用户名: 密码: 验证码:
基于压力控制的轮腿式越野车辆自适应液压主动悬架研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于工程车辆的作业特点,需要经常在复杂路面上行驶,因此,对工程车辆的要求,既要满足在平坦路面上具有良好的行驶性能,又要满足在崎岖路面上具有较高的通过性能。然而,传统工程车辆由于受到机械结构、传动形式、驱动方式的限制,无法满足在非结构地形条件下具有较强的越野性能。在“211工程”项目和“863”计划的资金支持下,本文设计研究的66轮腿式越野车辆,能够通过控制自适应液压主动悬架,主动地适应地形,在复杂的三维地形环境中,仍能保持良好的通过性能和稳定性能。
     相比于位置和速度控制,电液比例控制已经受到电比例控制越来越大的挑战,在压力控制系统中,电液比例控制的优势却越来越明显。以力为被控制量的液压系统称为液压力控制系统。电液力比例系统的特性:响应快、精度高、功率大、结构紧凑,因此在工程上广泛应用,如材料试验机、轧机压下装置、张力控制系统、疲劳试验机、负载模拟装置等都采用电液力控制系统。本文中,针对66轮腿式越野车辆自适应液压主动悬架的性能要求,提出采用以负载压力为被控量、液压缸位移为随负载变化的随机值的电液压力跟踪控制系统。分析系统的构成和工作原理,针对非对称电液比例方向阀匹配非对称液压缸的系统特性,建立压力控制系统基本方程,构建动力机构数学模型。压力传感器实时反馈液压缸无杆腔压力信号,经控制器分析处理,输出信号使车轮主动适应所受的外负载,避免了车辆涉水或者通过松软路面时,依靠雷达检测系统采集的路面信号与实际路面的视觉偏差,造成车轮悬空、车体下陷等失稳现象的发生,其可靠性明显优于位移跟踪控制系统。同时,电液力比例系统的高度非线性、参数不确定性,以及液压油和液压元件变化导致的系统参数变化,决定了电液力比例系统是一个非线性时变系统。因此,合理的控制策略对于电液压力控制系统的控制效果起着至关重要的作用。
     针对电液压力比例系统的负载都具有较大的惯性和很小的阻尼,当负载改变,系统的动态品质就会变坏,有时甚至失去稳定性;外部干扰通常作用在负载上,量值大、变化快、有时甚至达到或超过油源压力,严重影响比例系统的跟踪性能。本文采用控制理论中提出的结构不变性原理的设计方案,消除负载变化和外扰作用以及交叉耦合的影响。对于本文中电液压力比例控制系统,选择外负载作用下液压缸活塞速度作为可观测量,补偿器为一阶微分环节。实时测出液压缸无杆腔压力,将信号引入控制器,换算成补偿量附加到控制信号输出,消除外扰对系统的影响,使系统始终工作在最佳设计状态。仿真结果表明,由于前馈补偿器的加入,悬架系统在中低频段的频率特性得到了极大改善,基本满足越野车低速行驶的性能要求,系统中存在的多余力干扰和耦合作用的干扰均一定程度降低,液压缸活塞杆换向时压力突变也得以缓解,因此,采用结构不变性原理设计的前馈补偿环节是有一定作用的。但是,因为固定参数的补偿无法克服液压比例系统本身的非线性和参数时变性的内部干扰影响,所以,设计性能优越的自适应液压主动悬架控制器至关重要,以保证越野车在越野状态下的悬挂性能达到最优。
     性能优越的悬挂系统,是越野车辆在野外未知的非结构地形条件下具有快速机动性和操纵稳定性的重要保证。液压主动悬架,采用控制单元和力发生器液压缸,组成一个闭环控制系统,根据车体运动状态和外界输入的变化进行动态自适应调节,主动调整和产生所需的控制力,在液压缸作用下使悬架的特性得以控制,最关键的还是控制算法优劣,以保证悬架控制系统控制有效、能耗低、造价合理。本文提出了自适应液压主动悬架的概念。针对悬架系统中非对称电液比例方向阀匹配非对称液压缸的特性:高度非线性、参数时变性、负载干扰、交联耦合以及模型创建复杂,提出了双环自抗扰控制方案,它不依赖于被控对象的精确数学模型,将被控对象的不确定性、未建模动态和外扰作用归结为系统的总扰动,给予有效补偿。基于自抗扰控制技术原理,描述其三部分组成,构造悬架系统的动力学模型,基于分离控制原理,设计双环自抗扰控制器,给出控制系统结构框图,建立控制器各个环节的数学描述,利用自稳定域理论,对控制系统的稳定性进行了分析。仿真分析控制器的抗干扰性能,相比于PID控制,双环自抗扰在快速性、鲁棒性和抗干扰能力方面都具有更好的控制效果,并且对系统内外扰动都具有较强的抑制能力。对整车悬架系统进行低频段压力轨迹跟踪测试试验和位移随动性能测试试验,试验结果表明,双环自抗扰算法控制下,压力轨迹跟踪精度远高于PID控制算法,随动位移跟踪误差远低于PID控制算法;数据采集仪采集到的轮组的接地比压均小范围变动,保证了66轮腿式越野车在崎岖路面条件下的牵引力均衡驱动。通过实测真实路面的无杆腔压力数据,压力轨迹跟踪控制能够更真实快速的适应非结构路面的未知地形变化,避免单独依靠雷达检测系统的视觉误差,压力传感器反馈的路面信号可靠性更高。因此,本文设计的双环自抗扰控制器,用于自适应液压主动悬架系统达到了良好的控制效果。
     对于非结构化地形,由于地形结构的特殊性,越野车在行进过程中,首要考虑的是运动中车体的稳定,然后才是行驶特性。越野车机械结构的合理设计,是车体保持静态稳定的同时可以稳定的动态运动的前提。文中设计了一种结构对称的轮腿式底盘结构,具有六个独立的轮腿运动单元,四连杆铰接式布置方式具有全地形适应能力,极大地提高了车体行驶的稳定性和对地形的适应性。合理的机械结构保证了车体自身的稳定,还需建立合理的稳定性评价指标。基于稳定锥数学模型,分别对车体在静态和动态情况下的最小稳定角进行数学分析。同时结合标准化动态能量稳定裕度,提出了标准化动态能量稳定锥的概念,分析动态情况下的最小倾翻能量,以及沿着稳定锥边线倾覆的稳定性。通过方波信号和正弦波信号响应试验,方波代表不连续路况,正弦波代表非结构地形,越野车具备对地形的适应性和行驶的稳定性。通过对比主动悬架系统和被动悬架系统的越野车铰接角的变化,自适应主动悬架的车体对凹凸不平路面具有较强的适应能力,更利于稳定性的提高。通过对比主动悬架和被动悬架越野车通过崎岖路面时车体稳定角的变化,主动悬架系统稳定裕度的平均值明显优于被动悬架,在非结构地形中的稳定性得到了显著提高。
     66轮腿式越野车辆属于多主动驱动系统,为了避免或减小寄生功率的产生,越野车在崎岖路面行驶时,时刻协调各轮之间的速度关系,对越野车进行运动协调控制。即,根据路径和车体姿态要求,对马达转速和液压缸伸缩进行控制。利用液阻控制技术,通过节流孔的调节,各轮边马达流量自动分配,从而自动调整各个车轮转速,实现单侧车轮牵引力均衡分配,马达转速变化无需额外的控制系统。介绍越野车驱动系统的组成及工作原理,基于变量泵控定量马达系统,建立泵的活塞-斜盘模型,分析系统的动态特性,建立马达行驶速度环节的数学模型。针对越野车的基本运动能力,对越野车进行运动学分析,设定越野车运动学坐标系,建立运动学约束方程。对越野车在平坦路面直线运动、转向和自主避障以及崎岖路面情况下,建立运动学模型。对越野车进行准静态力分析,建立准静态力平衡方程。结合越野车的运动学模型和准静态力平衡方程,建立越野车协调控制规则。以高斯白噪声作为崎岖路面输入,采用1mm节流孔控制,仿真分析同侧马达压力和流量变化情况。仿真结果表明,节流孔的调节作用是有效果的,保持了车轮转速的平稳,保证了各个车轮的牵引力均衡,提高了复杂地形条件下系统的牵引效率和通过性,验证了多轮协调控制模型的正确有效。论文研究,为进一步提高工程车辆的越野性能提供了新的方向。
