用户名: 密码: 验证码:
有机栽培对稻田动物多样性及生态环境的作用和影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有机水稻栽培面积在我国广大稻区正在日益扩大,有机水稻栽培所产生的生态效应与环境效应究竟如何是事关有机水稻能否长期健康发展的一个重要科学问题。
     为了揭示有机水稻栽培的生态效应与环境效应,我们对常规稻田和有机稻田浮游动物、腹足类动物及寡毛类动物群落的生物多样性、遗传多样性、无机环境因子等进行了比较研究。研究采用田间系统调查与实验室实验分析相结合的方法进行,主要内容包括:对有机稻田和常规稻田的土壤、水体和动物个体进行重金属含量和农药残留的测定、分析与比较;对有机稻田和常规稻田的中性生物如浮游动物、腹足类类动物及寡毛类动物(田埂)群落进行田间调查和多样性指标(优势度、丰富度、均匀性、申农指数和相似度)分析,比较有机稻田与常规稻田中性生物群落种类、组成、结构及多样性的差异;对有机稻田和常规稻田生态系统中有代表性的中性动物种群(如腹足类动物)进行遗传结构多样性的分析比较。
     取得的主要研究结果如下:
     1在有机稻田田埂查到了湖北远环蚓(Amynthas hupeiensis),威廉环毛蚓(Pheretima guillemi Michaelsen)和赤子爱胜蚓(Eisenia foetida)三种蚯蚓,常规稻田田埂只发现了湖北远环蚓和赤子爱胜蚓;有机稻田田埂的蚯蚓数量显著高于常规稻田田埂;有机稻田田埂和常规稻田田埂蚯蚓群落的丰富度与多样性指数分别为:d(有)=0.573,H(有)=0.952,d(常)=0.558,H(常)=0.659。表明有机水稻田埂寡毛纲类动物的种类、数量和生物多样性均高于常规水稻田埂。
     2有机稻田查到的浮游动物有4属,它们是枝角类的溞属(Daphnia)和裸腹溞属(Moina),桡足类的剑水蚤属(Cyclops)和小剑水蚤属(Microcyslops),常规稻田只查到了其中的3属,剑水蚤属(Cyclops)未见;有机田块浮游动物的数量亦显著高于常规田块(p<0.05);有机田块、常规田块和田头水沟浮游动物群落的丰富度与多样性指数分别为:d(有)=0.775,H(有)=1.334,d(常)=0.78,H(常)=0.866,d(水)=1.25,H(水)=1.155。表明有机水稻田浮游动物的种类、数量和生物多样性均高于常规水稻田。
     3在湖心岛有机稻田共查到铜锈环棱螺(Bellamya aeruginosa)、纹沼螺(Parafossarulus striatulus)、长角涵螺(Alocinma longicormis)、赤豆螺(Bithynia fuchsiana)、椭圆萝卜螺(Radix swinhoei)、和小土蜗(Galba pervia)等六种腹足类动物,而常规稻田则只发现了纹沼螺(P. striatulus)、赤豆螺(B. fuchsiana)、和小土蜗(G. pervia)三种螺类动物;有机稻田腹足类动物的数量显著高于常规稻田;有机稻田和常规稻田腹足类动物群落的丰富度与多样性指数分别为:d(有)=0.907,H(有)=1.405,d(常)=0.514,H(常)=0.939。表明有机水稻栽培可以显著促进腹足类动物物种多样性与种群丰富度的提高。
     4范水镇新荡村有机田椭圆萝卜螺(R. swinhoei)种群的RAPD多态性位点及遗传多样性指数(I:0.581)均大于附近常规田种群(I:0.516);COI基因序列片段的遗传多样性分析表明,在得到的10个简约信息位点中,有机田及常规田椭圆萝卜螺种群的核苷酸多态性指数分别为:0.05152、0.01675,前者显著高于后者。表明有机水稻栽培能明显促进腹足类动物遗传多样性的提高。
     5有机稻田及常规稻田的水样、泥样及蜘蛛样品的Pb、Cd、Hg、As、Cu、Zn等重金属的含量测定结果显示:来自常规稻田的各种重金属的含量均比来自有机稻田的高,其中常规田水样的As含量、蜘蛛样品的Zn、Pb含量显著高于有机田(p<0.05)。表明,有机水稻栽培比常规水稻栽培具有更好的控制重金属释放和改善稻田无机生态环境的功能。
     6按NY/T419-2007标准和NY5115-2002标准分别检测了来自宝应县中宝德园有机农场的有机米及来自宝应县成丰米厂的无公害大米有害物含量。发现:有机大米中绝大多数有害物的含量(除Pb和黄曲霉毒素B1外)均低于无公害大米。
     全文结论:有机和常规两类稻田中性动物群落的种类、数量、丰富度、多样性指数,椭圆萝卜螺(R. swinhoei)遗传多样性指数及水样、泥样及蜘蛛样品重金属含量测定结果均显示:在稻田生态系统生物多样性、遗传多样性及无机环境的保护和修复方面,有机水稻栽培均显著优于常规水稻栽培。
Over the rapid development of organic rice farming in China in recent years, the evaluation of its ecological and evironmental effects on agricultural ecosystem is urgently needed.
