用户名: 密码: 验证码:
基于人—车—环境识别的自适应档位决策方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车行驶在一个复杂的人-车-环境闭环系统中。传统换档规律仅以固定的模式换档,难以满足人们对当代车辆不断提高的性能需求。随着智能控制技术的发展,档位决策方法的研究已进入智能化、自适应阶段。自适应档位决策的首要问题是如何实现对人-车-环境的识别,然后是如何基于识别结果决策档位。本文围绕自适应档位决策领域的几个关键问题,开展了如下研究:
     1)换档规律基础理论研究。构建了自动变速车辆动力传动系统仿真平台,对换档规律的基础理论、制定方法和适应性能进行分析,为智能化档位决策奠定理论基础。分析可知,两参数换档规律基于发动机和车辆的稳态模型设计,只能针对一种工况实现性能最优;而动态三参数动力性换档规律考虑了加速度参数,具有对环境的适应能力。
     2)驾驶风格量化与定量分析。在分析驾驶风格与驾驶员动力需求之间本质联系的基础上,提出基于驾驶员动力需求的驾驶风格量化方法,开展了驾驶风格量化试验与分析工作。基于驾驶员动力需求的驾驶风格量化方法能够实现对驾驶风格的综合量化以及对驾驶风格主客观影响因素的单独量化,量化结果可用于识别驾驶风格。
     3)驾驶风格识别及档位决策方法研究。提出长效和短效驾驶风格的概念,长效驾驶风格体现驾驶风格的总体和阶段性趋势,短效驾驶风格体现驾驶员瞬时驾驶意图。研究基于指数平滑法的长效驾驶风格预测方法,以及基于聚类分析的短效驾驶风格分类和模糊识别规则自动提取方法。用驾驶员动力需求因数综合反映驾驶员对整车动力的需求程度,进而提出基于驾驶员动力需求因数的档位决策方法,实现对驾驶员长期驾驶习惯和瞬时意图的自适应。
     4)基于负荷度的行驶环境识别及档位决策方法研究。定义了负荷度的概念,其综合地反映了行驶环境中坡道、载重、天气和路面条件所产生的行驶阻力情况,也是行驶环境对整车动力需求程度的体现。研究基于负荷度的行驶环境识别方法以及基于正、负负荷度的档位决策方法,用于上坡、大载重等工况以及下坡工况。基于负荷度的档位决策方法和动态三参数动力型换档规律一样,具有对一般行驶环境的自适应能力,但其表达方式简洁、易于实现,可方便的用于实车控制。
     5)特殊行驶环境识别及档位决策方法研究。利用轮速信号提取车辆侧向加速度及其变化率,结合当前车速信息,提出基于轮速的弯道工况缓急程度模糊识别方法,进而制定相应的弯道档位修正策略;通过对郊区、山区等颠簸路段上发动机转速变化率信号的频域和时域分析,研究基于发动机转速变化率的路面不平特征识别方法,相应的档位决策策略可抑制颠簸路段上的意外及频繁换档问题。
     6)制动工况档位决策方法研究。在分析发动机辅助制动必要性的基础上,提出了综合考虑制动时间、制动减速度、行驶环境信息及车速情况的制动工况模糊推理档位决策方法。利用发动机辅助制动的制动工况模糊档位决策方法可增强制动效果、延长制动系统寿命、提高行驶安全性。
     7)整车试验验证。基于整车试验平台,对人-车-环境识别方法以及相应的档位决策方法开展实车试验研究。试验结果可知,在不增加额外传感器的条件下,可实现对驾驶员和行驶环境的有效识别,进而用于智能档位决策与控制过程,具有工程实际应用价值。
Moving vehicle is a complex driver-vehicle-environment closed-loop system.However, the traditional shift law only works in fixed mode, which cannot satisfy thecustomers’ improving demands for vehicle performance. Actually, with the developmentof intelligent control technology, gearshift decision strategy has entered intelligent andadaptive stage. The first problem of adaptive gearshift decision method is how torecognize driver-vehicle-environment system, and the next problem is how to gearshiftdecision-making based on the recognition results. The paper focused on the several keyissues on the adaptive gearshift decision field and carried out the following researches:
     1) Theoretical basis of shift law. To provide the theoretical foundation for adaptivegearshift decision strategy, the simulation platform of powertrain system of automaticvehicles was established. Then the basic theory, the formulating method as well as theadaptability of the shift law were analyzed. The analysis results showed that thetwo-parameter shift law is based on the steady-state model of the engine and vehicle,which can only achieve the optimal performance for a designed working condition;however, the dynamic three-parameter power shift law has the ability to adapt to theenvironment because the vehicle acceleration is considered.
