用户名: 密码: 验证码:
车内声品质主客观评价与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代社会工业日益发达,汽车的概念正由“代步工具”向“生活空间”发展和延伸,由此,人们选购汽车的性能标准除节能、安全、少污染之外,对乘坐舒适性的要求也越来越高。汽车车内噪声品质是最直观反映汽车产品品质以及影响顾客购买心理的重要指标,不同类型的汽车因其使用需求的不同其声品质特性也有较大差异,因此根据车辆功能、风格的不同以及车况和行驶条件的差异应实施相应有针对性的车内声品质主动控制。该方法可以有效避免单纯利用A声级对声音进行测量描述的片面性,克服被动噪声控制对低频噪声控制效果差的缺点,解决为改善车内声品质而增加吸隔声材料导致的生产和运输成本增加及开发周期延长等问题,实现根据驾乘者偏好对车内噪声进行个性化定制。
     本论文结合国家自然科学基金项目“车内噪声品质分析评价及其自适应主动控制方法研究”(50975119),围绕车内噪声品质分析评价方法和主动控制策略等方面的问题展开研究,建立与主观评价结果相一致的声品质客观评价模型,研究可以全面准确描述声品质听觉属性的评价指标,力求从根本上掌握车内噪声品质频谱特性,寻求科学合理的车内噪声品质评价和控制方法,以解决理论和工程实践中广泛关注的车内噪声品质主、客观评价及主动噪声控制策略对于不同功能和不同风格汽车的适应性等问题。主要研究内容如下:
     1)在确定车内声品质主、客观评价指标的基础上,分析和计算车内声品质的客观物理声学参量,构建与主观评价结果一致的车内声品质客观物理声学参量评价模型。以10辆家用轿车在不同稳态行驶工况下采集到的182个车内噪声样本为研究对象,选取其中有代表性的50个噪声样本,依据响度、尖锐度、粗糙度和抖动度4项心理声学客观评价参量数值和基于语义细分法的声品质主观评价结果,分别利用多元线性回归法、BP神经网络、广义回归神经网络及支持向量机回归原理4种方法构建车内声品质主客观评价模型,对比分析4种建模方法对于车内声品质评价的准确性和可靠性,相比较而言,支持向量机非线性回归预测模型精度高、泛化能力强、更适合解决小样本的非线性映射问题。
     2)综合考虑声品质的多维度特性,在搜集整理大量国内外参考文献及汽车企业采用的车内噪声评价指标的基础上,结合国人对声音感受的描述习惯,利用专家主观打分法和主成分分析法及因子分析法对指标进行筛选,以准确、全面、客观、真实反映人耳感受为原则,建立了由“强度”、“音调音色”、“稳定感”、“心理情感”及“指向性”5个维度组成共包含12项评价指标的“车内声品质主观评价量表”。利用该量表进行主观评价试验,分别对评价者性别、年龄构成、声品质偏好、是否具有声学经验4项影响因素进行了分析,获得并分析了因群体特性不同引起的差异性评价结果。
     3)结合我国国民的声学偏好,分析24个Bark尺度各声压幅值与听觉感受之间的关系,构建“车内声品质主观评价量表”中12项评价指标与Bark尺度各频段声压幅值之间的关系模型。基于该模型,利用LMS及B&K pulse软件对182车内噪声样本按临界频带划分后的声压幅值计算结果以及SVM声品质评价模型预测出的12项主观评价指标结果,初步形成不同音质特性的次级声源驱动信号库,构建“豪华感声品质”“运动感声品质”频谱特性模型。通过分析声音频域信息与主观评价值之间的联系,提出以声品质主动均衡化方法作为控制策略的思想。
     4)基于3种多目标多属性决策方法,提出针对不同研究需求的车内噪声综合评价方法。分别利用模糊综合评价、基于熵权的TOPSIS方法、基于语言信息的多时段多属性决策方法以及基于对方案有偏好的语言多属性决策方法,研究多被测车辆、多运行工况下具有多评价指标的车内噪声综合评价问题,并用实例验证方法的有效性。
     5)利用声品质主动均衡化方法,分别确定了“豪华感音质模式”或“运动感音质模式”下的声品质控制策略,提出分别以各Bark尺度中心频率为主频发出与初级噪声信号相位相同或相反的不同强度简谐信号,实现增强或抵消各频段初级噪声的控制方法。以上述研究为理论基础,设计开发80C51F120型单片机为硬件核心的声品质主动控制器,构建构建车内声品质主动控制系统。利用某国产轿车在4种稳态行驶工况时副驾驶员两耳旁声品质主动控制试验,验证声品质主动控制方法的有效性和可行性。
With the advance of modern industry, vehicle’s concept are developing from rideinstrument instead of walk to living space, so besides good performance such asenergy saving, safety and less pollusion, there is a growing emphasis on vehicle’s ridecomfort performance. Vehicle interior sound quality is an important index forintuitively reflecting the quality of automotive products and influencing customers’purchase psychology. Considering the variety of use demand of different types of cars,its sound quality characteristics are also quite different. Therefore, adopting effectmethod for evaluating and applying whatever active control strategies to improvevehicle interior sound quality according to the vehicle’s function and style areimportant research points. Though introducing advanced evaluation methods ofvehicle interior sound quality and active control technology, one-sidedness ofadopting the sound level A for measuring and describing sound is effectively avoided,and the disadvantage of passive noise control which has unsatisfied effect forlow-frequency noise control is well overcome, and many problems such as increasedproduction costs and longer development cycle lead by adding the absorption ofsound insulation material are perfectly solved, and individual customization of thevehicle interior noise based on the acoustic preference of driver and passengers couldbe commendably carried out as well.