     In order to reveal the ecological and evironmental effects of organic rice farming, we carried out a comprartive study on biodiversity and genetic diversity of neutrual organisms including gastropods, Oligochaeta and zooplanktons in both organic paddy fields and conventional paddy fields. In addition, the inorganic elements including heavy metals, pestcide residues in the two kinds of paddy fields were also compared in this study. The main results obtained were as followes:
     1There were three kinds of Oligochaeta, Amynthas hupeiensis, Pheretima guillemi Michaelsen and Eisenia foetida being collected in footpath of organic rice fields but only two kinds i.e. Amynthas hupeiensi and Eisenia foetida in footpath of conventional rice fields. The number of Oligochaeta in footpath of organic rice fields was significantly higher (p<0.05) than that in footpath of conventional rice fields. The abundance (d) and biodiversity index (H) of Oligochaeta community in footpath of organic rice fields were0.573and0.952while those in footpath of conventional rice fields0.558and0.659respectively, indicating that the footpath of organic rice fields can provide a much better environment for Oligochaeta organisms than the footpath of conventional rice fields.
     2There were four genera of zooplanktons i.e. Daphnia, Moina, Cyclops and Microcyclops being collected in organic rice fields but only three genera i.e. Daphnia, Moina and Microcyclops in conventional rice fields. The number of zooplanktons in organic rice fields was significantly higher (p<0.05) than that in conventional rice fields. The abundance (d) and biodiversity index (H) of zooplankton community in organic rice fields were0.775and1.334while those in conventional rice fields0.78and0.866and those in ditch1.25and1.155respectively, indicating that the organic rice fields can provide a much better environment for zooplanktons than the conventional rice fields.
     3Six species of gastropods i.e. Bellamya aeruginosa, Parafossarulus striatulus, Alocinma longicornis, Bithynia fuchsianus, Radix swinhoei and Galba pervia were collected in organic rice fields (located in island within Baoying lake) while only three species of gastropods i.e. Parafossarulus striatulus, Bithynia fuchsianu and Galba pervia were collected in conventional rice fields (located in island within Baoying lake). The number of gastropods in organic rice fields was significantly higher (p<0.05) than that in conventional rice fields. The abundance (d) and biodiversity index (H) of gastropods community in organic rice fields were0.907and1.405while those in conventional rice fields0.514and0.939respectively, indicating that the organic rice fields can provide a much better environment for gastropods than the conventional rice fields.
     4RAPD polymorphism locus and genetic diversity index (RI) as well as COI gene's Nucleotide Polymorphism index (CI) of Radix swinhoei population from organic rice fields in Xindang villege (with RI as0.581, CI as0.5152) were much higher than those of Radix swinhoei population from conventional rice fields in Xindang villege (with RI as0.516, CI as0.01675), indicating that organic rice farming can increase the genetic diversity of gastropods such as Radix swinhoei.
     5The contents of Pb、Cd、Hg、As、Cu、Zn of water samples, soil samples and spider samples from conventional rice fields were somewhat or significantly higher than those from organic rice fields, indicating that organic rice farming can inprove the inorganic environment in paddy fields.
     6Harmful ingredient contents tested in organic rice were somewhat or significantly lower than those in Pollution Free rice.
     Conclusions:The performance of animal biodiversity, genetic diversity and inorganic environmental indexes in organic paddy fields strongly suggest that the ecological and evironmental effects of organic rice farming on agricultural ecosystem are much better than conventional rice farming.
引文
[1]Donald PF, Greenr E, Heathm F. Agricultural Intensification and the Collapse of Europe's Farm land Bird Populations [J] Proceedings:Biological Sciences,2001, 268(1462):25-29.
    [2]Sutcliffe OL, Kayq ON. Changes in the Arable Flora of Central Southern England since the 1960s [J] Biological Conservation,2000,93(1):1-8.
    [3]Allenwardell G, Bernhard TP, Bitner R, et al. The Potential Consequences of Pollinator Declines on the Conservation of Biodiversity and Stability of Food Crop Yields [J]. Conservation Biology,1998,12 (1):8-17.
    [4]Holland JM, Luff ML. The Effects of Agricultural Practices on Carabidae in Temperate Agroecosystems [J]. Integrated Pest Management Reviews,2000,5(2): 109-129.
    [5]House GF. Soil Arthropods from Weed and Crop Roots of an Agroecosystem in a Wheat Soybean Corn Rotation:Impact of Tillage and Herbicides [J]. Agriculture, Ecosystems and Environment,1989,25 (2/3):233-244.
    [6]Subbaia HH, Nanjappa HV, Balakrishna AN. Effect of Herbicides on Soil Microbial Biomass [J]. Crop Research Hisar,1994,8 (1):28-31.
    [7]Hole DG, Perkins AJ, Wilson JD, et al. Does Organic Farming Benefit Biodiversity? [J]. Biological Conservation,2005,122(1):113-130.
    [8]Bengtsson J, Ahnsterom J, Weibull AC. The Effects of Organic Agriculture on Biodiversity and Abundance:A Meta-Analysis [J]. Journal of Applied Ecology, 2005,42(2):261-269.
    [9]Wang CY, Wang G, Wan SW, Qing P, Effects of Organic and Conventional Farming Systems on Farm land Biodiversity, Journal of Ecology and Rural Environment,2007,23(1):75-80
    [10]Frieben B, Kopke U. Effects of Farming Systems on Biodiversity [C] Isart J, Lerena JJ. Proceedings of the First ENOF Workshop Biodiversity and Land Use:The Role of Organic Farming. Barcelona:Multitext,1995:11-21.
    [11]Ulrich I, Changes in earthworm populations during conversion from conventional to organic farming, Agriculture, Ecosystems & Environment,2010,135 (3):194-198
    [12]Hyvnen T, Salonen J. Weed Species Diversity and Community Composition in Cropping Practices at Two Intensity Levels. A Six-year Experiment [J]. Plant Ecology,2002,159(1):73-81.