     2) Quantization method and quantitative analysis of driving style. By analyzing theessential relationship between driving style and driver power demand, the method ofquantifying driving style based on the driver power demand was proposed. Then thedriving style quantization experiment and the corresponding quantitative analysis workwere carried out. The quantization method is able to achieve the comprehensivequantification of the driving style and the separate quantification of the subjective and objective factors influencing driving style. The quantitative results can be used torecognize the driving style.
     3) Driving style recognition and corresponding adaptive gearshift decision method.The concepts of long-term and short-term driving style were defined. The former reflectedthe overall and periodic trends of driving style, and the latter reflected the driver’sinstantaneous driving intention. The method of predicting long-term driving style based onthe exponential smoothing method, classifying short-term driving style based onclustering analysis and extracting fuzzy rules of short-term driving style recognitionautomatically based on the clustering results were proposed. At last, the recognition resultsof two driving styles were merged together into the driver power demand factor thatreflected the driver’s power requirement to vehicle. The gearshift decision method basedon the driver power demand factor was proposed to realize the adaption to the driver’slong-tern driving habit and instantaneous driving intent.
     4) General driving environment recognition based on load degree and correspondingadaptive gearshift decision method. The concept of load degree was defined, whichsynthetically reflected the traveling resistance produced by slope, load, weather conditionand road condition. Then, the load degree based driving environment recognition methodwas proposed. In fact, the load degree essentially reflects the power demand of drivingenvironment. And then, the positive and negative load degree based gearshift decisionmethod were proposed, which were applied to conditions such as uphill, large load, anddownhill. Compared with dynamic three-parameter power shift law, gearshift decisionmethods based on load degree also has the adaptive ability to general driving environment.But its presentation was concise and is easier to implement, so it can be easily used in thereal vehicle control.
     5) Special driving environment recognition and corresponding gearshift decisionmethod. By extracting the vehicle lateral acceleration and its change rate from the fourwheel speed signals, meanwhile considering the current vehicle velocity, the fuzzy methodto recognize the urgency degree of curve driving based on four-wheel speeds was proposed. And then, the gear correction strategy was formulated and the experimentalverification was carried out. Through the time-domain and frequency-domain analysis ofthe engine speed variation rate signal on suburb and mountain area, the rough road featuredetection method based on engine speed variation rate was proposed, which was appliedto prevent unexpected or busy shift problems on rough road.
     6) Gearshift decision method on braking condition. Based on the analysis of thenecessity of engine assisted braking, shift decision method to improve braking effect anddriving safety based on fuzzy reasoning was proposed. The fuzzy reasoning rulesconsidered braking time, braking deceleration, load degree of driving environment andvehicle velocity were set up and road test was carried out. The results showed that thisgearshift decision method on braking condition can enhance the braking effect, extend thelife of the brake system, and improve the driving safety.
     7) Vehicle test. On the basis of vehicle experimental platform, a series of vehicle testsfor checking and verifying the driver-vehicle-environment recognition methods andcorresponding adaptive gearshift decision strategy were carried out. The results showedthat the driver and the driving environment were identified effectively without anyadditional sensors, the intelligent gearshift decision strategy based on these recognitionresults were realized, and these methods have more practical application values.