     Combined with the national natural science foundation project called “Researchon Analysis Evaluation And Adaptive Active Control for Sound Quality of VehicleInterior Noise(50975119)”,evaluation and active control of vehicle interior soundquality are studied. In view to the related researches, the aims of this paper are tomaster the essence of interior sound quality spectral characteristics, investigate forscientific and reasonable evaluation and control methods, and solve the theory and engineering problems such as subjective and objective evaluation and the adaption ofactive control method for different type vehicles. Specific contents are as following:
     1) Though systemic analysis and study, objective and subjective evaluationindexes of vehicle interior sound quality are determined, then objective physicalacoustic parameters are analyzed and calculated, and the objective physical acousticparameters evaluation model which have consistent results with subjective evaluationhas been well established. Applying182interior noise samples collected by10familycars at different steady-state running conditions for the study, and according to therepresentatively selected50noise samples, objective evaluation with fourpsychoacoustic objective evaluation parameters, which contents loudness, sharpness,roughness and jitter degree based on semantic differential method have been done.Then respectively using multiple linear regression, BP neural networks, generalizedregression neural network and support vector regression principle, four kinds ofevaluation models for are vehicle interior sound quality are established. Predictionresults show that the effects of the4kinds of evaluation models.
     2) Considering the multidimensional characteristics, collecting the vehicleinterior noise evaluation indexes listed by the reference literature and automotiveenterprises in our nation and abroad, and combined with the describing habits ofdomestic people for sound feeling, many suitable evaluation indexes are selected byscoring and principal component analysis and the noise quality subjective evaluationscale which could accurately and objectively reflect human ear feelings areestablished. Then according to the validity analysis and truth test,12evaluationindexes which contents loud and quite, stiff and weak, motive, sharp and deep, fulland thin, irritability and calm, directivity, are adopt. Though subjective evaluationexperiments with the evaluation scale, difference analysis of evaluators gender, age,sound quality preference and whether acoustic experience are implemented, anddifference evaluation results caused by group identity are obtained.
     3) Combined with our national people’s acoustic preference, relationshipsbetween sound pressure amplitude of the24Bark domains and auditory perception are analyzed by subjective evaluation test and the relational model of12evaluationindexes and the sound pressure amplitude of the24Bark domains is established.UsingLMS and B&K pulse software,182vehicle interior noise samples is divided bycritical frequency band and then the amplitude of the sound pressure is calculated.Integrated with the subjective evaluation results of the12indexes predicted by theSVM noise quality evaluation models, relational model of12evaluation indexes andthe sound pressure amplitude of the24Bark domains are established by multiplelinear regression. And secondary sound source drive signal library of different soundquality characteristics is preliminary informed, then spectrum characteristic models ofluxury sound quality and sporty sound quality are established and relationshipsbetween sound audio domain information and subjective evaluation values areanalyzed.
     4) Comprehensive interior noise evaluation methods for different research needsare proposed by multi-target and multi-attribute decision method. Conventionalresearches on vehicle interior noise evaluation are limited to single-attribute ormulti-attribute of single stationary noise, and comprehensive researches onmulti-attribute of multi stationary noise is very rare. In this paper, series of method,such as fuzzy comprehensive evaluation, TOPSIS method based on entropy weight,multi-period multi-attribute decision-making methods based on linguistic informationand language multi-attribute decision-making method based on preferred program arereasonably applied and their effects are verified by many examples.