    [13]Rydberg NT, Milberg P. A Survey of Weeds in Organic Farming in Sweden [J]. Biological Agriculture & Horticulture,2000,18 (2):175-185.
    [14]Weibull AC, Ostman O, Granqvist A. Species Richness in Agroecosy stems:The Effect of Landscape, Habitat and Farm Management [J]. Biodiversity and Conservation,2003,12 (7):1335-1355.
    [15]Brooks D, Bater J, Jone SH, et al. The Effect of Organic Farming Regimes on Breeding and Winter Bird Populations. Part IV. Invertebrate and Weed Seed Food Sources for Birds in Organic and Conventional Farming Systems [R]. BTO Research Report 154. Thetford:British Trust for Ornithology,1995.
    [16]Liebman M, Davis AS. Integration of Soil Crop and Weed Management in Low External Input Farming Systems [J]. Weed Research,2000,40(1):27-47.
    [17]Vanelsen T. Species Diversity as a Task for Organic Agriculture in Europe [J]. Agriculture, Ecosystems and Environment,2000,77 (1/2):101-109.
    [18]Albrech TH, Mattheis A. The Effects of Organic and Integrated Farming on Rare Arable Weeds on the Forschungsverbund Agrarokosysteme Munchen (FAM) Research Station in Southern Bavaria [J]. Biological Conservat ion,1998,86(3): 347-356.
    [19]Kay S, Gregory S. Rare Arable Flora Survey 1998[R]. Abing don, UK:Report to Nort moor Trust and English Nature,1998.
    [20]Kay S, Gregory S. Rare Arable Flora Survey 1999[R]. Abing don, UK:Report to Northmoor Trust and English Nature,1999.
    [21]Moreby SJ, Aebischer NJ, Southway SE, et al. A Comparison of the Flora and Arthropod Fauna of Organically and Conventionally Grown Winter Wheat in Southern England [J]. Annals of Applied Biology,1994,125(1):13-27.
    [22]Gruber H, Handel K, Broschewit ZB. Influence of Farming System on Weeds in Thresh Crops of a Six-Year Crop Rotation [J]. Zeitschrift fur Pf lanzenk rankheiten und Pf lanzenschutz,2000 (S7):33-40.
    [23]Scott-Fordsmand JJ, Weeks JM, Biomarkers in Earthworms, Review of Environmental Contamination and Toxicology 2000,165:117-159
    [24]Derksen DA, Thomas AG, Lafond GP, et al. Impact of Post Emergence Herbicides on Weed Community Diversity within Conservation Tillage Systems [J]. Weed Research,1995,35 (4):311-320.
    [25]Chancellor RJ. The Long term Effects of Herbicides on Weed Populations [J]. Annals of Applied Biology,1979,91 (2):141-144.
    [26]Pyek P, Lep J. Response of a Weed Community to Nitrogen Fertilization:A Multivariate Analysis [J]. Journal of Vegetation Science,1991,2(2):237-244.
    [27]Haas H, Streibig JC. Hanging Patterns of Weed Distribution as a Result of Herbicide Use and Other Agronomic Factors [C] LEBARON HM, GRESSEL J. Herbicide Resistance in Plants. New York:John Wiley& Sons Inc.,1982:57-79.
    [28]Roschewit ZB, Gabriel D, Tscharnthe T, et al. The Effects of Landscape Complexity on Arable Weed Species Diversity in Organic and Conventional Farming [J]. Journal of Applied Ecology,2005,42 (5):873-882.
    [29]Dritschilo W, Wanner D. Ground Beetle Abundance in Organic and Conventional Corn Fields [J]. Environmental Entomology,1980,9:629-631.
    [30]Kromp B. Carabid Beetle Communities (Carabidae, Coleoptera) in Biologically and Convention ally Fanned Agroecosystems [J]. Agriculture, Ecosystems and Environment,1989,27 (1/2/3/4):241-251.
    [31]Kromp B. Carabid Beetles (Coleoptera, Carabidae) as Bioindicators in Biological and Conventional Farming in Austrian Potato Fields [J]. Biology and Fertility of Soils,1990,9(2):182-187.
    [32]Hokkanen H, olopainen JK. Carabid Species and Activity Densities in Biologically and Conventionally Managed Cabbage Fields [J]. Journal of Applied Entomology,1986,102:353-363.
    [33]Armstrong G. Carabid Beetle (Coleoptera, Carabidae) Diversity and Abundance in Organic Potatoes and Conventionally Grown Seed Potatoes in the North of Scotland [J]. Pedobiologia,1995,39:231-237.
    [34]Melnychuk NA, Olfer TO, Young SB, et al. Abundance and Diversity of Carabidae (Coleoptera) in Different Farming Systems [J]. Agriculture, Ecosystems and Environment,2003,95(1):69-72.
    [35]Booijc JH, Noorlander J. Farming Systems and Insect Predators [J]. Agriculture, Ecosystems and Environment,1992,40 (1/2/3/4):125-135.
    [36]Younie D, Armstrong G. Botanical and Invertebrate Diversity in Organic and Intensively Fertilized Grassland [C] ISART J, LLERENA JJ. Proceedings of the First ENOF Workshop Biodiversity and Land Use:The Role of Organic Farming. Barcelona:Multi text,1995:35-44.
    [37]O'sullivan CM, Gormally MJ. A Comparison of Ground Beetle (Carabidae, Coleoptera) Communities in an Organic and Conventional Potato Crop [J]. Biological Agriculture & Horticulture,2002,20(2):99-110.
