用户名: 密码: 验证码:
功能梯度材料共线裂纹、任意角度裂纹断裂以及热应力问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能梯度材料是一种热力性质连续变化的多相复合材料,主要充当涂层和界面带,可以在恶劣的热力载荷环境下缓解热应力,提供热保护。新型发展起来的功能梯度材料已经在航空、汽车以及制造业有了广泛的应用,并引起了人们极大的研究兴趣。最近,功能梯度材料的范围已经从最初的耐热功能梯度材料发展到压电功能梯度材料。尽管功能梯度材料具有许多优良的综合特性,但在高温和机械载荷下,尤其是在动态载荷下,材料的非均匀性也容易导致材料的破坏。为了指导功能梯度材料的设计、优化以及性能的评估,必须对裂纹的增长和扩展,尤其是断裂行为加以研究。
     本文以功能梯度材料作为研究对象,分析了它们在各种结构及载荷形式下的断裂行为。首先研究了功能梯度涂层-均匀基底间界面单裂纹和周期裂纹在反平面载荷作用下的问题。运用标准的积分变换和有限傅立叶变换,将单裂纹和周期裂纹问题转化为分别求解带Cauchy型和Hilbert型奇异核的积分方程。
     其次,运用Lapace和Fourier变换以及得力的奇异积分方程方法,分别研究了功能梯度涂层-功能梯度基底模型共线裂纹的静态和动态冲击问题,文中考虑了功能梯度涂层-功能梯度基底的内部裂纹、表面裂纹以及裂纹通过界面问题。对于裂纹通过界面问题,本文利用复势理论估计和证明了裂纹尖端的奇异性,并得到了应力强度因子的表达式。
     在过去十几年里,有一些学者对功能梯度材料含任意斜裂纹的问题进行了研究,但基于问题的复杂性大都局限于静态分析。在本文的研究中,分析了功能梯度材料含任意斜裂纹在动态机械载荷作用下的断裂问题,结果显示,材料非均匀常数以及裂纹方向角都对动态应力强度因子产生影响。
     最后,考虑新的边界条件,假设裂纹区域存在导热热阻,裂纹面部分绝热,推导了功能梯度涂层-功能梯度基底结构的温度场和位移场的奇异积分方程组。分析了材料特性(弹性模量,热膨胀系数以及热传导系数)的梯度参数和无量纲热阻对温度分布及热应力强度因子的影响。
     随着复合材料技术的出现,更多复杂材料的微结构性、非均匀性和非线性力学性质逐步呈现了出来。本文基于力学和应用数学模型,对材料结构的研究进行了一个尝试,本文的研究结果在涡轮组成和燃烧室的热障碍涂层以及许多材料在宏观上呈现非均匀性质的材料上有广泛的应用。
Functionally graded materials (FGMs) are generally multi-phasecomposites with continuously varying theromechanical properties. Theyare primarily used as coatings and interfacial zones and they tend toreduce residual stresses and provide protection against severe thermaland mechanical environments. The newly developed FGMs have at-tracted considerable research interests as candidate materials for struc-tural applications ranging from aerospace to automobile to manufac-turing. Recently, the concept of FGMs has been extended from theinitial high-temperature components to the piezoelectric components.Although FGMs have many good comprehensive properties, the inho-mogeneity of FGMs can sometimes lead to the failure of materials underthe high temperature and mechanical loads, especially dynamic loading.In order to guide the microstructure selection and the design and per-formance assessment of components made of FGMs, it is necessary toanalyze the knowledge of crack growth and propagation, especially theirfracture behaviors.
     The fracture behaviors of various functionally graded structuresare investigated under diferent loads in this thesis. Firstly, the inter- face crack problems in functionally graded media are analyzed underantiplane shear loads. A standard integral-transform techniques andfinite Fourier transform techniques are employed to reduce the singlecrack problem and periodic cracks problem to the solution of an integralequation with Cauchy-type or Hilbert-type singular kernel, respectively.
     Then, using Laplace and Fourier transform and a very powerful sin-gular integral equation (SIE) method, the collinear cracks in a bi-FGMscoating-substrate structure is studied under static fractue problem or dy-namic fracture problem. The bi-FGMs coating-substrate structure withinternal and surface crack and crack crossing the interface configurationsare considered. For the case of crack crossing the interface, we evaluatedand proved the singularites of the crack tips by using complex potentialtheory, and obtained the expression of stress intensity factor(SIF).