     5) According to the sound quality active the equalization control strategy of theluxury quality mode or sporty sound mode, different strength harmonic signals withsame phase or opposite phase of primary noise signals are transmitted based on theCenter frequency of the Bark threshold as dominant frequency, then the aim ofenhance or offset initial noise of each frequency could be achieved. Simulation modelof vehicle interior sound quality active control system is established and developed inMatlab/Simulink environment to verify the validity of the above algorithm. And basedon the introduced theory, vehicle interior sound quality active controller is developed by using80C51F120type microcontroller hardware. The active control test results forthe noise around two ears of copilot of a domestic car in4kinds of steady statedriving conditions show the perfect validity and feasibility of the sound quality activecontrol algorithm.
引文
[1] S. Lawrence, Finegold. Kinking Soundscape with Land Use Planning inCommunity Noise Management Policies. Proceeding of Inter-noise.2003:3855-3862
    [2] Stumpf C. Tonpsychologie[M]. Leipzig: Hirzel,1883,1890.
    [3] L N Solomon. Semantic reactions to systematically varied sounds[J]. J AcoustSoc Am,1959,31:986-990.
    [4] M Hussain,J Golles,A Ronacher,HSchiffbanker. Statistical evaluation of anannoyance index for engine noise recordings [J].SAE Technical Paper, No.911080,1991.
    [5] Schiffbanker, Hussain. Development and Application of an Evaluation Techniqueto Assess the Subjective Character of Engine Noise. SAE Paper,911081
    [6] R Bisping.Emotional effect of car interior sounds: pleasantness And power andtheir relation to acoustic key features[J].SAE Technical Paper,No.951284,1995:1203-1209.
    [7] R Bisping.Car interior sound quality:Experimental analysis by synthesis[J].ActaAcustica united with Acustica,1997,83:813-818.
    [8] R Guski.Psychological methods for evaluating sound quality and assessingacoustic information[J].Acta Acustica united with Acustica,1997,83(5):765-774.
    [9] N Chouard,T Hmpel. A semantic differential design especially developed for theevaluation of interior car sounds[C]. ASA-EAA-DAGA Joint Meeting, Berlin,1999
    [10]S Buss,N Chouard,Schulte Fortksmp.Semantic diferential tests show Interculturaldifferences and similarities in perception of car sounds[C].In Fortschritte derAkustik-DAGA2000
    [11]T Hempel,N Chouard.Evaluation of interior car sound with a new specificsemantic differential design[C],ASA-EAA-DAGA Joint Meeting,Berlin,1999.
    [12]Lijian Zhang. A Sensory Approach to Develop Product Sound Quality Criterion.SAE Paper,1999-01-1818
    [13]Otto Martner,Carsten Zerbs,B John Feng. Psychoacoustic model for the objectivedetermination of engine roughness[C].Sound Quality Symposium2002DEARBORN,Michigan:SQS02-35
    [14] Kousuke Noumura, Junji Yoshida. Perception Modeling and Quantificationof Sound Quality in Cabin. SAE paper,2003-01-1514
    [15]Sung-Jong Kim,Sang Kwon Lee,Dong-Chul Park,Min-Sub Lee, Seung-GyoonJung. Objective evaluation for the passenger car during acceleration based on thesound metric and artificial neural network[J]SAE Technical Paper,No.2007-01-2396.
    [16]Mohd Jailani Mohd Nor, Mohammad Hosseini Fouladi. Index for vehicleacoustical comfort inside a passenger car. Applied Acoustics69(2008)343–353.
    [17]W.-H. CHO, J.-G. IH, S.-H. SHIN. QUALITY EVALUATION OF CARWINDOW MOTORS USING SOUNDQUALITY METRICS. InternationalJournal of Automotive Technology, Vol.12, No.3, pp.443450(2011).
    [18]Ryota Nakasaki, Hiroshi Hasegawa and Masao Kasuga. Subjective evaluation ofsound images of air-conditioning system in a vehicle. Acoust. Sci.&Tech.32,4(2011).
    [19]毛东兴,俞悟周,王佐民.声品质成对比较法主观评价的数据检验及判据[J].声学学报,2005,30(5):468-472.
    [20]毛东兴,王勇,姜在秀.车内噪声品质低沉度参量的数学模型[J].声学技术,2006,25(6):533-539.
    [21]焦风雷,刘克,毛东兴.运用多维尺度分析进行噪声品质的主观评价[J].声学技术,2004,23(22):95-96.
    [22]焦风雷,刘克,毛东兴.基于非度量多维尺度分析的噪声声品质主观评价研究[J].声学学报,2005,30(6):521-295.
    [23]焦风雷.噪声信号声品质评价及分析方法研究[D].北京:中国科院声学研究所,2005.