    [38]Hutton SA, Giller S. The Effects of th Intensification of Agriculture on Northern Temperate Dung Beetle Communities[J]. Journal of Applied Ecology,2003, 40(6):994-1007.
    [39]Gluck E, Ingrish S. The Effect of Biodynamic and Conventional Agriculture Management on Erigoninae and Lycosidae Spiders [J]. Journal of Appl ied Entomology,1990,110(2):136-148.
    [40]Basedow T. The Species Compoition and Frequency of Spiders (Araneae) in Fields of Winter Wheat Grown Under Different Conditions in Germany [J]. Journal of App lied Entomology,1998,122 (9/10):585-590.
    [41]Feber R. The Effects of Organic and Conventional Farming Systems on the Abundance of Butterflies [R]. Report to WWF (UK):Project 95/93 Plants and Butterflies:Organic Farms. Wild life Conservation Research Unit. Dept. of Zoology, Oxford in collaboration With SAFE Alliance & Butterfly Conservation,1998.
    [42]Berry NA, Wratten SD, Mcerlich A, et al. Abundance and Diversity of Beneficial Arthropods in Convention al and Organic Carrot Crops in New Zealand [J]. New Zealand Journal of Crop and Horticultural Science,1996,24(4):307-313.
    [43]Schmidt MH, Roschewit ZI, Thie SC, et al. Differential Effects of Landscape and Management on Diversity and Density of Ground Dwelling Farm land Spiders [J]. Journal of Applied Ecology,2005,42 (2):281-287.
    [44]Rypstra AL, Carter PE. The Web Spider Community of Soybean Agroecosystems in South western Ohio [J]. Journal of Arachnology,1995,23 (3): 135-144.
    [45]Joger K, Metspalu L, Hiiesaar K. Abundance and Dynamics of Wolf Spiders (Lycosidae) in Different Plant Communities [J]. Agronomy Research,2004,2(2): 145-152.
    [46]Haskins MF, Shaddy JH. The Ecological Effects of Burning, Mowing and Plowing on Ground In habiting Spiders (Araneae) in an Old Field System [J]. Journal of Arachnology,1986,14 (1):1-13.
    [47]Moreby S J. The Effects of Organic and Conventional Farming Methods on Plant Bug Densities (Hemiptera, Heteroptera) Within Winter Wheat Fields [J]. Annals of Applied Biology,1996,128 (3):415-421.
    [48]Madar P, Pfiffiner L, Fliebbad A, et al. Biodiversity of Soil Biota in Biodynamic, Organic and Conventional Farming Systems [C] ISART J, LLERENA JJ. Biodiversity and Land Use:The Role of Organic Farming. Proceedings of the First ENOF (The European Network for Scientific Research Coordination in Organic Farming) Workshop, Bonn,1996:45-57.
    [49]Reddersen J. The Arthropod Fauna of Organic Versus Conventional Cereal Fields in Denmark [J]. Biological Agriculture and Horticulture,1997,15(1/2/3/4): 61-71.
    [50]Alvarez T, Frampton GK, Goulson D. Epigeic Collem bola in Winter Wheat Under Organic, Integrated and Conventional Farm Management Regimes [J] Agriculture Ecosystems and Environment,2001,83(1/2):95-110.
    [51]Yeates GW, Bardgett RD, Cook R, et al. Faunal and Microbial Diversity in Three Welsh Grass land Soils under Conventional and Organic Management Regimes [J]. Journal of Applied Ecology,1997,34(2):453-470.
    [52]Brown RW. Grass Margins and Earthworm Activity in Organic and Integrated Systems [J]. Aspects of Applied Biology,1999,54:207-210.
    [53]Liebig MA, Doran JW. Impact of Organic Production Practices on Soil Quality Indicators [J]. Journal of Environmental Quality,1999,28(5):1601-1609.
    [54]Foissner W. Comparative Studies on the Soil Life in Ecofarmed and Conventionally Farmed Fields and Grasslands of Austria [J]. Agriculture Ecosystems and Environment,1992,40 (1/2/3/4):207-218.
    [55]Nuutinen V, Haukka J. Conventional and Organic Cropping Systems at Suite 7. Earthworms [J]. Journal of Agricultural Science in Finland,1990,62:357-367.
    [56]Czarnecki AJ, Paprock IR. An Attempt to Characterize Complex Properties of Agroecosystems Based on Soil Fauna, Soil Properties and Farming System in the North of Poland [J]. Biological Agriculture and Horticulture,1997,15 (1/2/3/4): 11-23.
    [57]Berkelman SR, Ferris H, Tenuta M, et al. Effects of Long Term Crop Management on Nematode Trophic Levels Other than Plant Feeders Disappear After 1 Year of Disruptive Soil Management [J]. Applied Soil Ecology,2003,23(3): 223-235.
    [58]Gunapala N, Scow KM. Dynamics of Soil Microbial Biomass and Activity in Conventional and Organic Farming Systems [J]. Soil Biology and Biochemistry, 1998,30(6):805-816.
    [59]Oehl F, Sieverding E, Mader P, et al. Impact of Long Term Conventional and Organic Farming on the Diversity of Arbuscular Mycorrhizal Fungi [J]. Oecologia, 2004,138(4):574-583.
    [60]Tu C, Ristaino IB, Hu S. Soil Microbial Biomass and Activity in Organic Tomato Farming Systems:Effects of Organic Inputs and Straw Mulching [J]. Soil Biology and Biochemistry,2006,38 (2):247-255.