     Some crack problems of an arbitrarily oriented crack in FGMs havebeen solved during the past ten years, but most of these studies limitedto static analyses. In this paper, the problem of an arbitrarily orientedcrack in a FGMs is investigated under dynamic loading. The resultsdemonstrated that the dynamic stress intensity factor (DSIF) is sensitiveto the nonhomogeneity constant and crack orientation angle.
     Finally, considering a new boundary condition, it is assumed thatinterface crack is partially insulated the temperature drop across thecrack surfaces is the result of the thermal resistant due to the heat con-duction through the crack region. The governing equations of the tem-perature fields and displacement fields for bi-FGMs coating-substrate structure are converted into a system of singular integral equations. Theinfluences of material properties (i.e. the elastic module, the thermal ex-pansion coefcient and the thermal conductivities) gradient parametersand dimensionless thermal resistant on the temperature distribution andthe thermal stress intensity factors (TSIF) are figured.
     With the advent of composite materials technology, more complexmaterial microstructures are being introduced, and more mechanics is-sues such as inhomogeneity and nonlinearity come into play. This paperwork is an attempt to meet these challenges by making contributionsto both mechanics modeling and applied mathematics. Results in thisstudy have wide-ranging applications, such as thermal barrier coatingson turbine components, combustion chambers, and many more applica-tions where the material is macroscopically nonhomogeneous.
引文
[1] Neubrand, A., Ro¨del, J. Gradient Materials: An Overview of a Novel Concept. Proceedings of theFourth Intemational Symposium on Functionally Graded Materials.1997,88,358–371
    [2] Glaucio, H., Paulino. Fracture of functionally graded materials. Engineering Fracture Mechanics.2002,69,1519–1520
    [3] Clements, D.L., Atkinson, C., Rogers, C. Antiplane crack problems for an inhomogeneous elasticmaterial. Acta Mechanica.1978,29,199–211
    [4] Dhaliwal, R.S., Singh, B.M. On the theory of elasticity of a nonhomogeneous medium. Journal ofApplied Mechanics.1978,8,211–219
    [5] Erdogan, F. The crack problem for bonded nonhomogeneous materials under antiplane shear loading.Journal of Applied Mechanics.1985,52,823–828
    [6] Ozturk, M., Erdogan, F. Antiplane shear crack problem in bonded materials with a graded interfacialzone. International Journal of Engineering Science.1993,31,1641–1657
    [7] Erdogan, F., Ozturk, M. Periodic cracking of functionally graded coatings. International Journal ofEngineering Science.1995,33,2179–2195
    [8] Huang, G.Y., Wang, Y.S., Gross, D. Fracture analysis of functionally graded coatings: antiplanedeformation. European Journal of Mechanics–A/Solids.2002,21,391–400
    [9] Yong, H.D., Zhou, Y.H. Analysis of a mode III crack problem in a functionally graded coating–substrate system with finite thickness. International Journal of Fracture.2006,141,459–467
    [10] Li, Y.D., Jia, B., Zhang, N., Dai, Y.,Tang, L.Q. Anti–plane fracture analysis of functionally gradientmaterial infinite strip with finite width. Applied Mathematics and Mechanics.2006,6,773–780
    [11] Fotuhi, A.R., Fariborz, S.J. Anti–plane analysis of a functionally graded strip with multiple cracks.International Journal of Solids and Structures.2006,43,1239–1252
    [12] Li, Y.D., Lee, K.Y. An anti–plane crack perpendicular to the weak/micro–discontinuous interface in abi–FGM structure with exponential and linear non–homogeneities. International Journal of Fracture.2007,146,203–211
    [13] Choi, H.J. Stress intensity factors for an oblique edge crack in a coating/substrate system with agraded interfacial zone under antiplane shear. European Journal of Mechanics A/Solids.2007,26,337–347
    [14] Delale, F., Erdogan, F. The crack problem for a nonhomogeneous plane. ASME Journal of AppliedMechanics.1983,50,609–614