引文
[1]国务院发展研究中心产业经济部,中国汽车工程学会,大众汽车集团(中国).中国汽车产业发展报告(2009),社会科学文献出版社,2009
    [2] IHS Global Insight Automotive Group. The Forecast of China Automotive Marketin the Future. April,2012
    [3]何忠波,陈慧岩,陶刚,等.自动变速车辆档位决策方法综述[J].车辆与传动技术,2002(2):54-60
    [4]周学建,付主木,张文春,等.车辆自动变速器换档规律的研究现状与展望[J].农业机械学报,2005(3):139-145
    [5]李贤彬,鲁民巧.汽车自动变速器的历史、现状及发展趋势[J].邢台职业技术学院学报,2003(3):20-23
    [6]刘钊,黄宗益,李庆.轿车用自动变速箱的发展动态[J].传动技术,2000(1)
    [7]张国胜.电控机械式自动变速器(AMT)换档规律的研究[D].西北工业大学,2005
    [8]陈超.汽车AMT换档规律及其评价方法的研究[D].西华大学,2006
    [9]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1993
    [10]彼得罗夫.汽车传动系自动操纵的理论基础[M].北京:人民交通出版社,1963
    [11]金靖诗,鲁统利. AMT车辆坡道行驶综合控制换档规律的研究[J],客车技术与研究,2010(5)
    [12]毕乾坤. AMT换档特性仿真系统的研究[D].吉林大学,2002
    [13]何忠波,白鸿柏,孔庆春,等.基于驾驶员意图的AMT车辆控制研究[J].军械工程学院学报.2005(3)
    [14]何忠波,白鸿柏,杨建春. AMT车辆频繁换档的消除策略[J].农业机械学报.2006(7)
    [15]王洪亮,刘海鸥,张威,等.越野车辆AMT消除意外换档及频繁换档策略研究[J].北京理工大学学报.2009(8)
    [16]王雷雷,吴光强,温东生,等.油门踏板快速松开时自动变速器换档控制[J].汽车技术,2011(12):14-18
    [17]克鲁托夫B.H.,武国成(译).内燃机自动调节[M].北京:新时代出版社,1996
    [18]黎苏,黎晓鹰,黎志勤.汽车发动机动态过程及其控制[J].北京:人民交通出版社,2000
    [19] Stan Quinn, Valerie Lyons. Drivetrain system design in simulink andStateflow[J]. AVEC paper9836536
    [20]葛安林,李焕松,武文治,等.动态三参数最佳换档规律的研究[J].汽车工程,1992(4)
    [21]张俊智,王丽芳,葛安林.自动换档规律的研究[J].机械工程学报,1999(4).
    [22]王丽芳.自动变速箱换档规律的确定方法研究[J].汽车技术,1998(6)
    [23] Koki Hayashi, Yoshinao Shimizu, Yasuhiko Dote, et al. Neuro fuzzytransmission control for automobile with variable loads[J]. IEEETransactions on Control Systems Technology,1995,3(1):49-53
    [24] Takahashi H, Kuroda K. A study on automated shifting and shift timing usinga driver's mental model[C]//IEEE Intelligent Vehicles Symposium,1996:300-305
    [25]葛安林,金辉,张洪坤,等.一种汽车智能换档体系的研究[J].中国机械工程,2001(5):585-589
    [26]秦贵和.机械式自动变速器控制技术研究与系统开发[D].长春:吉林工业大学,1997
    [27]王玉海,宋健,李兴坤.驾驶员意图与行驶环境的统一识别及实时算法[J].机械工程学报,2006,42(4):207-212
    [28]王玉海,宋健,李兴坤.基于模糊推理的驾驶员意图识别研究[J].公路交通科技,2005(12)
    [29] Fujita, Asano, Onishi, et al. Development of INVECS-II Sports ModeAutomatic Transmission[J]. Mitsubishi Motors Technical Review, No.7,1995
    [30] Kondo, Ikushima, Sato, et al. Development of Power-Train System CombiningGasoline Direct Injection Engine and Continuously VariableTransmission[J]. Mitsubishi Motors Technical Review,2000(12)
    [31] SangJo Choi, JeongHee Kim, DongGu Kwak, et al. Analysis and Classificationof Driver Behavior using In-Vehicle CAN-Bus Information[J]. BiennialWorkshop on DSP for In-Vehicle and Mobile Systems, Istanbul, Turkey, June17-19,2007
    [32] N. Tricot, D. Sonnerat, J. C. Popieul. Driving styles and traffic densitydiagnosis in simulated driving conditions[C]//Proceedings of the IEEEIntelligent Vehicle Symposium (IV '02), Paris, France,2002
    [33] Artur Rygula. Driving Style Identification Method Based on Speed GraphAnalysis[C]//2009International Conference on Biometrics and KanseiEngineering, Cieszyn, Poland,2009.