    [61]Girvan MS, Bullimore J, Pretty JN, et al. Soil Type Is the Primary Determinant of the Composition of the Total and Active Bacterial Communities in Arable Soils [J]. Applied and Environmental Microbiology,2003,69 (3):1800-1809.
    [62]Nancy A, Beecher RJ, Johnson JR, et al. Agroecology of Birds in Organic and Nonorganic Farm land [J]. Conservation Biology,2002,16 (6):1620-1631.
    [63]Chamberlain DE, Wilson JD, Fuller RJ. A Comparison of Bird Populations on Organic and Conventional Farm Systems in Southern Britain [J]. Biological Conservation,1999,88(3):307-320.
    [64]Braae L, Noehr H, Petersen BS. Environmental Project,102:A Comparative Study of the Bird Fauna in Conventionally and Organically Farmed Areas with Special Reference to the Effects of Pesticides [R]. Copenhagen, Denmark: Miljoestyrelsen,1988:116.
    [65]Bradbury RB, Kyrkos A, Morrisa J, et al. Habitat Associations and Breeding Success of Yellow hammers on Low land Farm land [J]. Journal of Applied Ecology, 2000,37 (5):789-805.
    [66]Krykos A, Wilson JD, Fuller RJ. Farm land Habitat Change and Abundance of Yellow hammers Emberizia citrinella:An Analysis of Conventional Birds Census Data [J]. Bird Study,1998,45 (2):232-246.
    [67]Wilson JD, Evans J, Browne SJ, et al. Territory Distribution and Breeding Success of Skylarks, Alauda Arvensis on Organic and Intensive Farm land in Southern England [J]. Journal of Applied Ecology,1997,34(6):1462-1478.
    [68]Beecher NA, Johnson RJ, Brandle JR, et al. Agroecology of Birds in Organic and Nonorganic Farm land [J]. Conservation Biology,2002,16 (6):1620-1631.
    [69]Hansen B, Alre HF, Kristensen ES. Approaches to Assess the Environmental Impact of Organic Farming with Particular Regard to Denmark [J]. Agriculture, Ecosystems and Environment,2001,83 (112):11-26.
    [70]Lois Philipps, Lawrence Woodward. Nitrogen Leaching Losses from Mixed Organic Farming System in the U K. Organic Agriculture the Credible Solution for the XXIst Century:Proceedings of the 12th International IFOAM Scientific Conference [C]. Mardel Plata, Agrentinien,1998.160-164.
    [71]于爱红,何军艇,刘丽,有机水稻种植示范技术初探,现代化农业,2008,(8):41-43
    [72]李现华,张树礼,尚学燕等,发展有机农业与生物多样性保护,2005,17(2):11-15
    [73]陈欣,唐建军,王兆骞,农业活动对生物多样性的影响,生物多样性,1999,7(3):234-239
    [74]李剑泉,稻田蜘蛛群落生态学研究,西南农业大学博士论文,2001
    [75]万方浩,陈常铭,综防区和化防区稻田害虫——天敌群落组成及多样性的研,生态学报,1986,6(2):159-169
    [76]李代芹,赵敬钊,棉田蜘蛛群落及其多样性研究,生态学报,1993,13(3):206-21
    [77]HoughtonJ T, Jenkins GJ and Ephrauums, J J (eds) Inter government panel on climate change:The IPCC Scientific Assessment Cambridge University Press, Cambridge1
    [78]吴进才,胡国文,唐健等,稻田中性昆虫对群落食物网的调控作用,生态学报,1994,14(4):381-386
    [79]沈君辉,刘光杰,袁明,我国稻田节肢动物研究新进展。中国农学通报,2002,18)4):90-93
    [80]Xiongfei Pang, Studies on the mathematical models for multi-population interacting with each other Proceedings of the international symposium on integrated pest management in rice-based ecosystem 1997.257-261
    [81]冯国灿,张文庆,古德祥等,IPM专家系统的研究。西南农业学报,1995,8:7-11
    [82]吴进才,陆自强,杨金生等,稻田主要捕食性天敌的栖境生态位与捕食作用分析,昆虫学报,1993,36(3):323-331
    [83]Settle W H, Ariawan H,&Astuti E T, et al. Managing tropical rice pests through conservation of generalist natural enemy and alternative prey. Ecology,1996,77(7): 1975-1988.
    [84]胡阳,唐启义,唐健等,单季稻田节肢动物群落演替规律,中国水稻科学,1998,12(4):229-232
    [85]黄世文,王玲,黄雯雯等,水稻重要病虫草害综合防治核心技术,中国稻米,2009,2:55-56
    [86]侯喜林,张增翠,吴志行,李天甜,有机农业与有机食品蔬菜生产—21世纪蔬菜产业发展导向,Science and Technology Review,2001,1
    [87]甄若宏,王强胜,沈小昆,张卫健,卞新明,我国稻鸭共作生态农业的发展现状与技术展望,农村生态环境,2004,20(4):1-5
    [88]禹盛苗,金千瑜,朱练峰,欧阳由男,许德海,稻田养鸭密度对水稻产量和经济效益的影响,浙江农业科学,2008,1:68-71
    [1]李现华,张树礼,尚学燕等,发展有机农业与生物多样性保护,2005,17(2):11-15
    [2]宝应县土壤志,宝应县:土壤志普查办公室,1987
    [3]李莲青,宝应县土壤重金属的污染调查,污染防治技术,2006,19(4)46-47
    [4]沈君辉,刘光杰,袁明,我国稻田节肢动物研究新进展,中国农学通报,2002,18(4):90-93
    [5]Xiongfei Pang, Studies on the mathematical models for multi-population interacting with each other Proceedings of the international symposium on integrated pest management in rice-based ecosystem,1997,257-261
    [6]冯国灿,张文庆,古德祥等,IPM专家系统的研究,西南农业学报,1995,8:7-11
    [7]吴进才,陆自强,杨金生等,稻田主要捕食性天敌的栖境生态位与捕食作用分析,昆虫学报,1993,36(3):323-331
    [8]Settle W H, Ariawan H,&Astuti E T, et al. Managing tropical rice pests through conservation of generalist natural enemy and alternative prey. Ecology,1996,77(7): 1975-1988.