    [15] Eischen, J.W. Fracture of nonhomogeneous materials. International Journal of Fracture.1987,34,3–22
    [16] Delale, F., Erdogan, F. Interface crack in a nonhomogeneous elastic medium. International Journalof Engineering Science.1988,26,559–568
    [17] Konda, N. Erdogan, F. The mixed–mode crack problem in nonhomogeneous elastic plane. EngineeringFracture Mechanics.1994,47,533–545
    [18] Choi, H. J. A periodic array of cracks in a functionally graded nonhomogeneous medium loaded underin–plane normal and shear. International Journal of Fracture.1997,88,107–128
    [19] Gao, H. Fracture analysis of nonhomogeneous materials via a moduli–perturbation approach. Inter-national Journal of Solids and Structures.1991,27(13),1663–1682
    [20] Ergueven, M. E., Gross, D. On the penny–shaped crack in inhomogeneous elastic materials undernormal extension. International Journal of Solids and Structures.1999,36(13),1869–1882
    [21] Zhou, Z.G., Wang, B. L. Nonlocal theory solution of two collinear cracks in the functionally gradedmaterials. International Journal of Solids and Structures.2006,43,887–898
    [22] Gu, P., Asaro, R. J. Crack deflection in functionally graded materials. International Journal of Solidsand Structures.1997,34(24),3085–3098
    [23] Gu, P., Asaro, R. J. Cracks in functionally graded materials. International Journal of Solids andStructures.1997,34(1),1–17
    [24] Erdogan, F., Wu, B.H. The surfaces crack problem for a plate with functionally graded properties.Journal of Applied Mechanics.1997,64(3),449–456
    [25] Shbeeb, N.I., Binienda, W. K. Analysis of an interface crack for a functionally graded strip sandwichedbetween homogeneous layers of finite thickness. Engineering Fracture Mechanics.1999,64,693–720
    [26] Choi, H. J. An analysis of cracking in a layered medium with functionally graded nonhomogeneousinterfaces. ASME, Journal of Applied Mechanics.1996,63,479–486
    [27] Choi, H. J. Bonded dissimilar strips with a crack perpendicular to the functionally graded interface.International Journal of Solids and Structures.1996,33,4101–4117
    [28] Choi, H.J., Jin, T.E., Lee, K.Y. Collinear cracks in a layered half–plane with a graded nonhomo-geneous interfacial zone–Part I: mechanical response. International Journal of Fracture.1998,94,103–122
    [29] Ueda, S. The surface crack problem for a layered plate with a functionally graded nonhomogeneousinterface. International Journal of Fracture.2001,110(2),189–204
    [30]Guo, L. C., Wu, L. Z., Ma, L., Zeng, T. Fracture analysis of a functionally graded coating-substrate strunture with a crack perpendicular to the interface-Part Ⅰ:static problem. International Journal of Fracture.2004,127(1),21-38
    [31]Guo, L. C, Wu, L. Z., Ma, L. The interface crack problem under a concentrated load for a functionally graded coating-substrate composite system. Composite Structures.2004,63,397-406
    [32]Huang, G. Y., Wang, Y. S., Gross, D. Fracture analysis of functionally graded coatings:plane deformation. European Journal of Mechanics A/Solids.2003,22,535-544
    [33]Huang, G. Y., Wang, Y. S., Yu, S. W. Fracture analysis of functionally graded interfacial zone under plane deformation. International Journal of Solids and Structures.2004,41,731-743
    [34]黄干云,汪越胜,余寿文.功能梯度材料的平面断裂力学分析.力学学报.2005,37(1),18
    [35]Choi, H. J. The problem for bonded half-planes containing a crack at an arbitrary angle to the graded interfacial zone. International Journal of Solids and Structures.2001,38,6559-6588
    [36]Choi, H.J. Driving forces and kinking of an oblique crack in bonded nonhomogeneous materials. Archive of Applied Mechanics.2002,72,342-362
    [37]Shbeeb, N. I., Binienda, W. K., Kreider, K. Analysis of the Driving force for multiple cracks in an infinite nonhomogeneous plate, Part I:theoretical analysis. Journal of Applied Mechanics.1999,66,492-500
    [38]Shbeeb, N. I., Binienda, W. K., Kreider, K. Analysis of the driving force for multiple cracks in an infinite nonhomogeneous plate, Part II:numerical solutions. Journal of Applied Mechanics.1999,66,501-506
