于永辉,刘守新,李作臣等.二元酸废水的生物-光催化氧化组合处理技术.工业水处理,2004(2):23-25
    [112]黄艳娥,琚行松.纳米二氧化钛光催化降解水中有机污染物的研究.现代化工,2001,21(4):45-48
    [113]王玉芬,张肇铭,胡筱敏.含氯苯类化合物废水处理技术研究进展.工业安全与环保,2006,32(3):37-40
    [114]崔玉民,范少化.污水处理中光催化技术的研究现状及其发展趋势.洛阳工学院学报,2002,23(2):85-89
    [115]Pichat P, Disdier J, Hoang-Van C, et al. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatlaysis. Catalysis Today,2000,63(2): 363-369
    [116]魏宏斌.二氧化钛膜固定相光催化降解法深度处理自来水.中国给水排水,1996,12(6):10-14
    [117]贺飞,唐怀军,赵文宽等.光催化剂负载技术研究.环境污染治理技术与设备,2001,2(2):47-58
    [118]近藤精一,石川达雄,安部郁夫.吸附科学.北京:化学工业出版社,2006,6-105
    [119]张小平.胶体、界面与吸附教程.广州:华南理工大学出版社,2008,115-132
    [120]天津大学物理化学教研室.物理化学(下册).北京:高等教育出版社,1991,183-200
    [121]张自杰,林荣忱,金儒霖.排水工程(下册).北京:中国建筑工业出版社,2000,538-555
    [122]Nazceruddin M K, Kay A, Rodicio L. Conversion of light to electricity by cis-x2bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl-,Br-,I-,CN-,and SCN-) on nanocrystalllines TiO2 electrodes. J Amer Chem Soc,1993,115(14):6382-6390
    [123]Satoshi Takeda, Susumu Suzuki, Hidefumi Odaka, et al. Photocatalytic TiO2 thin film deposited onto glass by DC magnentron sputtering. Thin Solid Films, 2001,392(2):169-173
    [124]Whetzel N K, Creeger S M. Hazard evaluation division standard valuation procedure soil photolysis studies, EPA-540/9-85-016,1985
    [125]Ko Y W, Gremm T J, Abbt-Bmun G, et al. Determination of dichloroacetic acid and trichloroacetic acid by liquid-liquid extraction and ion chromato graphy. Fresenius J Anal Chem.2000,366(4):244-248
    [126]吴吉春.水环境化学.北京:中国水利水电出版社,2009,88-89
    [127]高振衡编译.有机光化学.北京:人民教育出版社,1979,27-49
    [128]李善君,纪才圭,李栋,程极济.高分子光化学原理及应用.上海:复旦大学出版社,1993,18-36
    [129]Laenen Romt. Generation of solvated electrons in neat water:new results from femtosecond spectroscopy. Journal of Molecular Structure.2001, 598(12):37-43
    [130]Wu Q, Katsumura Y, Muroya Y, et al. Hydrated electron in subcritical and supercritical water:a pulse radiolysis study. Chemical Physics Letters.2000, 325(6):531-536
    [131]Balaj O P, Siu C K, Balteanu I, et al. Free electrons,the simplest radicals of them all:chemistry of aqueous electrons as studied by mass spectrometry. International Journal of Mass Spectrometry.2004,238(12):65-74
    [132]Boor K W. Survey of Semiconductor Physics. New York:Van Nostrand Reinhold,1990,249
    [133]雷乐成,汪大翚.水处理高级氧化技术,北京:化学工业出版社,2001,186-288
    [134]刘守新,刘鸿.光催化及光电催化基础与应用,北京:化学工业出版社,2006, 18-48
    [135]邓南圣,吴峰.环境光化学.北京:化学工业出版社,2003,35-69
    [136]唐玉朝,李薇,胡春等.TiO2形态结构与光催化活性关系的研究.化学进展,2003,15(9):379-384
    [137]袁金华.光催化降解和光降解氯代乙酸的研究:[兰州大学硕士论文].兰州:兰州大学环境科学与工程学院,2008,18
    [138]朱路平,黄文娅,马丽丽等.多壁碳纳米管负载ZnO纳米复合材料的制备及其光催化性能研究.上海第二工业大学学报,2009,26(2):87-93
    [139]赵志伟,张崇才.碳纳米管及其应用研究进展.四川工业学院学报.2004,23(12):243-245
    [140]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001,75-77
    [141]Harizanov O, Ivanova T, Harizanova A. Study of sol-gel TiO2-MnO obtained from a peptized solution. Materials Letters,2001,49(3-4):165-171
    [142]Jitianu A, Cacciaguerra T, Berger M, et al. New carbon multiwall nanotubes-TiO2 nanocomposites obtained by the sol-gel method. Journal of Non-Crystalline Solids,2004,345&346(4):596-600
    [143]夏启斌,李忠,奚红霞等.气相苯在TiO2光催化剂上吸附常数和光催化反应常数测定.离子交换与吸附,2005,21(3):216-223
    [144]吴大成,朱谱新.表面、界面和胶体-原理及应用.北京:化学工业出版社,2005,141-147
    [145]Frame G M, Wagner R E, Carnahan J C, et al. Comprehensive, quantitative, congener-specific analyses of eight aroclors and complete PCB congener assignments on DB-1 capillary GC columns. Chemosphere,1996, 33(4):603-623
    [146]郭飞燕,孙振范,李建伟.有限长开口单壁碳纳米管结构与非线性光学性质.纳米科技,2008,4(2):7-12
    [147]吴林,赵波.非线性光学和非线性光学材料.大学化学,2002,17(6):21-24