For the working characteristic, the engineering vehicle travels on various terrainsregularly. In view of that, the engineering vehicle needs to have not only good drivingperformance on flat road but also excellent passing performance on rough road. However,the traditional engineering vehicle has not high off-road performance in non-structuralterrains for the limitation of mechanical structure, transmission type and driving mode.Under the financial support of “211Project” and “863Plan”, a66wheel-legged off-roadvehicle is designed and researched in this paper. With adaptive hydraulic active suspension,the vehicle is able to adapt to terrain actively. Therefore, it could provide outstandingpassability and stability even in complicated three-dimensional terrains.
     For position and velocity control, electro-hydraulic servo control has been increasinglychallenged by electric servo control. Comparatively, for pressure control, the advantage ofelectro-hydraulic servo control is more and more remarkable. The hydraulic system of thattaking force as the controlled variable is called hydraulic force control system. Thecharacteristics of electro-hydraulic force servo control system are of fast response, highaccuracy, greater power and compact construction. Therefore, it is widely used inengineering field, such as material testing machine, depressing equipment of a rolling mill,tension control system, fatigue testing machine, load simulation equipment and so on.Taking force as controlled variable and displacement as random value, the electro-hydraulicpressure tracking control system is established in this paper. The structure and workingprinciple of system is analyzed. In view of asymmetric electro-hydraulic proportionaldirectional valve matching asymmetric hydraulic cylinder system characteristics, themathematical model of power mechanism is built. The rodless chamber pressure signal is fedback to ECU by pressure sensor in real time. After analysis and processing, output signalmakes wheel to actively adapt to external load. For position tracking control system, wheelflying and vehicle body subsidence will occur while vehicle wading and traveling in softterrain because of visual deviation between radar collected road signal and real road. Forpressure tracking control system, the above-mentioned will be avoided before instabilityoccurs. So the reliability is superior to that of displacement tracking control system. Thecharacteristics, such as high nonlinearity, parameter uncertainty, oil and elements inducedparameter variation, mean that electro-hydraulic force servo system is a nonlinear time-varying system. Therefore, reasonable control strategy plays a vital role forelectro-hydraulic pressure control system.