    [39]Shbeeb, N. I., Binienda, W. K., Kreider, K. Analysis of the driving force for a generally oriented crack in a functionally graded strip sandwiched between two homogeneous half planes. International Journal of Fracture.2000,104(1),23-50
    [40]Xiang, L. The mixed mode fracture of functionally materials. PHD Dissertation of the City University of New York, USA.2003
    [41]陈建.功能梯度材料及结构的断裂力学研究.哈尔滨工业大学博士学位论文.2000
    [42]Ozturk, M., Erdogan, F. Mode I crack problem in an inhomogeneous orthotropic medium. Interna-tional Journal of Engineering and Science.1997,35,869-883
    [43]Ozturk, M., Erdogan, F. The mixed mode crack problem in an inhomogeneous orthotropic medium. International Journal Fracture.1999,98,243-261
    [44]Guo, L.C., Wu, L.Z., Zeng, T., Ma, L. Mode I crack problem for a functionally graded orthotropic strip. Europe Journal of Mechanics A/Solid.2004,23,219-234
    [45]Shim, D. J., Paulino, G. H., Robert, H., Dodds, J. Effect of material gradation on K-Dominance of fracture specimens. Engineering Fracture Mechanics.2006,73,643-648
    [46]Dag, S., Yildirim, B., Erdogan, F. Interface crack problems in graded orthotropic medium:Analytical and computational approaches. International Journal of Fracture.2004,130,471-496
    [47]Kim, J.H., Glaucio H., Paulino. Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method. Engineering Fracture Mechanics.2002,69,1557-1586
    [48]Kim, J. H., Paulino, Mixed mode J integral formulation and implementation using graded element for fracture analysis of nonhomogeneous orthotropic material. Mechanics of Materials.2003,35,107-128
    [49]Kim, J. H., Paulino, G.H. T stress in orthotropic functionally graded materials:Lekhnitskii and stroh formalisms.2004,126,345-384
    [50]Sladek, V. Sladek, Markechova. Boundary element method analysis of stationary thermoelasticity problem in nonhomogeneous media. International Journal for Numerical Methods in Engineering.1990,30(3):505-516
    [51]Sladek, V. Sladek, C. Zhang. Application of local boundary integral equation method to functionally gradient materials. Boundary Element Techniques. Proceeding of the Third International Conference on BeTeQ, Sep.10-12,2002, Beijing
    [52]龙述尧,许敬晓.弹性力学问题的局部边界积分方程方法.力学学报,2000,32(5):566-578
    [53]Babaei, R., Lukasiewicz, S. A. Dynamic response of a crack in a functionally graded material between two dissimilar half planes under anti-plane shear impact load. Engineering Fracture Mechanics.1998,60,479-487
    [54]Li, C. Y., Zou, Z.Z. Local stress field for torsion of a penny-shaped crack in a functionally graded materials. International Journal of Fracture.1998,91(2), L17-L22
    [55]Li, C. Y., Zou, Z.Z. Torsional impact response of a functionally graded material with a penny-shaped crack. Journal of Applied Mechanics.1999,66(2),566-567
    [56]李春雨,邹振祝,段祝平.功能梯度材料裂纹尖端动态应力场.力学学报.2001,33(2),270-274
    [57]Shul, C.W., Lee, K.Y. A subsurface eccentric crack in a functionally graded coating layer on the lay-ered half-space under an anti-plane shear impact load. International Journal of Solids and Structures.2002,39,2019-2029
    [58]Feng, W.J., Wang, H.J., Xue, Y., Li, H. Antiplane shear impact of multiple coplanar Griffith cracks in an isotropic functionally graded strip. Composite Structures.2006,73,354-359
    [59] Li, X.F., Fan, T.Y. Dynamic analysis of a crack in a functionally graded material sandwiched betweentwo elastic layers under anti–plane loading. Composite Structures.2007,79,211–219
    [60] Li Y.D., Tan W., Zhang H.C. Anti–plane transient fracture analysis of the functionally gradient elasticbi–material weak/infinitesimal–discontinuous interface. International Journal of Fracture.2006,142,163–171
    [61] Chen, J., Liu Z.X. Transient response of a mode III crack in an orthotropic functionally graded strip.European Journal of Mechanics–A/Solids.2005,24,325–336
    [62] Chen, J. Anti–plane problem of periodic cracks in functionally graded coating–substrate structure.Archive Applied Mechanics.2006,75(2–3),138–152