    [148]Vulliet E, Chovelon J M, Guillard C, et al. Factors influencing the photocatalytic degradation of sulfonylurea herbicides by TiO2 aqueous suspension. Journal of Photochemistry and Photobiology A Chemistry,2003, 159(l):71-79
    [149]Spurr R A, Myers H. Environmental applications of nano titanium oxide. Chem Rev,1991,29(1):60-62
    [150]孙奉玉,吴鸣,李文钊等.二氧化钛表面光学特性与光催化活性的关系.催化学报,1998,19(3):229-235
    [151]Hoffman A J, Mills G, Hoffmann M R. Acrylate photopolymerization on heterostructured TiO2 photocatalysts. J Phys Chem,1992,74(2):5540-5545
    [152]樊红霞.碳纳米管负载二氧化钛的制备表征及光催化活性研究:[北京科技大学硕士学位论文].北京:北京科技大学应用化学系,2007,44
    [153]何莼.低成本吸附剂的研制和微波强化活性炭表面改性:[华南理工大学硕士学位论文].广州:华南理工大学,2004,12-13
    [154]卢涌泉,邓振桦.实用光谱分析.北京:电子工业出版社,1989,125-148
    [155]尹文萱,刘玉峰,张元福.环烷酸-酸性磷酸酯-庚烷体系萃取有机相的红外光谱研究.光谱学与光谱分析,2006,26(5):825-827
    [156]Zhu D Q, Kwon S, Pignatello J J. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions. Environ Sci Technol.2005,39(11):3990-3998
    [157]Hickey J P, Passinoreader D R. Linear solvation energy relationships-rules of thumb for estimation of variable values. Environ Sci Technol.1991, 25(10):1753-1760
    [158]Zhao J, Lu J. Noncovalent functionalization of carbon nanotubes by aromatic. Appl Phys Lett,2003,82(6):3746-3748
    [159]Min-Yun Chang, Ruey-Shin Juang. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of Colloid and Interface Science,2004,278(1):18-25
    [160]陈素清,梁华定,丘昀芳.碳纳米管吸附水溶液中双酚A的热力学.应用化学,2009,26(9):571-574
    [161]Ram Niwas, Upma Gupta. The adsorption of phosphamidon on the surface of styrene supported zirconium (IV) tungstophosphate:a thermodynamic study. Colloid and Surfaces A:Physicochem Eng Aspects,2000,164(12):115-119
    [162]Smith J M. Chemical engineering kinetics. New York:Mc Graw Hill,1981, 225-263
    [163]舒月红,贾晓珊CTMAB2膨润土从水中吸附氯苯类化合物的机理——吸附动力学与热力学.环境科学学报,2005,25(11):1530-1536
    [164]陈素清,梁华定,丘昀芳.碳纳米管吸附水溶液中双酚A的热力学.应用化学,2009,26(9):571-574
    [165]饶早英,王蜀霞,牛君杰等.碳纳米管的电学性质.重庆工学院学报,2008,22(1):52-54
    [166]Zhao J, Lu J. Noncovalent functionalization of carbon nanotubes by aromatic organic molecules. Appl Phys Lett.2003,82(36),3746-3748
    [167]Gotovac S, Hattori Y, Noguchi D, et al. Phenanthrene adsorptionfrom solution on single wall carbon nanotubes. J Phys Chem B.2006,110(33): 16219-16224
    [168]Long R Q, Yang R T. Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc.2001,123(9):2058-2059
    [169]Hulscher T, Cornelissen G. Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants2a reviews. Chemosphere.1996, 32(4):609-626.
    [170]Choudhry G.G, Hutzinger O, Acetone-sensitized and nonsensitized photolysis of tetra-, penta-, and hexachlorobenzenes in acetonitrile-water mixtures: photoisomerization and formation of several products including polychlorobiphenyls. Environ Sci Technol,1984(4),18:235-241
    [171]Chu W, Jafvert C T. Photodechlorination of polychlorobenzene congeners in surfactant micelle solutions. Environ Sci Technol,1994,28(2):2415-2422
    [172]Shingo Y, Yuta N, Makoto T, et al. Photodegradation of hexachlorobenzene and theoretical prediction of its degradation pathways using quantum chemical calculation. Chemosphere,2008,70(3):731-736
    [173]李玉华,王琨,赵庆良等.低浓度甲醛的光催化反应效率研究.哈尔滨工业大学学报.2007,39(2):278-280
    [174]徐舜开.碳纳米管及Ti02复合材料对三氯苯的吸附与再生研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2010,33-39
    [175]Shi Z, LaTorre K A, Ghosh M M, et al. Biodegradation of UV-irradiated polychlorinated biphenyls in surfactant micelles. Water Science and Technology,1998,38(7):25-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700