    [9]胡阳,唐启义,唐健等,单季稻田节肢动物群落演替规律,中国水稻科学,1998,12(4):229-232
    [11]顾中言,韩丽娟,王强等,农药导致稻飞虱再猖獗的生态机制及生态调控研究。华东昆虫学报,1997,6(1):87-92
    [12]钟平生,梁广文,曾玲,不同耕作方式对稻田节肢动物群落的影响。惠州学院学报,2004,24(6):26-30
    [1]Hugh R, Reidun P, Ragnar E, et al, Soil structure, organic matter and earthworm activity in a comparison of cropping systems with contrasting tillage, rotations, fertilizer levels and manure use, Agriculture, Ecosystems and Environment,2008, 124:275-284
    [2]Ulrich I, Changes in earthworm populations during conversion from conventional to organic farming, Agriculture, Ecosystems & Environment,2010,135 (3):194-198
    [3]乔玉辉,曹志平,吴文良,华北高产农田生态系统中蚯蚓种群次生演替规律,生态学报,2004,
    [4]张卫信,陈迪马,赵灿灿,蚯蚓在生态系统中的作用,生物多样性,2007,15(2):142-153
    [5]李典友,程仁法,指示生物蚯蚓对生态环境质量的指示作用,安徽农业科学,2006,34(18):4637-4638
    [6]高岩,骆永明,蚯蚓对土壤的指示作用及其强化修复的潜力[J],土壤学报,2005,42(1):140-141
    [7]张友梅,王振中,土壤污染对蚯蚓的影响,湖南师范大学自然科学学报,1996,19(3):84-89
    [8]高岩,骆永明,蚯蚓对土壤的指示作用及其强化修复的潜力,土壤学报,2005,42(1):140-141
    [9]Chen Y. Chinese Animal's Atlas2Tache Animal, Beijing:China Science Press, 1959,2-16
    [10]Spurgeon DJ, Hopkin SP, Seasonal variation in the abundance, biomass and biodiversity in soils contaminated with metal emissions from a primary smelting works, Journal of Applied Ecology,1999,36:173-183.
    [11]Scott-Fordsmand JJ, Weeks JM, Biomarkers in Earthworms, Review of Environmental Contamination and Toxicology 2000,165:117-159
    [1]汪金平,曹凑贵,金晖等,稻鸭共生对稻田水生生物群落的影响,中国农业科学2006,39(10):2001-2008
    [2]Meerhoff M, Fosalba C, Bruzzone C, Mazzeo N, Noordoven W, Jeppesen E. An experimental study of habitat choice by Daphnia:plants signal danger more than refuge in subtropical lakes. Freshwater Biology,2006,51:1320-1330.
    [3]范红深,稻、鸭、鱼共育稻田浮游动物群落研究,硕士学位论文,华中农业大学,2010,CNKI:CDMD:2.1010.010565
    [4]刘敏,王萍,稻鸭共作生态模式应用评价研究,安徽农业科学,2007,(8):
    [5]王瑾芳,于长青,水生生物呼吸代谢测量技术及其应用,第五届全国环境化学大会摘要集[C],2009
    [6]郭沛涌,沈焕庭,刘阿成,等.长江河口浮游动物的种类组成、群落结构及多样性,生态学报,2003,23(5):829-900
    [7]纪焕红,叶属峰,刘星.南麂列岛海洋自然保护区浮游动物的物种组成及其多样性,生物多样性,2006,14(3):206-215
    [8]姜作发,唐富江,董崇智,等.黑龙江水系主要江河浮游动物种群结构特征,东北林业大学学报,2006,34(4):64-66
    [9]Tavernini S,Mura G,Rossetti G,Factors influencing the seasonal pheology and composition of zooplankton communities in mountain temporary pools, International Review of Hydrobiology,2005,90(4):358-375
    [1]李剑泉,稻田蜘蛛群落生态学研究,西南农业大学博士论文,2001
    [2]孙刚,房岩,胡佳林,王准,泥鳅对稻田土壤动物的扰动效应,生态与农村环境学报,2011,27(1):100-103
    [3]葛宝明,孔军苗,程宏毅,郑祥,鲍毅新,不同利用方式土地秋季大型土壤动物群落结构,动物学研究,2005,26(3):272-278
    [4]韩立亮,王勇,王广力,张美文,李波,洞庭湖湿地与农田土壤动物多样性研究,生物多样性,2007,15(2):199-206
    [5]李宽意,刘正文,李传红,李艳敏,文明章,太湖椭圆萝卜螺的食物来源分析,湖泊科学,2008,20(3):339-343
    [6]顾钱洪,熊邦喜,陈洁,黄瑾,朱玉婷,微卫星标记技术在淡水腹足类种群遗传学研究中的应用,应用与环境生物学报,2011,17(2):280-286
    [7]Brown KM. Mollusca:Gastropoda. In:Thorp JH, Covich AP eds. Ecology and classification of North American freshwater invertebrates. San Diego:Academic Press,1991:285-314.