    [24]刘宗巍,王登峰,梁杰.车内噪声质量的主观评价及其改善措施的研究与发展[J].汽车技术,2006,(7):1-4.
    [25]梁杰.基于双耳听觉模型的车内声品质分析与评价方法研究[D].长春:吉林大学汽车工程学院,2007.
    [26]闫靓,陈克安.低频噪声声品质评价实验研究[J].声学技术,2006,25(6):540-546.
    [27]钟秤平,陈剑,汪念平.工业产品声品质的评价与分析方法研究[J].噪声与振动控制2008,28(1):129-131.
    [28]黄煜,陈克安,郑文.声样本质量及其在声品质评价中的应用[J].电声技术,2008,32(3):40-43,52.
    [29]沈哲,左言言,宋乃华,等.影响车辆声品质听审实验的相关因素研究[J].噪声与振动控制,2008,28(6):97-100.
    [30]申秀敏,左曙光,李林,等.车内噪声声品质的支持向量机预测[J].振动与冲击,2010,29(6):66-68.
    [31]何融,左曙光,申秀敏,等.燃料电池汽车低频噪声声品质分析[J].噪声与振动控制,2010,30(3):97-99,132.
    [32]孙强.基于人工神经网络的汽车声品质评价与应用研究[D].吉林大学博士学位论文.2010.
    [33]孙慧慧.基于GA-BP神经网络的车内声品质评价研究[D].吉林大学硕士学位论文.2012.
    [34]Lueg. Process of Silencing Sound Oscillations. German Patent DRP,1933, No.655:508
    [35]Lueg. Process of Silencing Sound Oscillations. US Patent,1936, No.2043:416
    [36]M. de Diego, A. Gonzalez, G. Pinero, M. Ferrer and J. J. Garcia-Bonito.Subjective Evaluation of Actively Controlled Interior Car Noise. Acoustics,Speech, and Signal Processing,2001Proceedings (ICASSP’01)
    [37]Joachim Scheuren, Ulrich Widmann and Jens Winkler. Active Noise Control andSound Quality Design in Motor Vehicles[C]. SAE Paper,1999-01-1846
    [38]Woon-Seng Gan. Applying Equal-loudness Compensation to the Adaptive ActiveNoise Control[J]. Applied Acoustics,61(2000),183-187
    [39]A. Gonzalez, M. Ferrer, M. de Diego, G. Pinero and J. J. Garcia-Bonito. SoundQuality of Low-frequency and Car Engine Noises after Active Noise Control.Journal of Sound and Vibration[J],265(2003),663-679
    [40]Sen M. Kuo, Ravi K. Yenduri. Frequency-domain delayless active sound qualitycontrol algorithm. Journal of Sound and Vibration[J].318(2008)715–724
    [41]Leopoldo P.R.deOliveira, Karl Janssens. Active sound quality control of engineinduced cavity noise[J]. Mechanical Systems and Signal Processing.23(2009)476–488.
    [42]Leopoldo P.R. de Oliveira,Bert Stallaert,Karl Janssens.NEX-LMS A noveladaptive control scheme for harmonic sound quality control[J]. MechanicalSystems and Signal Processing,2010,24:1727-1738
    [43]Hua Bao,Issa M.S. Panahi. Psychoacoustic Active Noise Control with ITU-R468Noise Weighting and its Sound Quality Analysis.32nd Annual InternationalConference of the IEEE EMBS Buenos Aires, Argentina, August31-September4,2010
    [44]Nithin V. George, Ganapati Panda. A robust filtered-s LMS algorithm fornonlinear active noise control. Applied Acoustics,2012,73(8):836-841.
    [45]X.L. Tang, C.M.Lee. Time-frequency-domain filtered-x LMS algorithm foractive noise control. Journal of Sound and Vibration,2012,331(23):5002-5011
    [46]马大猷.混响声场的有源控制[J].声学学报,1991,16(5):321–329.
    [47]马大猷.混响声场的有源控制[J].声学学报,1991,16(5):321–329.
    [48]马大猷.室内有源噪声控制的潜力[J].声学学报,1993,18(3):178–185.
    [49]马大猷.室内断续噪声的有源控制[J].声学学报,1995,20(2):106–114.
    [50]田静.关于单极子次级声源管道有源降噪能量机制的理论分析[J].声学学报,1992,17(5):369–374.
    [51]赵洪亮,徐健,李晓东,等.一种改进的选频有源噪声控制算法[J].声学学报,2004,29(6):499–506.