    [63] Choi, H.J. Elastodynamic analysis of a crack at an arbitrary angle to the graded interfacial zone inbonded half–planes under antiplane shear impact. Mechanics Research Communications.2006,33,636–650
    [64] Choi, H.J. Impact behavior of an inclined edge crack in a layered medium with a graded nonhomo-geneous interfacial zone: antiplane deformation. Acta Mechanica.2007,193,67–84
    [65]王保林,杜善义,朝杰才.非均匀复合材料反平面裂纹的动态断裂力学研究.复合材料.1998,15(4),119–127
    [66] Wang, B. L., Han, J. C., Du, S. Y. Multi–crack problems for inhomogeneous composites subjected todynamic antiplane loading. International Journal of Fracture.1999,100,343–353
    [67] Wang, B. L., Han, J. C., Du, S. Y. Functionally graded penny–shaped cracks under dynamic loading.Theoretical and Applied Fracture Mechanics.1999,32,165–175
    [68] Wang, B. L., Han, J. C., Du, S. Y. Dynamic response for functionally graded materials with penny–shaped cracks. Acta Mechanica Solida Sinica.1999,12,106–113
    [69] Wang, B. L., Han, J. C., Du, S. Y. Crack problems in nnonhomogeneous composites subjected toddynamic loading. International Journal Solids and Structures.2000,37,1251–1274
    [70] Chen, J., Liu, Z. X., Zou. Z.Z. Transient internal crack problem for a nonhomogeneous orthotropicstrip (Mode I). International Journal of Engineering Science.2002,40,1761–1774
    [71] Guo, L. C., Wu, L. Z., Zeng, T., Ma, L. The dynamic fracture behavior of a functionally gradedcoating–substrate system. Composite Structures.2004,64,433–441
    [72] Guo, L. C., Wu, L. Z., Zeng, T., Cao, D. H. The transient response of a coating–substrate structurewith a crack in the functionally graded interfacial layer. Composite Structures.2005,7,109–119
    [73] Guo, L. C., Wu, L. Z., Sun, Y. G., Ma, L. The transient fracture behavior for a functionally gradedlayered structure subjected to an in–plane impact load. Acta Mechanica Sinica.2005,21,257–266
    [74]Guo, L. C, Wu, L. Z., Zeng, T. The dynamic response of an edge crack in a functionally graded orthotropic strip. Mechanics Research Communications.2005,32,385-400
    [75]Guo, L.C., Noda., N. Dynamic investigation of a functionally graded layered structure with a crack crossing the interface. International Journal of Solids and Structures.2008,45,336-357
    [76]Guo, L.C., Noda., N. Fracture mechanics analysis of functionally graded layered structures with a crack crossing the interface Mechanics of Materials.2008,40,81-99
    [77]Noda, N. and Jin, Z. H. Steady thermal stress in an infinite nonhomogeneous elastic solid containing a crack. Journal of Thermal Stresses.1993,16,181-196
    [78]Noda, N., Jin, Z.H. Thermal stresses intensity factors for a crack in a strip of a functionally graded material. International Journal of Solids and Structures.1993,30(8),1039-1056
    [79]Jin, Z. H., Noda, N. An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading. International Journal of Engineering Science.1993,31(5),793-806
    [80]Jin, Z. H., Noda, N. Transient thermal stresses intensity factors for a crack in a semi-infinite plate of a functionally graded material. International Journal of Solids and Structures.1994,31(2),203-218
    [81]Jin, Z. H., Noda, N. Edge crack in a nonhomogeneous half plane under thermal loading. Journal of Thermal Stresses.1994,14,591-599
    [82]Jin, Z. H., Batra, R. C. Stresses intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock. Journal of Thermal Stresses.1996,19,317-339
    [83]王保林,杜善义,韩杰才.非均匀复合材料的动态热弹性断裂力学分析.力学学报.1999,31(5),550-562
    [84]王保林,杜善义,韩杰才.基底/功能梯度涂层结构的动态热应力分析及结构优化.航空学报.2000,13(3),286-288
    [85]Noda, N., Wang, B. L. Transient thermoelastic reponses of functionally graded materials containing collinear cracks. Engineering Fracture Mechanics.2002,69(14-16),1791-1809
    [86]Choi, H. J., Lee, K. Y., Jin, T.E. Collinear cracks in a layered half-plane with a graded nonhomoge-nous interfacial zone Part Ⅱ:thermal shock response. International Journal of Fracture.1998,94,123-135.