    [8]Reavell PE. A study of the diets of some British freshwater gastropods. Journal of Conch,1980,30:253-271.
    [9]Carpenter SR, Lodge DM. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany,1986,26:341-370.
    [10]Thomas JD. Mutualistic interactions in freshwater modular systems with molluscan components. Advances in Ecological Research,1990,20:125-178.
    [11]Bronmark C. Interactions between macrophytes, epiphytes and herbivores:an experimental approach. Oikos,1985,45:26-30.
    [12]Bronmark C. How do herbivorous freshwater snails affect macrophyte?-A comment. Ecology,1990,71(3):1212-1215.
    [13]Underwood GJC, Thomas JD, Baker JH. An experimental investigation of interactions in snail-macrophyte-epiphyte systems. Oecologia,1992,91:587-595.
    [14]Elger A, Lemoine D. Determinants of macrophyte palatability to the pond snail Lymnaea stagnalis. Freshwater Biology,2005,50:86-95.
    [15]李宽意,刘正文,胡耀辉等,椭圆萝卜螺对三种沉水植物的牧食研究,生态学报,2006,26(10):3221-3224.
    [16]Pinowska A. Effects of snail grazing and nutrient release on growth of the macrophytes Ceratophyllum demersum and Elodea canadensis and the filamentous green alga Cladophora sp. Hydrobiologia,2002,479:83-94.
    [17]Lodge DM. Selective grazing on periphyton:A determinant of freshwater gastropod microdistributions. Freshwater Biology,1986,6:831-841.
    [18]孙雷,李武艳,胡玲,腹足纲土壤动物在监测和评价重金属污染中的应用研究进展,土壤通报,2008, (2):122-127
    [1]王军,谢皓,郭二虎等,DNA分子标记及其在谷子遗传育种中的应用,北京农学院学报,2005,20(1):76-80
    [2]关强,张月学,徐香玲,DNA分子标记的研究进展及几种新型分子标记技术,黑龙江农业科学,2008,(1):102-104
    [3]刘华,贾继增,指纹图谱在作物品种鉴定中的应用,作物品种资源,1997,(2):45-48
    [4]王晓梅,杨秀荣,DNA分子标记研究进展,天津农学院学报,2000,7(1):21-24
    [5]白玉,DNA分子标记技术及其应用,安徽农业科学,2007,35(24):7422-7424
    [6]阮成江,何祯祥,钦佩,中国植物遗传连锁图谱构建研究进展,西北植物学报,2002,22(6):1526-1536
    [7]Thevenon S, Thur LT, Maudet F, Bonnet A, Jarne P, Maillard JC. Microsatellite analysis of genetic diversity of the Vietnamese Sika Deer. Heredity,2004, (95):11-18
    [8]Thomas M, Ben H, Frank N et al, Identification and characterisation of novel SNP markers in Atlantic cod:Evidence for directional selection, BMC Genetics, 2008,9(18):220-229
    [9]顾钱洪,熊邦喜,陈洁等,微卫星标记技术在淡水腹足类种群遗传学研究中的应用,应用与环境生物学报,2011,17(2):280-286
    [10]Dubois MP, Nicot A, Jarne P, Patrice D. Characterization of 15 polymorphic microsatellite markers in the freshwater snail Aplexa marmorata (Mollusca, Gastropoda). Mol Ecol Resour,2008,8 (5):1062-1064
    [11]Dupuy V, Nicot A, Jarne P, DavidP. Development of 10 microsatellite loci in the pulmonate snail Biomphalaria kuhniana (Mollusca, Gastropoda). Mol Ecol Resour, 2009,9 (1):255-257
    [12]Nicot A, Jarne P, DavidP. Development of polymorphic microsatellite loci in the hermaphroditic freshwater snails Drepanotrema surinamense andDrepanotrema depressissimum. Mol Ecol Resour,2009,9 (3):897-902
    [13]Bousset L, Henry PY, Sourrouille P, Jarne P. Population biology ofthe invasive freshwater snail Physa acuta approachedthrough genetic markers, ecological characterization anddemography. Mol Ecol,2004,13 (7):2023-2036
    [14]Charbonnel N, Angers B, Rasatavonjizay R, BremondP, Jarne P. Evolutionary aspects ofthe metapopulation dynamics ofBiomphalaria pfeifferi, the intermediate host ofSchistosoma mansoni. J Evol Biol,2002,15 (14),248-261
    [15]潘宝平,杨毅,利用RAPD标记研究几种淡水腹足类的亲缘关系,动物学杂志,2003,(3):7-13
    [16]Wang Ying, Zhao Huabin, Hao Jiasheng, The phylogenetic relationships of the main lineages of Gastropoda (Mollusca) based on partial 28S rRNA gene sequences. Journal of Genetics and Molecular Biology,2005,16(2):118-123
    [17]王莹,苏成勇,潘鸿春,郝家胜,基于线粒体COI基因序列分析宝贝科(Cypraeidae)腹足类动物的系统发生关系,动物分类学报,2007,32(1):124-130
    [18]Illiams JGK, Kubelik AR, Livak KJ, et al. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,1980,18:6531-6535.