     With large inertia and small damping, load change will lead to dynamic qualitydeterioration, even instability. With large value, rapid change and sometimes even reachingor exceeding oil source pressure, external disturbances normally exerts a force upon the loadso as to have a strong impact on tracking performance of servo system. In order to eliminatethe effect of load change, external disturbance and cross coupling, structure invarianceprinciple based design project is proposed in this paper. Take the piston velocity as theobservable quantity with a first-order derivative element for compensator. The rodlesschamber pressure signal is fedback to ECU and converted to compensation quantity so as toeliminate the effect of external disturbance. Accordingly, the system is in top condition allthe while. Simulation analysis confirmed that feedforward compensation was effective. Thesuspension frequency characteristics in low frequency stage have been greatly improved, andbasically meet the requirement of off-road vehicle at low speed. Both redundant forcedisturbance and coupling interference are decreased to a certain extent. And the pressurejump will thus be eased while hydraulic cylinder piston rod reversing. Since fixed parametercompensation cannot offset the effect of internal disturbances such as system itselfnonlinearity and parameters time variability, it is crucial to design a superior controller forthe adaptive hydraulic active suspension, so as to ensure that the suspension performance isoptimal under off-road condition.
     Superior suspension system is an important guarantee for fast maneuverability andhandling stability of off-road vehicle in the wild unknown non-structural terrain conditions.For hydraulic active suspension, control unit and hydraulic cylinder actuator construct theclosed loop control system. According to vehicle motion state and external input, thehydraulic cylinder takes initiative to adjust and generate the desired force in order to controlsuspension. The control algorithm is crucial to ensure that the suspension control system isof effectiveness, low energy consumption and reasonable cost. The adaptive hydraulic activesuspension is proposed in this paper. The characteristics of asymmetric electro-hydraulicproportional direction valve matching asymmetric hydraulic cylinder are considered, such ashigh nonlinearity, parameter time variability, load disturbance, coupling interference,complex mathematical model, and so on. In view of above mentioned, the auto disturbancesrejection control (ADRC) is introduced. Being independent of exact mathematical model, thealgorithm could compensate for total disturbances effectively, to which controlled object uncertainty, unmodeled dynamics and external disturbance come down. Based on ADRCtechnical principle, the dynamic model of suspension system is built. With the separationcontrol principle, the double loop ADRC is designed. The block diagram of control system isgiven and the mathematical description of every part is established. The stability of controlsystem is analyzed using self stability region theory. Simulation analysis confirmed that thedouble loop ADRC had better performance than PID on rapidity, robustness and antidisturbance capability. For suspension system of complete vehicle, the pressure trajectorytracking experiment in low frequency stage and displacement servo experiment areperformed. Experimental results show that, under the control of double loop ADRC, pressuretracking accuracy is higher than that of PID, and displacement tracking error is lower thanthat of PID. The grounding pressure collected by data acquisition instrument changes in asmall range ensuring traction balanced drive of off-road vehicle in rough terrain. Thepressure data of real road show that the pressure control could track unknown terrainchanges under non-structural terrain condition with high speed and reliability. Therefore, thecontroller gives an excellent performance for the adaptive hydraulic active suspension.
     In consideration of the special structural feature of non-structural terrain, the first factoris stability and then driving behavior should be taken into account while off-road vehiclemoving. Reasonable design of mechanical structure is the basis for vehicle keeping not onlystatic stability but also dynamic stability. The structure symmetrical chassis is designed inthis paper with six independent wheel-legged movement units. With four-link articulatedarrangement, the vehicle has all-terrain adaptability. And stability and adaptability aregreatly improved. Besides mechanical structure, reasonable stability evaluation should beestablished. Based on stability pyramid model, the minimum stable angle is analyzed in bothstatic and dynamic state. Together standardized dynamic energy stability margin withstability pyramid model, the standardized dynamic energy stability cone is proposed in thispaper. The dynamic minimum tipping energy and tipping stability along the sideline areanalyzed. With square wave on behalf of the discontinuous terrain and sine wave on behalfof the non-structural terrain, the signal response experiments are performed. Experimentalresults show that the vehicle has excellent adaptability and stability. By comparing activesuspension system with passive suspension system, articulated angle and stability angle areanalyzed. Experimental results confirmed that the adaptive active suspension had strongadaptability to uneven terrain. And stability had been greatly improved.