    [34] Nadezda Karginova. Identification of Driving Styles in Buses[D]. HalmstadUniversity,2010
    [35]吕岸,胡振程,陈慧.基于高斯混合隐马尔科夫模型的高速公路超车行为辨识与分析[J].汽车工程,2010(7)
    [36]陈雪梅,魏中华,高利.紧急情况下驾驶员行为研究[J].北京工业大学学报,2007(5)
    [37]张磊,王建强,杨馥瑞,等.驾驶员行为模式的因子分析和模糊聚类[J].交通运输工程学报,2009(5).
    [38]毛喆.机动车疲劳驾驶行为识别方法研究[D].武汉理工大学,2009
    [39]袁伟,付锐,郭应时,等.驾驶员视觉搜索模式模糊聚类评价方法[J].中国公路学报,2011(1)
    [40]王玉海,董瑞先,王松,等.基于SAE J1939协议的重型车辆坡道识别实时算法[J].汽车工程,2010,32(7):640-647
    [41]金辉,葛安林,雷雨龙,等.基于行驶环境识别的汽车自动换档系统研究[J].机械工程学报,2002,38(5):56-60
    [42]金辉,葛安林,秦贵和,等.基于纵向动力学的坡道识别方法研究[J].机械工程学报,2002,38(1):79-82
    [43]金辉,李磊,李斌虎,等.基于加速度区间判断的坡道识别方法[J].中国公路学报,2010(1)
    [44]钱立军.自动变速器控制的道路坡度计算方法研究[J].拖拉机与农用运输车,2004(6)
    [45] HONG S Bae1, JIHAN Ryu, J Christian Gerdes. Road grade and vehicleparameter estimation for longitudinal control using GPS[C]//IEEEConference on Intelligent Transportation Systems, Proceedings, ITSC,2001,4:166~171
    [46]陈士安,何仁,陆森林. AMT车辆运行状态参数识别的新方法[J].轻型汽车技术,2003,10(2):17-20
    [47] A. Vahidia, A. Stefanopouloub&H. Pengc. Recursive least squares withforgetting for online estimation of vehicle mass and road grade: theoryand experiments[J], Vehicle System Dynamics,2005(43)
    [48]史俊武,鲁统利,李小伟,等.自动变速车辆坡道行驶自适应换档策略[J].农业机械学报,2011,42(4):1-7
    [49] Hiroshi Takahashi. A Method of Predicting the Driving Environment UsingFuzzy Reasoning[C]//IEEE Roundtable Discussion on Fuzzy and NeuralSystems and Vehicle Application, Nov.1991, Tokyo
    [50] Hiroshi Yamaguchi. Automatic Transmission Shift Schedule Control UsingFuzzy Logic[C]//SAE Paper930674:1077-1088
    [51] Qiao L, Sato M, Abe K, et al. Environment recognition in powertrain control
    [C]//IEEE Instrument and Measurement Technology Conference,1995:730-734
    [52] Liu Qiao, Mitsuo Sato, Hiroshi Takeda. Learning Algorithm of EnvironmentalRecognition in Driving Vehicle[C]//IEEE Transactions on System Man, andCybernetics, No.6,1995
    [53]申水文,葛安林.基于二参数换档规律的模糊换档技术[J].汽车技术,1998,01:9-12
    [54]张泰,葛安林,郭立书,等.基于车辆负荷度的换档规律研究[J].农业机械学报,2004,35(3):9-12
    [55] Kumar Hebbale, Daekyun Kim, Chunhao Joseph Lee, et al. Smart Shift AdaptiveSchedule For Automatic Transmissions[C]//FISTA2008: F2008-06-028
    [56] Shushan Bai, Kumaraswamy V. Hebbale, et al. Automatic transmission shiftpoint control system and method of use[P]. US Patent7653469
    [57]李磊,章国胜,宋健,等.基于等效坡度的自动手动变速器换档规律研究[J].公路交通科技,2011(2)
    [58] Sasaki, et al. Shift Scheduling Method of Automatic Transmission Vehicleswith Application of Fuzzy Logic[C]//FISITA905049:215-216