    [87]Wang, B.L., Mai, Y.W. A periodic array of cracks in functionally graded materials subjected to transient loading. International Journal of Engineering Science,2006,44,351-364
    [88]El-Borgi, S., Djemel, M.F., Abdelmoula, R. A surface crack in a graded coating bonded to a homo-geneous substrate under thermal loading. Journal of thermal stresses.2008,31,176-194
    [89]Chen, J., Soh, A. K., Liu, J. X., Liu, Z. X. Thermal fracture analysis of a functionally graded orthotropic strip with a crack. International Journal of Mechanics and Materials.2004,1,131-141
    [90] Chen, J. Determination of the thermal stress intensity factors for an interface crack in a gradedorthotropic coating–substrate structure. International Journal of Fracture.2005,133,303–328
    [91] EI–Borgi, S., Erdogan, F., Hatira, F.B. Stresses intensity factors for an interface crack between afunctionally graded coating and a homogeneous substrate. International Journal of Fracture.2003,123,139–162
    [92] EI–Borgi, S., Erdogan, F., Hidri, L. A partially insulated embedded crack in an infinite functionallygraded medium under thermal–mechanical loading. International Journal of Engineering Science.2004,42,371–393
    [93] El–Borgi S., Hidri, L. An embeded crack in a graded coating bonded to a homogeneous sustrate underthermo–mechanical loading. Journal of Thermal Stresses.2006,29,439–466
    [94] Kim, K. S., Noda, N. A Green’s function approach to the deflection of a FGM plate under transientthermal loading. Archive Applied Mechanics.2002,72(2–3),127–137
    [95] Noda, N. Thermal stresses intensity for functionally graded plate with an edge crack. Journal ofThermal Stresses.1997,20,373–387
    [96] Lee, Y. D., Erdogan, F. Interface cracking of FGM coating under steady–state heat flow. EngineeringFracture Mechanics.1998,59,361–380.
    [97] Dag, S., Yildirim, B.,Sarikaya, D. Mixed–mode fracture analysis of orthotropic functionally gradedmaterials under mechanical and thermal loads. International Journal of Solids and Structures.2007,44,7816–7840
    [98] Erdogan, F., Gupt, G. D. On the numerical solution of singular integral equation. Quarterly AppliedMathematic.1972,29,525-534
    [99]马力.功能梯度材料中裂纹对弹性波的散射问及运动裂纹问题.哈尔滨工业大学博士学位论文.2004
    [100] Ma, L., Wu, L. Z., Guo, L. C., Zhou, Z.G. Dynamic behavior of a finite crack in the functionallygraded materials. Mechanics of Materials.2005,37,1153–1165
    [101] Zhou, G. Z., Wang, B. L. An interface crack for a functionally graded strip sandwiched between twohomogeneous layers of finite thickness. Mechanica.2006,41,79–99
    [102] Sih, G. C. Mechanics of fracture, Elastodynamic crack problems. Noordhof, Leyden.1977,4,112–228
    [103]何沛祥.无网络Galerkin方法与有限元的耦合及其在功能梯度材料中的应用.中国科学技术大学博士论文.2004
    [104] Butcher, R. J., Rousseau, C. E., Tippu, H. V. A functionally graded particulate composite: Prepa-ration, measurements and failure analysis. Acta Materialia.1999,47(1),259-268
    [105] Rouseau, C. E., Tippur, H. V. Compositionally graded materials with cracks normal to the elasticgradient. Acta Materialia.2000,48,4021-4033
    [106] Rouseau, C. E., Tippur, H. V. Dynamic fracture of compositionally graded materials with cracksalong the elastic gradient: experiment and analysis. Mechanics of Materials.2001,33,404-421
    [107] Erdogan, F.复变函数技术.程沅生,译.南京,江苏科学出版社.1982
    [108]李星.积分方程.北京:科学出版社.2009
    [109] Muskelishvili, I. N. Singular integral equations. Groningen: Noordhof.1953
    [110] Ioakimidis, N. I., Theocaris, P.S. A comparison between the direct and the classical numerical methodsfor the solution of cauchy type singular integral equation. SIAM Journal of Numerical Analysis.1980,17,115–118.