    [19]陈淑吟,四种重要海洋双壳类(bivalve)群体遗传结构与多样性研究,[学位论文],2009,南京师范大学
    [1]张良运,李恋卿,潘根兴等,重金属污染可能改变稻田土壤团聚体组成及其重金属分配,应用生态学报,2009,20(11):2806-2812
    [2]鲁如坤,《土壤农化分析方法》,中国农业科技出版社,北京:2000
    [3]熊伟,土壤痕量汞的原子荧光光谱测定,光谱学与光谱分析,2001,21(3):382-383
    [4]段飞舟,高吉喜,何江等,污灌稻田生态系统重金属含量分布调查,中国农业气象,2005,27(2):130-133
    [5]王新,吴燕玉,重金属在土壤水稻系统中的行为特性,生态学杂志,1997,16(4):10-14
    [6]成杰民,潘根兴,郑金伟,太湖地区水稻土pH值及重金属元素有效态含量变化影响因素初探,农业环境保护,2001,20(3):141-144
    [7]张乃明,陈建军等,污灌区土壤重金属累积影响因素研究,土壤,2002,34(2):90-93
    [8]傅福星,林贤青,黄鹏武等,乐清市稻田环境状况及管理对策,中国农村小康科技,2005,(11):36-39
    [9]宝应县土壤志,宝应县:土壤志普查办公室,1987
    [10]李莲青,宝应县土壤重金属的污染调查,污染防治技术,2006,19(4):46-47
    [1]蒋彬,张慧萍,水稻精米中铅镉砷含量基因型差异的研究,云南师范大学学报,2002,22(3):37-40,
    [2]李宗利,薛澄泽,污灌土壤中Pb、Cd形态的研究,农业环境保护,1994,13(4):152-157.
    [3]王凯荣,龚惠群.两种基因型水稻对环境镉吸收与再分配差异性比较研究,农业环境保护,1996,15(4):145-149
    [4]郑春荣,陈怀满,土壤—水稻体系中污染重金属的迁移及其对水稻的影响,环境科学学报,1990,10(2):145-151.
    [5]查燕,杨居荣,刘虹,何孟常,污染谷物中重金属的分布及加工过程的影响,环境科学,2000,(3):25-29
    [6]夏增禄,土壤环境容量及其应用,北京:气象出版社,1988.95-97.
    [7]王焕校,污染生态学基础,昆明:云南大学出版社,1990,91-108.
    [8]杨树华,曲仲湘,王焕校,铅在水稻中迁移积累及其对水稻生长发育的影响,生态学报,1986,6(4):312-322.
    [9]匡少平,徐仲,水稻对土壤中环境重金属元素铅的吸收效应及污染防治,环境科学与技术,2002,25(2):32-34.
    [10]许嘉琳,砷污染土壤的作物效应及其影响因素,土壤,1996,28(2):85-89.
    [11]Morris HE. Injury to growing crops caused by the application of araenical compounds to the soil [J]. J Agr Res.,1927,34:59-78.
    [12]陈国祥,施国新,何兵,等.Hg、Cd对莼菜越冬光合膜光化学活性及多肽组分的影响,环境科学学报,1999,19(5):521-525.
    [13]陈英旭,土壤中不同形态铬的转化机制及其对水稻生长发育的影响,杭州:浙江农业大学,1990.
    [14]夏增禄,穆从如,李森照,等.北京东郊作物对重金属的吸收及其重金属在土壤中含量和存在形态的关系,生态学报,1983,3(3):277-285.
    [15]周建华,王永锐,硅营养缓解水稻幼苗Cd、Cr毒害的生理研究,应用与环境生物学报,1999,5(1):11-15.
    [16]郑春荣,陈怀满,复合污染对水稻生长的影响,土壤,1989,21(1):10.
    [17]Bingham, F. T., Page. A.L., Storong. J. E. Yield and cadmium content of rice grain in relation to addition rates of cadmium, copper, nickl and zinc with sewage sludge and liming. Soil Science,1980,130(6):32-38.
    [18]刘云惠,魏显有,土壤中铅镉的作物效应研究,河北农业大学学报,199922(1):23-28.
    [19]吴燕玉,余国营,Cd、Pb、Cu、Zn、As复合污染对水稻的影响,农业环境保护,1998,17(2):49-54.
    [20]谢正苗,黄昌勇,土壤一水稻体系中铅锌砷含量与水稻分蘖的关系,浙江农业大学学报,1994,20(1):67-71.
    [21]莫争,王春霞,重金属Cu,Pb,Zn,Cr,Cd在水稻植株中的富集和分布,环境化学,2002,21(2):110-116.
    [22]王新,吴燕玉,改性措施对复合污染土壤重金属行为影响的研究,应用生态学报,1995,6(4):440-444.
    [23]华珞,陈世宝,有机肥对镉、锌污染土壤的改良效应,农业环境保护,1998,17(2):55-59.
    [24]吴启堂,陈卢,王广寿,水稻不同品种对Cd的吸收累积的差异和机理研究,生态学报,1999,19(1):104-107.
    [25]麻密,贾燕涛,黄玉山,高等植物重金属抗性的分子机理研究,走向21世纪的植物分子生物学,北京:科学出版社,2000,178-185.
    [26]Nishizono, H., H.Minemura, S. Suzuki, et al. An inducible copper-thiolate complex in the fern, Athyrium yokoscense:Involvement in copper-tolerance of the fern[J]. Plant Cell Physiol.,1988,29:1345-1351.
    [27]Rauser, W. E. Occurrence of metal-binding proteins in plants. Proceedings of International Conference on Heavy Metals in the Environment. Amsterdan:1981.
    [28]Peterson, P J. The distribution of Zinc-65 in Agrostis tenuis Sibth. and A. stolonifera L. tissuses. J. Experi. Bot.,1969,20:863-875.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700