     The66wheel-legged off-road vehicle is of multi-active drive system. In order to avoid parasitic loss, it is necessary to coordinate wheel speed so as to control vehicle motion.According to the path and bodywork attitude, control the motor speed and hydraulic cylinderaction. Using liquid resistance control technology, wheel edge motor flow is automaticallyassigned with the orifice regulation. Therefore, the speed of each wheel is automaticallyadjusted to realize traction balanced distribution of unilateral wheels. For motor speed, thereis no need for additional control system. The composition and working principle of the drivesystem are introduced. For the variable pump controlled constant displacement motor system,both the piston-swashplate model of pump and the motor speed model are established. Thedynamic characteristics of the system are analyzed. The basic motion of off-road vehicle isintroduced. The kinematical coordinate and constraint equations are established. Thekinematical mathematic models are established under different road conditions. Thequasi-static force balance equation is built. Together kinematical mathematic model withquasi-static force balance equation, the coordinated control rule is given. Taking Gaussianwhite noise as the rough road input and using1mm orifice for control, the pressure and flowof unilateral motor are simulated. Simulation analysis confirmed that orifice regulation iseffective and the multi-wheel coordinated control model was valid and effective. The steadyspeed and balanced traction are guaranteed. And traction efficiency and passing performancein complex terrains are improved.
     The research in this paper has given a new direction to further improve the off-roadperformance of the engineering vehicle.
引文
[1]何峰.六轮腿移动机器人运动分析及控制系统的研究[D].南京:南京理工大学,2005.
    [2] MILITARY. T3[EB/OL]. Unversities: Get An Online Degree–Quick And Easy.http://www.globalsecurity.org/military/systems/ground/t3.htm.
    [3] Jay Kopycinski. Project ROKTOY: Tubular Chassis Buildup [EB/OL].2/7/2003.http://www.4x4wire.com/toyota/projects/.
    [4]赵荣岗,吕恬生,徐子力,李金良.溜冰机器人基本特性研究[J].机械科学与技术,2004,23(6):687-689.
    [5]邓宗全,方海涛,董玉红,陶建国.六圆柱-圆锥轮式月球车多轮协调运动控制研究[J].哈尔滨工程大学学报,2008,29(1):73-77.
    [6] L.Laval, N. K.M’Sirdi, J.C Cadiou. H force control of a hydraulic servo-actuator withenvironmental uncertainties [C]. Proc. IEEE Conf. Robostics and Automation, Minneapolis, MN,1996:1566-1571.
    [7] G. wu, N. Sepehri, K. Ziaei. Design of hydraulic force control system using a generalized predictivecontrol algorithm[C]. IEEE. Proc. Control Theory and Applications,1998,145(5):428-436.
    [8] Rui Liu, Andre Alleyne. Nonlinear force/pressure tracking of an electro-hydraulic actuator [J]. ASMEJournal of Dynamic Systems, Measurement and Control,2000,122(3):232-237.
    [9]何玉彬.电液伺服结构加载系统的神经网络直接自适应输出跟踪控制[J].机床与液压,1997(2):20-23.
    [10]蔡永强,裘丽华,王占林.电液力伺服系统的鲁棒预测控制[J].机械工程学报,1999,35(6):81-84.
    [11]韩俊伟,赵慧,马剑文等.具有时变柔性负载的电液力控制系统中Gain-Scheduled H控制器的研究[J].机械工程学报,2001,36(4):58-61.
    [12] M. Maurette. Robots for Lunar Exploration: Present and Future [J]. Advanced Space Research.1999,23(11):1894~1855.
    [13] Anthony H Young. Lunar and Planetary Rovers [M]. The United State: Springer New York,1978:223-230.
    [14] Roland Siegwart, Pierre Lamon, Thomas Estier, Michel Lauria. Innovative design for wheeledlocomotion in rough terrain [J]. Robotics and Autonomous Systems,2002(40):51-62.
    [15] Federspiel_labrosse J M. Beitrag zum stadium und zur vervollkommung der aufhangung derfahrzeuge [J]. ATZ, Mars,1995,3(2):57-72.
    [16] D. Christian, D. Wettergreen, M. Bualat, et al. Field Experiments with the Ames Marsokhod Rover
    [C]. Proceeding of the1997Field and Service Robotics Conference.1997:89-95.
    [17] Siegwart R, Estier T, Crausaz Y. Innovative Concept for Wheeled Locomotion in Rough Terrain.Sixth International Conference on Intelligent Autonomous Systems [C].2000:776-785.
    [18] K. Iagnemma, A. Rzepniewshi, S. Dubowshy. Control of Robotic Vehicles with Actively ArticulatedSuspensions in Rough Terrain [J]. Autonomous Robots.2003,14:5-16.
    [19] Thompson A G, Davis B R. Technical note on the lotus suspension patens [J]. Vehicle SystemDynamics,1991,6:381-383.
    [20]王玮.汽车主动悬架系统振动控制方法研究[D].西安:西安电子科技大学,2009.