    [111] Ioakimidis, N. I., Theocaris, P.S. A remark on the Lobatto-Chebyshev method for the solution ofsingular integral equations and the evaluation of stress intensity factors. Serdica, Buly MathematicPublisher.1980,6,384–390
    [112] Erdogan, F. Approximate of solution of system of singular integral equation. Journal of AppliedMathematics.1969,17,1041–1059
    [113] Theocaris, P. S., Ioakimidi, N.I. Numerical integration methods for the solution of singular integralequations. Quarterly Applied Mathematic.1977,35,173–183
    [114] Shbeeb, N. I. General crack problem in sandwiched functionally graded materials. PHD Dissertationof the graduate faculty of the university of Akron, USA.1998
    [115] Delale, F., Erdogan, F. On the mechanical modeling of the interfacial region in bonded half-planes.Journal of Applied Mechanics.1988,55,317–324
    [116] Jin, Z.H., Batra, R.C. Some fracture mechanics concepts in functionally graded materials. Journal ofThe Mechanics and Physics of Solids.1996,44,1221–1235
    [117] Jin, Z.H., Batra, R.C. Interface cracking between functionally graded coatings and a substrate underantiplane shear. International Journal of Engineering Science.1996,34,1705–1716
    [118] Chen, Y.F., Erdogan, F. The interface crack problem for a nonhomogeneous coating bonded to ahomogeneous substrate. Journal of The Mechanics and Physics of Solids.1996.44,771–787
    [119] Wang, X.Y., Zou, Z.Z., Wang, D. On the penny-shaped crack in a nonhomogeneous interlayer ofadjoining two diferent elastic materials. International Journal of Solids and Structures.1997,34,3911–3921
    [120] Wang, Y.S., Huang, G.Y., Gross, D. On the mechanical modeling of functionally graded interfacialzone with a Grifth crack: anti-plane deformation. Journal of Applied Mechanics.2003,70,676–680
    [121] Li, C.Y., Weng, G.J. Dynamic stress intensity factors of a cylindrical interface crack with a function-ally graded interlayer. Mechanics of Materials.2001,33,325–333
    [122] Ang, W.T., Clements, D.L. On some crack problems for inhomogeneous elastic materials. Interna-tional Journal of Solids and Structures.1987,23,1089–1104
    [123] Erguven, M.E., Gross, D. On the penny-shaped crack in inhomogeneous elastic materials undernormal extension. International Journal of Solids and Structures.1999,36,1869–1882
    [124] Bao, G., Wang, L. Multiple cracking in functionally graded ceramic-metal coatings. InternationalJournal of Solids and Structures.1995,32,2853–2871.
    [125] Wang B.L., Mai Y.-W. Periodic antiplane cracks in graded coatings under static or transient loading.Journal of Applied Mechanics.2006,73,134–142
    [126] Chen, J. Anti-plane problem of periodic cracks in a functionally graded coating–substrate structure.Archive of Applied Mechanics.2006,75,138–152
    [127] Wang, B.L., Mai, Y.-W. A periodic array of cracks in functional graded materials subjected tothermo-mechanical loading. International Journal of Engineering Science.2005,43,432–446.
    [128] Han, J.C., Wang, B.L. Thermal shock resistance enhancement of functionally graded materials bymultiple cracking. Acta Materialia.2006,54,963–973
    [129] Boniface, V., Banks-Sills, L. Stress intensity factors for finite interface cracks between a special pairof transversely isotropic materials. Journal of Applied Mechanics.2002,69,230–239
    [130]黄干云,汪越胜,余寿文.功能梯度涂层中的III型周期裂纹问题.机械强度2004,26,097–099
    [131] Erdogan, F., Gupta, G.D., Cook, T.S. Numerical solution of singular integral equations. In:Sih,G.C,(Ed.), Mechanics of Fracture l: Mehtod of analysis and solution of crack problem. NoordhofInternational Publishing, Leyden, The Netherlands,1973, Chapter7.