    [59] S.Sakaguchi, I.Sakai, T.Haga. Application of Fuzzy Logic to ShiftScheduling Method for Automatic Transmission[C]//2nd IEEE Conference onFuzzy Systems,1993
    [60] B Mashadi, A Kazemkhani, R Baghaei Lakeh. An automatic gear-shiftingstrategy for manual transmissions[C]//Proceedings of the Institution ofMechanical Engineers,2007vol.221no.5,757-768
    [61] A. Bastian, S. Tano, T. Oyama., et al. System overview and special featuresof FATE: fuzzy logic automatic transmission expert system[C]//Proceedings of the1995IEEE International Conference on Fuzzy systems,1995, vol.2, pp.1063–1070
    [62] Yasuo Hojo. Toyota Five-speed Automatic Transmission with Application ofModern Control Theory. SAE Paper920610:948-952
    [63] Tani, Magoshi, Tanaka, et al. Development of New Active Safety System(INVECS) Incorporating Fuzzy Control Concepts[J]. Mitsubishi MotorsTechnical Review, No.6,1994
    [64]王文成.神经网络及其在汽车工程中的应用[M].北京:北京理工大学,1998
    [65]牛炳. AMT换档规律及其自适应性研究[D].上海交通大学.2009
    [66]朱振宇,许纯新,智国平,等.工程车辆自动变速智能控制系统开发与试验研究[J].机械工程学报,2004(10)
    [67]孙传铭.汽车自动变速系统的研究与设计[D].燕山大学,2006
    [68] Robert D. Mitchell. NEW ADAPTIVE TRANSMISSION CONTROL IN1994BMW5-SERIESV-8MODELS IS A MAJOR STEP FORWARD IN AUTOMATIC TRANSMISSIONPERFORMANCE[EB/OL].[2010-6-30]. http://www.unofficialbmw.com/e34/specs/all_adaptive_trans.html
    [69] Steve Brotherton. BMW Transmission Diagnostics: Mechanical vs. ElectricalShift Pressure Control[EB/OL].2000,8[2012-6-30]. http://www.continentalimports.com/ser_ic100076.html
    [70] Kazuhide TOGAI, Miki KOSO. Dynamic Scheduling Control for Engine andGearshifts: Consolidation of Fuel-Economy Optimization and ReservePower[J]. Mitsubishi Motors Technical Review, No.18,2006
    [71] Oliver Nelles. IntelligenTip: A Learning Driving Strategy for AutomatedTransmissions[C]//SAE Paper:2003-01-0534.
    [72] Allison Transmission. IMPROVE YOUR FUEL ECONOMY WITH LOAD-BASED SHIFTSCHEDULING[EB/OL].[2012-6-30]. http://www.allisontransmission.com/commercial/transmissions/fuel-efficiency/
    [73] Cho D. Nonlinear control methods for automotive system[D]. Department ofMechanical Engineering, MIT, December,1987
    [74] Moskwa John J. Automotive engine modeling for real time control[D].Department of Mechanical Engineering, MIT, May,1988
    [75] Cho D., Hedrick J. K.. Automotive power train modeling for control[J].ASME, Journal of Dynamic System, Measurement and Control,1989,111:568-567.
    [76]葛安林.装用液力自动变速器的车辆在非稳定工况下燃料经济性和动力性的研究[J].吉林工业大学学报,1981(2).