    [21] Yokoya Y, Kizu R, et al. Integrated control system between active control suspension end four wheelsteering for the1989Celica [J]. SAE paper901748,1990:1546-1561.
    [22] Lijima T, Aksatu Y, et al. Development of a hydraulic active suspension [J]. SAE paper931971,1993:2142-2153.
    [23]李文君.主动悬架技术应用现状综述[C].中国汽车工程学会越野车技术分会2008年学术年会论文集,2008:387-390.
    [24] Hoogterp F B. Active suspension in the automotive industry and the military [J]. SAE paper961037,1996:96-101.
    [25] Karnopp D. Active and semi-active vibration isolation [J]. Transactions of the ASME,1995,117:177-185.
    [26] Thompson A G. An Active Suspension with Optimal Linear State Feedback [J]. Vehicle SystemDynamics: International Journal of Vehicle Mechanics and Mobility,1976,5(4):187-203.
    [27] Thompson A G. Optimal and Suboptimal Linear Active Suspension for Road Vehicles [J]. VehicleSystem Dynamics: International Journal of Vehicle Mechanics and Mobility,1984,13(2):61-72.
    [28] Thompson A G, Davis B R. Computation of the RMS State Variables and Control Forces in aHalf-car Model with Preview Active Suspension Using Spectral Decomposition Methods[J]. Journalof Sound and Vibration,2005(285):571-583.
    [29] Bluethmann B, Herrera E, Husle A, et al. An Active Suspension System for Lunar Crew Mobility [C],2010IEEE Aerospace Conference,2010:1-9.
    [30] Kaddissi C, Saad M, Kenne J P. Interlaced Backstepping and Integrator Forwarding for NonlinearControl of an Electrohydraulic Active Suspension [J]. Journal of Vibration and Control,2009,15(1):101-131.
    [31] Onat C, Kucukdemiral I B, Sivrioglu S, et al. LPV Gain-Scheduling Controller Design for aNon-Linear Quarter-Vehicle Active Suspension System [J]. Transactions of the Institute ofMeasurement and Control,2009,31(1):71-95.
    [32]盛云,吴光强.7自由度主动悬架整车模型最优控制的研究[J].汽车技术,2007(6):12-16.
    [33]兰波,喻凡,刘娇蛟.主动悬架LQG控制器设计[J].系统仿真学报,2003,15(1):138-140.
    [34]丁科,候朝桢.车辆主动悬架的自适应控制研究[J].北京理工大学学报,2001,21(6):706-709.
    [35]丁科,候朝桢.车辆主动悬架的神经网络模糊控制[J].汽车工程,2001,3(5):340-343.
    [36]黄昆,喻凡,张勇超.电磁式主动悬架模型预测控制器设计[J].上海交通大学学报,2010,44(11):1619-1624.
    [37] Liu Shaojun. Optimal Control of An Active Suspension System Employing High Speed ON/OFFsolenoid Valve [J]. J CEST SOUTH UNIV TECHNOL,1997,4(4):36-40.
    [38] Ma M M, Chen H, Cong Y F. Backstepping Based Constrained Control of Nonlinear HydraulicActive Suspensions [C]. Proceedings of the26thChinese Control Conference,2007:463-466.
    [39] McGhee R, Frank A. On the stability properties of quadruped creeping gaits [J]. MathematicalBiosciences (S0025-5564),1968,3(3):331-351.
    [40] Dominic Anthony Messuri. Optimization of the locomotion of a legged vehicle with respect tomaneuverability [D]. Ohio: The Ohio State University,1985.
    [41] P. Nagy. An investigation of walker/terrain interaction [D]. Pittsburgh: Carnegie Mellon University,1991.
    [42] S. Hirose, H. Tsukagoshi, and K. Yoneda. Normalizde energy stability margin: Generalized stabilitycriterion for walking vehicles [C]. Proc. Int. Conf. Climbing and Walking Robots,1998:71-76,Brussleds, Belgium.
    [43] E.G. Papadopoulos, D.A. Rey. A New Measure of Tipover Stability Margin for Mobile Manipulators
    [C]. Proc. IEEE Int. Conf. on Robotics and Automation,1996:3111-3116.
    [44] Vukobratovic M, Frank A, Juricic D. On the stability of biped locomotion [J]. IEEE TrailsBiomedical Engineering (S0018-9294),1970,17(1):25-36.
    [45] Orin D E. Interactive Control of a Six-legged Vehicle with Optimization of both Stability and Energy
    [D]. Ohio: The Ohio State University,1976.
    [46] Kang D O, Lee Y J, Lee S H, et al. A study on an adaptive gait for a quadruped walking robot underexternal forces [C]. Proceedings of the IEEE International Conference on Robotics and Automation,1997:2777-2782.
    [47] Elena Garcia, Pablo Gonzalez de Santos. An improved energy stability margin for walking machinessubject to dynamic effects [J]. Robtica (S0263-5747),2005,23(11):13-20.
    [48]李海玉.能量与哲学[M].太原:山西科学技术出版社,2005:13-15.