    [132] Li, X., Wu, Y.J. The numerical solutions of the periodic crack problems of anisotropic strips. Inter-national Journal of Fracture.2002,118,41–56
    [133] Chen, Y. F., Erdogan, F. The interface problem for a nonhomogeneous coating bonded to a homoge-neous substrate. Journal of Mechanics Physics of Solids.1996,44(5),771–787
    [134] Itou, S. Stress intensity factors around a crack in a nonhomogeneous interfacial layer between twodissimilar elastichalf-planes. International Journal of Fracture.2001,110,123–135
    [135] Erdogan, F. Fracture mechanics of graded materials. In: Proceedings of the Fourth InternationalSymposiumon Functionally Graded Materials.1996,105–112
    [136] Erdogan, F. Fracture Mechanics of Functionally Graded Materials. Composites Engineering.1995,5(7),753–770
    [137] Li, Y.D., Lee, K.Y. Fracture analysis of a weak-discontinuous interface in a symmetrical func-tionally gradient composite strip loaded by anti-plane impact. Archive of Applied Mechanics. DOI10.1007/s00419-007-0194-1.
    [138] Cook, T. S., Erdogan, F. Stresses in bonded material with a crack perpendicular to the interfaces.International Journal of Engineering Science.1972,10,677–697
    [139] Kadioglu,S., Dag,S., Yahsi,S. Crack problem for a functionally graded layer on an elastic foundation.International Journal of Fracture.1998,94,63–77
    [140] Lu, M., Erdogan, F. Stress intensity factors in two bonded elastic layers containing cracks perpendic-ular to and on the interface–I analysis. Engineering Fracture Mechanics.1983,18,491–506
    [141] Lu, M. and Erdogan, F. Stress intensity factors in two bonded elastic layers containing cracks per-pendicular to and on the interface-II solution and results. Engineering Fracture Mechanics.1983,18,507–528
    [142] Erdogan, F., Kaya, A.C., Joseph, P.F. The crack problem in bonded nonhomogeneous materials.Journal of Applied Mechanics.1991,58,410–418
    [143] Li Y.D., Jia B., Zhang N., Tang L.Q., Dai Y. Dynamic stress intensity factor of the weak/micro-discontinuous interface crack of a FGM coating. International Journal of Solids and Structures.2006,43,4795–4809
    [144] Li Y.D., Lee K.Y., Dai, Y. Dynamic stress intensity factors of two collinear mode-III cracks per-pendicular to and on the two sides of a bi-FGM weak-discontinuous interface. European Journal ofMechanics A/Solids2008, doi:10.1016/j.euromechsol.2007.11.006
    [145] Guo., L.C, Wu, L.Z, Zeng, T., Ma, L. Fracture analysis of a functionally graded coating-substratestructure with a crack perpendicular to the interface-Part II: Transient problem. InternationalJournal of Fracture,2004,127,39–59
    [146] Miller, M. K., Guy, W. T. Numerical inversion of the Laplace transform by the use of Jacobi polyno-mials, SIAM Journal of Numerical Analysis.1966,3,624–635
    [147]果立成,吴林志,杜善义.含任意方向裂纹功能梯度材料的应力分析研究.复合材料科学报,2004,1,84–89[148] Nemat-Alla, M., Noda, N. Study of an edge crack problem in a semi-infinite functionally graded
    medium with two dimensionally nonhomogeneous coefcients of thermal expansion under thermalload. Journal of thermal stresses.1996,19,863–888[149] Nemat-Alla, M., Noda, N. Edge crack problem in a semi-infinite FGM plate with a bi-directional
    coefcient of thermal expansion under two-dimensional thermal loading. Acta Mechanica.2000,144,211–229
    [150] Itou, S. Theamal stresses around a crack in a non-homogeneous difusion layer between a coatingplate and an elastic half-plane. Journal of Thermal Stresses,2005,28,1161–1178
    [151] Noda, N., Guo, L.C. Thermal shock analysis for a functionally graded plate with a surface crack.Acta Mechanica.2008,195,157–166
    [152] Guo, L.C., Noda, N., Ishihara, M., Thermal stress intensity factors for a normal surface crack in afunctionally graded coating structure. Journal of Thermal Stresses,2008,31,149–164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700