    [77]张国胜,牛秦玉,方宗德.最佳燃油经济性换档规律理论及其应用研究[J],中国机械工程,2005(3)
    [78] Hebbale, K. V., Ghoneim, Y. A.. A Speed and Acceleration EstimationAlgorithm for Powertrain Control[C]//Proceedings of the1991AmericanControl Conference, Boston, MA, June1991.
    [79]刘思峰,党耀国.预测方法与技术[M].北京:高等教育出版社,2005(8).
    [80]刘干中.一次指数平滑模型预测法及实际应用[J].广东广播电视大学学报,2001(3).
    [81]张德南,张心艳.指数平滑预测法中平滑系数的确定[J].大连铁道学院学报,2004(1).
    [82] Maurizio Filipponea, Francesco Camastrab, Francesco Masullia, et al. Asurvey of kernel and spectral methods for clustering[J]. PatternRecognition2008,41(1):176-190.
    [83] Anderberg M. Cluster analysis for applications[M]. New York: Academic,1973.
    [84]孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1)
    [85] Ruspini E H. A new approach to clustering[J], Information and control,1969,15(1):22-32
    [86]叶海军.模糊聚类分析技术及其应用研究[D].合肥工业大学,2006
    [87] Bezdek J. C. Pattern Recognition with Fuzzy Objective FunetionAlogorithms[M]. Plenum Press, New York.1981
    [88] Dunn J C. A fuzzy relative of the isodata process its use indetectingcompact well-sepaaated clusters[J]. Cybernetics and Systems,1974,3:32-57
    [89] R. Krishnapuram, J. Keller. The possibilistic C-means algorithm: insightsand recommendations[J]. IEEE Transactions on Fuzzy Systems4(3),1996,pp.385-393
    [90] R. Dave, R. Krishnapuram. Robust clustering methods: a unified view[J].IEEE Transactions on Fuzzy Systems5(2),1997, pp.270-293.
    [91] Keller J M, Pal N R,Pal K, et al.A Possibilistic fuzzy c-means clusteringalgorithm[J]. IEEE Tansactions on Fuzzy Systems,2005,13(4).
    [92] D.E. Gustafson and W.C. Kessel. Fuzzy clustering with fuzzy covariancematrix[C]//In Proceedings of the IEEE CDC, San Diego, pages761-766.1979.
    [93] R.N. Dave. Boundary detection through fuzzy clustering[C]//In IEEEIn-ternational Conference on Fuzzy Systems, pages127–134, San Diego,USA,1992.
    [94] Gath I,Geva A B. Unsupervised optimal fuzzy clustering[J]. IEEE Transon Pattern Analysis and Machine Intelligence,1989,11(7):773-780.
    [95] Krishnapuram R,Jongwoo Kim. A note on the Gustafson-Kessel and adaptivefuzzy clustering algorithms[J]. IEEE Trans on Fuzzy Systems,1999:453-461.
    [96] Bezdek J C. Pattern recognition with fuzzy objective functionalgorithms[M]. Plenum Press,1981
    [97]王彦磊,张韧,黄兵等.西太平洋海域的水声环境特征区划研究[J].热带海洋学报,2008(5)
    [98] R. Babuska, P.J. van der Veen, U. Kaymak. Improved covariance estimationfor Gustafson-Kessel clustering[C]//IEEE nternational Conference onFuzzy Systems, pages1081-1085,2002
    [99] BENSAID A M, HALLLO, BEZDEK J C, et al. Validity guided(re) clusteringwith applications to image segmentation[J]. IEEE Transactions on FuzzySystems,1996,4(2):112-123
    [100] M. Halkidi, Y. Batistakis, M. Vazirgiannis. Cluster validity methods:part I[J]. SIGMOD Record,2002,31(2):40-45