    [49] FARRITOR S, HACOT H, DUBOWSKY S. Physics based planning for planetary exploration [C].Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Leuven.Belgium: IEEE,1998:278-283.
    [50] SREENIV ASAN S, WALDRON K. Displacement analysis of an actively articulated wheeledvehicle configuration with extensions to motion planning on uneven terrain [J]. Transactions of theASME Journal of Mechanical Design,1996,118(2):312-317.
    [51] Iagnemma, K., Shibly, H., Dubowsky, S.. On-Line Terrain Parameter Estimation for PlanetaryRovers [C]. Proceedings of the IEEE International Conference on Robotics and Automation,2002,20:3142-3147.
    [52] BALARAM J. Kinematics state estimation for a Mars rover [J]. Robotica,2000,18(2):251-262.
    [53] Le, A., Rye, D., Durrant-Whyte, H.. Estimation of track-soil interactions for autonomous trackedvehicles [C]. Proceedings of the IEEE International Conference on Robotics and Automation,1997,2:1388-1393.
    [54] WONG J. Theory of ground vehicles [M]. New York: Wiley Interscience,2001.
    [55] Yoshida K, Hamano H. Motion dynamics and control of a planetary rover with slip-based tractionmodel [C]. International Conference on Robotics and Automations,2002(3):3155-3160.
    [56] Iagnemma K, Dubowsky S. Traction control of wheeled robotic vehicles in rough terrain withapplication to planetary rovers [J]. The International Journal of Robotics Research,2004,23(10-11):1029-1040.
    [57] Lamon P, Siegwart R. Wheel torque control in rough terrain-modeling and simulation [C].International Conference on Robotics and Automations,2004(5):4682-4687.
    [58]乔凤斌,诸毓武,曹晓.基于滑转率在线估计的月面巡视探测器多轮协调控制[J].上海航天,2009,26(4):35-39.
    [59]刘晓峰,丁同才.月球车运动协调控制研究[J].上海航天,2009,26(1):57-60.
    [60]王佐伟,吴宏鑫.月球探测车模糊变结构协调驱动控制[C].中国智能自动化会议论文集,2003.
    [61]许鹏,曹秉刚,曹建波,郭桂芳.两轮独立驱动电动车的转矩协调控制[J].西安交通大学学报,2009,7(43):53-57.
    [62]王庆年,张媛媛,靳立强.四轮独立驱动电动车转向驱动的转矩协调控制[J].吉林大学学报,2007,37(5):985-989.
    [63]孙多青,马晓英,杨晓静,俞百印,邵香媛.可减小跟踪误差的月球探测车协调驱动模糊自适应控制[J].空间控制技术与应用,2008,34(5):12-17.
    [64]李洪人.液压控制系统[M].北京:国防工业出版社,1990.
    [65]李福义.液压技术与液压伺服系统[M].哈尔滨:哈尔滨工程大学出版社,1995.
    [66]阚超.电液伺服与比例压力控制系统辨识与特性比较研究[D].秦皇岛:燕山大学,2007.
    [67]吴博,吴盛林,任好玲.非对称阀控非对称缸系统建模和仿真研究[J].机床与液压,2004(8):73-75.
    [68] Andrew Alleyne, Rui Liu. A simplified approach to force control for electro-hydraulic systems [J].Control Engineering Practice,2000(8):1347-1356.
    [69]关景泰,王海滨,周俊龙.非对称阀控制非对称缸的动态特性[J].同济大学学报,2001,29(9):1130-1134.
    [70]房猛.盾构推进机构电液控制系统的研究[D].杭州:浙江大学,2003.
    [71]施虎,龚国芳,杨华勇,陈明旭.盾构掘进机推进压力控制特性分析[J].工程机械,2008,39:23-27.
    [72]王栋梁,李洪人,张景春.非对称阀控非对称缸的分析研究[J].济南大学学,2003,17(6):118-121.
    [73]项祖丰,姜伟,殷建军.基于微小流量阀的匀速加载压力控制系统研究[J].机床与液压,2003,(4):142-144.
    [74] BIN Y, BU F P, REEDY J, et al. Adaptive robust motion control of single-rod hydraulic actuators:theory and experiments [J]. IEEE/ASME Transactions on Mechatronics,2000,5(1):79-91.
    [75]白寒,管成,潘双夏.基于模糊决策的推土机滑模鲁棒自适应控制[J].浙江大学学报,2009,43(12):2178-2185.
    [76]高峰,茅及愚,李维嘉.基于结构不变性原理的有效提升液压伺服系统动特性的新方法[J].液压与气动,2004(7):59-61.
    [77]刘长年.电液伺服系统中的结构不变性原理[J].科学通报,1979(10):443-445.
    [78]肖金陵,李壮云.结构不变性原理在大幅度时变参数电液伺服系统中的应用[J].研究设计,1994(2):3-6.
    [79]梁利华.减摇鳍电液负载仿真台性能研究[D].哈尔滨:哈尔滨工程大学,2003.
    [80]王全广.减摇鳍电液加载系统数字控制应用研究[D].哈尔滨:哈尔滨工程大学,2005.
    [81]刘昕晖,王同建.具有自适应主动悬架多轮独立驱动越野工程车辆[J].华中农业大学学报,2005:79-82.
    [82]孙建民.一种汽车主动悬架系统模糊控制器设计及试验[J].振动与冲击,2005,24(1):13-18.
    [83]殷云华,陈闽鄂,郑宾,李彬.基于Matlab的模糊控制器设计及仿真[J].控制工程,2007,14(5):488-450.
    [84] Fernando J. D’Amato, Daniel E. Viassolo. Fuzzy control for active suspensions [J]. Mechatronics,2000,10(8):897-920.
    [85]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [86]白寒,王庆九,徐振,管成.阀控非对称缸系统多级滑模鲁棒自适应控制[J].农业机械学报,2009,40(10):193-198.
    [87]廖启亮.先进滑模控制策略在非线性控制系统中的研究与应用[D].广州:华南理工大学,2005.
    [88]王增会,陈增强,孙青林等.定量反馈理论发展综述[J].控制理论及应用,2006,23(3):403-410.
    [89] Per-Olof Gutmann, Eran Horesh. Control of the Aero-Electric Power Station an exciting QFTapplication for the21st century [J]. INTERNATIONAL JOURNAL OF ROBUST ANDNONLINEAR CONTROL,2003:78-82.
    [90] Karlsson N, Dahleh M and Hrovat D. Nonlinear H Control of Active Suspensions. Proceedings ofthe2001American Control Conference,2001,5:3329-3334.
    [91]刘少军.最优预见控制设计及在汽车主动悬架系统中的应用J.中南工业大学学报,,():.
    [92]山炳强.基于反步法的交流电机控制研究[D].青岛:青岛大学,2006.
    [93]陈奕梅,韩正之.基于扩展的积分前推方法的非线性控制器设计[J].应用科学学报,2005,23(3):257-260.
    [94] Sepulchre R, Jankovic M, Kokotovic P V. Integrator forwarding: Anew recursive nonlinear robusedesign [J]. Automatic,1997,33(5):979-984.
    [95]张庙康,胡海岩.车辆悬架振动控制系统研究的进展[J].振动测试与诊断,1997,17(1):43-46.
    [96] Petrov M, Ganchev I, Taneva A. Fuzzy PID control of nonlinear plants [C]. Intelligent systems,2002.Proceedings.2002First International IEEE Symposium,2002,1(9):30-35.
    [97] Sepulchre R, Jankovic M, Kokotovic P V. Constructive Nonlinear Control [M]. New York: Springer,1997.
    [98]韩京清.自抗扰控制器及其应用J.控制与决策,,():.
    [99]韩京清.自抗扰控制技术J.前沿科学,():.
    [100]韩京清,黄远灿.二阶跟踪—微分器的频率特性[J].数学的时间与认识,2003,33(3):71-74.
    [101]朱承元,杨涤,荆武兴.跟踪微分器参数与输入输出信号幅值频率关系.电机与控制学报,2005,9(4):376-380.
    [102]韩京清,王伟.非线性跟踪微分器[J].系统科学与数学,1994,4(2):177-183.
    [103]韩京清,袁露林.跟踪微分器的离散形式[J].系统科学与数学,1999,19(3):268-273.
    [104]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3):13-18.
    [105]聂博文.微小型四旋翼无人直升机建模及控制方法研究[D].长沙:国防科学技术大学,2006.
    [106] Hou Zengguang, Huang Yuancan, Han Jingqing. Active noise cancellation with a nonlinearcontrol mechanism. Proceedings of the37thIEEE Conference on Decision and Control. Tampa:[sn],1998:1577-1578.
    [107]韩京清,张荣.二阶扩张状态观测器的误差分析[J].系统科学与数学,1999,10(4):465-471.
    [108]崔永山.自抗扰控制器设计方法应用研究[D].哈尔滨:哈尔滨工业大学,2006.
    [109]邹积勇.电动汽车控制策略研究[D].天津:天津大学,2007.
    [110]李海生,朱学峰.自抗扰控制器参数整定与优化方法研究[J].控制工程,2004,11(5):419-423.
    [111] N. Niksefat, N. Sepehri. Design and experimental evaluation of a robust force controller for anelectro-hydraulic actuator via quantitative feedback theory [J]. Control Engineering Practice,2000,8:1335-1345.
    [112]段锁林,安高成,薛军娥等.电液伺服力控系统的自适应滑模控制[J].机械工程学报,2002,38(5):109-113.
    [113]李云钢,常文森.磁悬浮列车悬浮系统的串级控制[J].自动化学报,1999,25(2):32-38.
    [114]周毅漳.基于自抗扰控制的双轮自平衡机器人[D].福州:福建农林大学,2010.
    [115]何凌云,佘龙华,赵春霞.磁浮列车悬浮系统的双环自抗扰控制[J].自动测量与控制,2006,25(11):59-61.