    [101] C.H.Chou, M.C.Su, E.Lai, A New Cluster Validity Measure and ItsApplication to Image Compression, Pattern Analysis and Applications[M].2004,7(2):205-220
    [102]孙才志,王敬东,潘俊.模糊聚类分析最佳聚类数的确定方法研究[J].模糊系统与数学.2001(1)
    [103]李双虎,赵会民.聚类有效性分析[J].冶金自动化,2004(增)
    [104]范九伦,裴继红,谢维信.模糊相关度与聚类有效性[J].西安电子科技大学学报[J],1998,25(1):13-16
    [105] XIE X L, BENI G. A validity measure for fuzzy clustering [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,1991,13(8):841-847
    [106] Balazs Balasko, Janos Abonyi, Balazs Feil. Fuzzy Clustering and DataAnalysis Toolbox[CP/OL]. http://www.mathworks.com/matlabcentral/fileexchange/7486
    [107] Abe S, Lan M S. A method for fuzzy rules extraction directly fromnumerical data and its application to pattern classification[J]. IEEETrans. Fuzzy Systems,1995,3(1):18-28
    [108] Wang L X. Mendel J M. Generating Fuzzy Rules by Learning from Examples[J].IEEE Trans. on System, Man, and Cybernetics.1992,22(6):1414-1427
    [109] Matthews C, Jagielska I. Fuzzy Rule Extraction form a TrainedMultilayered Neural Network[C]//In: IEEE Int'l Conf. on Neural Networks,Eastern Australia.1995:744-748
    [110] Dickerson J A, Kosko B. Fuzzy function approximation with ellipsoid rules[J]. IEEE Trans. Syst., Man, Cybern.-B,1996,26(4):542-560
    [111] Shirnojima K, FuKuda T, Hasegawa Y. RBF-fuzzy system with GA basedunsupervised/supervised learning method[C]//Proc.4th IEEE Int. Conf.Fuzzy Syst.,1995,253-258
    [112] Hiroyuki INOUE. Automatic generation of fuzzy rules using hyper ellipticcone membership functions by genetic algorithms[J]. Intelligent andFuzzy Systems,1998,6(1):65-81
    [113] J.-L. Castro, L.-D. Flores-Hidalgo, C.-J. Mantas, et al. Extraction offuzzy rules from support vector machines[J]. Fuzzy Sets Syst., vol.158,no.18, pp.2057–2077,2007
    [114] Liao, T.W., Celmins, A.K., Hammell, R.J.: A fuzzy C-Means variant forthe gen-eration of fuzzy term sets[J]. Fuzzy Sets and Fuzzy Systems135(2)(1997)241–257
    [115] Bart Kosko. Neural Networks and Fuzzy Systems[M]. Englewood Cliffs, NJ: Pretice-Hall,1992,339-361
    [116] Kamei K. An application of fuzzy clustering to controller design[J].Japan Society for Fuzzy Theory and Syst.,1996,3:448-455
    [117] Ryoke M., Tarnura H., Nakarnori Y.. Fuzzy Rule generation byhyperellipsoidal clustering[C]//Methodologies for the Conception,Design and Application of Intelligent Syst..1996, World Scientific:86-89
    [118] M. Sugeno, T. Yasukawa, A fuzzy logic based approach to qualitativemodeling[J]. IEEE Transactions on Fuzzy Systems, Vol.1, No.1,1993,pp.7-31
    [119] J. Bezdek, Hybrid models for fuzzy control[C]//Proc. of the First Int.Symp. on Integrating Knowledge and Neural Heuristics, May1994, pp.3-14
    [120] H. Berenji, Y.Y. Chen, C.C. Lee, et al. A hierarchical approach todesigning approximate-reasoning based controllers for dynamicalphysical systems[C]//Proc. of6th Conf. on Uncertainty in AI,1990, pp.362.