    [116]李万东,王小艺,刘载文等.自抗扰控制在污水处理系统中的应用研究[C].Proceedings ofthe8thWorld Congress on Intelligent Control and Automation,2010:2628-2632.
    [117]秦继荣,武利强.车载稳瞄系统的自抗扰控制器设计[J].系统仿真学报,2008,20(7):1791-1794.
    [118]倪敬,彭丽辉,项占琴.扩轧管电液伺服系统非线性建模与控制[J].机械工程学报,2009,45(5):250-255.
    [119] Supavut Chantranuwathana and Huei Peng. Adaptive robust force control for vehicle activesuspensions[C]. International Journal of Adaptive Control and Signal Processing.2004,18:83-102.
    [120]张鼎.基于扩张状态观测器和非线性PID的数字式悬浮控制系统研究[D].长沙:国防科技大学,2005.
    [121]黄一,韩京清.非线性二阶连续扩张状态观测器的分析与设计[J].科学通报,2000,45(13):1373-1379.
    [122]秦昌茂.高超声速飞行器分数阶PID及自抗扰控制研究[D].哈尔滨:哈尔滨工业大学,2011.
    [123] Karl Iagnemma, Steven Dubowsky. Mobile Robot Rough-Terrain Control (RTC) for PlanetaryExploration. Proceedings of2000ASME IDETC/CIE:26th Biennial Mechanisms and RoboticsConference, September10-13,2000, Baltimore, Maryland.
    [124] Iagnemma K, Rzepniewski A, Dubowsky S, et al. Mobile Robot Kinematic Reconfigurabilityfor Rough-Terrain[C]. Proceedings of the SPIE Sensor Fusion and Decentralized Control in RoboticSystems Ⅲ.2000:5-8.
    [125] Schenker P, Sword L, Ganino A, et al. Lightweight Rovers for Mars Science Exploration andSample Return[C]. Proceedings of SPIE XVI Intelligent Robots and Computer Vision Conference,1997:24-36.
    [126]夏旭峰,葛文杰.仿生机器人运动稳定性的研究进展[J].机床与液压,2007,35(2):229-234.
    [127]高杉,张磊.四足机器人静态全方位步行稳定性研究[J].机器人技术,2008,24(2):209-211.
    [128] E.Celaya, J.M. Porta. A control structure for the locomotion of a legged robot on difficultTerrain [J]. IEEE Robotics and Automation Magazine,1998,5(2):43-51.
    [129]刘金国,王越超,李斌,马书根.变形机器人倾翻稳定性仿真分析[J].系统仿真学报,2006,18(2):409-415.
    [130]李斌,刘金国,谈大龙.可重构模块机器人倾翻稳定性研究[J].机器人,2005,27(3):241-247.
    [131]陈学东,孙翊,贾文川.多足步行机器人的运动规划与控制[M].武汉:华中科技大学出版社,2006.
    [132]席裕庚.动态不确定环境下广义控制问题的预测控制[J].控制理论与应用,2000,17(5):665-670.
    [133]谷侃峰,赵明扬.基于滑转率的六轮纵列式月球车驱动控制研究[J].机器人,2008,30(2):117-122.
    [134] Robert B, Winnie L, Tim B. Experimental and simulation results of wheel-soil interaction forplanetary rovers[C]. Proceedings of the IEEE International Conference on Intelligent Robots andSystems. Piscataway, NJ, USA,2005:586-591.
    [135]陈百超.月球车新型移动系统设计[D].长春:吉林大学,2009.
    [136]乔峰斌,诸毓武,曹晓.基于滑转率在线估计的月面巡视探测器多轮协调控制[J].上海航天,2009,26(4):35-39.
    [137]院老虎.六轮非对称月球车运动控制方法及参数辨识研究[D].哈尔滨:哈尔滨工业大学,2010.
    [138]马鹏飞.全液压推土机液压行驶驱动系统动力学研究[D].西安:长安大学,2006.
    [139]赵辉,贾小平等.6×6全液压车辆驱动系统设计研究[J].机械设计与制造,2007(4):26-27.
    [140]董玉红,邓宗全,方海涛.六圆柱轮式月球车动力学建模与仿真[J].哈尔滨工程大学学报,2009,30(2):192-197.
    [141] Muir P F, Neuman C P. Kinematic modeling of mobile robots [J]. Journal of Robotics System,1987,4(2):281-340.
    [142]宋金泽,袁启平等.一种面向行星探测的多轮机器人协调控制方法[J].机器人,2009,31(5):433-438.
    [143]侯绪研.六轮摇臂式月球车运动协调控制模式研究[D].哈尔滨:哈尔滨工业大学,2009.
    [144]孙伟.轮式月球车驱动特性与控制技术研究[D].哈尔滨:哈尔滨工业大学,2004.
    [145]陈伟.全液压多轮越野车辆牵引力均衡控制及主动悬架系统研究[D].长春:吉林大学,2009.
    [146]徐正飞,王韬.关节式移动机器人的越障运动[J].中国机械工程,2003,14(12):1052-1056.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700