    [121] S.K. Sin, R.J.P. deFigueiredo. Fuzzy system design through fuzzyclustering and optimal predefuzzification[C]//Proc. of the2nd IEEEInternational Conference on Fuzzy Systems, San Francisco, CA, March1993,pp.190-193
    [122] S. Medasani, J. Kim, R. Krishnapuram. An overview of membership functiongeneration techniques for pattern recognition[J]. Internat. J. Approx.Reas.19(1998)391-417
    [123] J. Yen. Fuzzy logic-a modern perspective[J]. IEEE Trans. Knowledge andData Engineering,1999,11:153-165
    [124]刘洪波,雷雨龙,傅尧,等.基于扭矩的负载识别方法[J].吉林大学学报工学版.2012(5)
    [125] SAE. Road load measurement and dynamometer simulation using coastdowntechniques. SAE J1263,2010
    [126]韩宗奇,李亮.测定汽车滑行阻力系数的方法[J].汽车工程,2002(4)
    [127]董金松,许洪国,任有,等.基于道路试验的汽车滚动阻力和空气阻力系数计算方法研究[J].交通信息与安全,2009(1)
    [128]董敬,庄志.汽车拖拉机发动机,第2版[M].北京:机械工业出版社,1988.
    [129]李文辉,高全均,魏宏等发动机辅助制动作用及其对汽车制动性能的影响[J]内燃机工程,2002(4)
    [130] Bastian A, Tano S, Oyama T, et al. Fuzzy logic automatic transmissionexpert system[C]//Proceedings of1995IEEE International Conference onFuzzy Systems, Yokohama, Japan,1995:5-6
    [131] Masao Kawai, Hideki Aruga. Development of a Shift Control System forAutomatic Transmissions Using Information from a Vehicle NavigationSystem[C]//SAE Paper:1999-01-1095
    [132] US patent. Method for detecting cornering for a vehicle with an automatictransmission[P]. US6456923B1, Sep.24,2002
    [133] US patent. Method for the detection of curves and the determination ofthe transverse acceleration in a vehicle[P]. US5172318, Dec.15,1992
    [134] US patent. Method and system for turning detection[P]. US5691900, Nov.25,1997
    [135]刘文光,何仁.考虑油门开度快速变化的自动变速器换档控制策略[J].农业机械学报,2009(9)
    [136]席军强,丁华荣,陈慧岩.钝化换档策略[J].兵工学报,2009(3):257-261
    [137]赵六奇,金达锋译.车辆动力学基础[M],清华大学出版社,2006
    [138]张洪信,陈秉聪,张铁柱,等.车辆纵振路面谱研究[J].汽车工程,2002(6)
    [139]张洪信,陈秉聪,张铁柱,等,车辆纵向振动初步研究[J],青岛大学学报(工程技术版),2005(3)
    [140]赵济海,王哲人,关朝雳.路面不平度的测量分析与应用[M].北京:北京理工大学出版社,2000
    [141]汪铸,帅克,钱明军.利用汽车垂直振动加速度判别路面等级的方法[J].南京师范大学学报,2003,3(3):63-65
    [142]王若平,焦贤正,王国林.基于汽车车身垂直加速度的典型道路路面谱识别研究[J].汽车工程,2008(12)
    [143]李忠国.基于垂直动载的路面不平度识别研究[D].东南大学,2007
    [144]孔磊,宋健,严忆泉,沈俊.用于防抱制动系统的路面不平特征识别算法[J].机械工程学报.2007(11)
    [145]苑绍志,李静,李幼德.考虑路面不平的牵引力控制系统.吉林大学学报(工学版),2007(5)
    [146]潘旭峰.现代汽车电子技术[M].北京:北京理工大学出版社,1998.
    [147] MEYER H O. Hydrodynamische Dauerbremsachse fuer Anhaenger und Sattelau-flieger[J]. ATZ,1972,1(74):314-319.
    [148]丁能根,朱建国.发动机制动对汽车制动性能的影响分析[J].汽车技术,2002,26(3):26-28
    [149]余强,陈荫三,马建,等.客车持续制动性能试验研究[J].中国公路学报,1999,12(4)
    [150]何忠波,白鸿柏,李东伟,等. AMT车辆制动工况换档控制策略与试验[J].汽车工程,2005(4).
    [151]王玉海,宋健,李兴坤.制动状态下的AMT换档策略[J].农业机械学报,2006(1)
    [152]李磊,章国胜,宋健,等.自动手动变速器(AMT)下坡工况控制策略.清华大学学报(自然科学版),2010(8)
    [153]储德运.汽车发动机辅助制动的正确使用[J].轻型汽车技术,2005(6):36-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700