    [52]赵剑,徐健,李晓东,等.基于多模型的自适应有源噪声控制算法研究[J].振动工程学报,2007,20(6):549–555.
    [53]杨楠,沙家正,吴启学.单指向性声源的空间有源消声[J].应用声学,1992,11(5):14–19.
    [54]季振林,沙家正.气流管道有源消声器声学性能分析[J].南京大学学报(自然科学),1995,31(4):560–567.
    [55]马大猷.室内有源噪声控制的潜力[J].声学学报,1993,18(3):178–185.
    [56]马大猷.室内断续噪声的有源控制[J].声学学报,1995,20(2):106–114.
    [57]赵洪亮,徐健,李晓东,等.一种改进的选频有源噪声控制算法[J].声学学报,2004,29(6):499–506.
    [58]田静.关于单极子次级声源管道有源降噪能量机制的理论分析[J].声学学报,1992,17(5):369–374.
    [59]赵剑,徐健,李晓东,等.基于多模型的自适应有源噪声控制算法研究[J].振动工程学报,2007,20(6):549–555.
    [60]杨楠,沙家正,吴启学.单指向性声源的空间有源消声[J].应用声学,1992,11(5):14–19.
    [61]季振林,沙家正.气流管道有源消声器声学性能分析[J].南京大学学报(自然科学),1995,31(4):560–567.
    [62]卢晶,邱小军,徐柏龄.格型自适应零点滤波器在有源噪声控制中的特性分析及其常规算法的比较[J].南京大学学报(自然科学),2004,40(4):438–445.
    [63]M. Wu, X. Qiu, G. Chen. An Overlap-Save Frequency-Domain Implementationofthe Delayless Subband Anc Algorithm[J]. IEEE Trans. Audio, Speech, andLanguage Processing,2008,16(8):1706–1710.
    [64]M. Wu, G. Chen, X. Qiu. An Improved Active Noise Control Algorithm withoutSecondary Path Identification Based on the Frequency-Domain SubbandArchitecture[J]. IEEE Trans. Audio, Speech, and Language Processing,2008,16(8):1409–1419.
    [65]88M. Wu, X. Qiu, G. Chen. The Statistic Behavior of Phase Error forDeficient-Order Secondary Path Modeling[J]. IEEE Signal Processing Letters,2008,15:313–316.
    [66]陈克安.有源噪声控制[M].北京:国防工业出版社,2003:1–17.
    [67]陈克安,马远良,孙进才.弹性结构封闭空间有源消声理论研究[J].振动工程学报,1993,6(4):342–348.
    [68]陈克安,马远良.应用于有源消声的间歇自适应RLS算法[J].电子学报,1995,23(7):83–86.
    [69]李海英,陈克安,孙进才.自适应有源消声中的FMLMS算法研究及实现[J].声学学报,1997,22(2):145–150.
    [70]陈克安,王进军,尹雪飞.次级通路特性及对有源控制算法的影响[J].振动工程学报,2005,18(4):480–485.
    [71]陈克安,尹雪飞.应用于多通道有源控制的自适应组合逆算法[J].信号处理,2006,22(3):366–369.
    [72]胡涵,于海勋,陈克安.一种基于在线建模的自适应有源噪声控制快速算法[J].电子测量技术,2007,30(8):48–53.
    [73]柳琦,陈克安,胡涵.封闭空间内的多模型自适应有源前馈噪声控制[J].电声技术,2008,32(3):76–82.
    [74]黎中伟,吕跃飞,吴亚峰,等.自适应陷波器滤波-X LMS算法稳定性分析[J].西北工业大学学报,1995,13(2):270–275.
    [75]任辉,黎中伟,吴亚峰,等.主动噪声控制声学通道的实验辨识[J].应用声学,1997,16(3):36–40.
    [76]吴亚峰,黎中伟,任辉,等.多通道有源噪声控制系统设计[J].西北工业大学学报,2001,19(2):212–215.
    [77]吴亚峰.三维闭空间主动噪声控制的实验研究[J].振动与冲击,2001,20(4):33–35.
    [78]吴亚峰,李江红,戴杏珍.螺桨飞机舱内噪声地面模拟及其主动控制[J].噪声与振动控制,2001,(1):33–35.
    [79]吴亚峰,黎中伟,任辉.应用于主动噪声控制的实时DSP系统[J].振动与冲击,2002,21(2):91–93.
    [80]鲍雪山,王杰,徐新盛.两参考输入复滤波NLMS主动噪声控制系统性能分析[J].噪声与振动控制,2006,(3):99–103.
    [81]鲍雪山,徐新盛,吴英姿.一种新的具有信噪比处理增益的前馈型ANC系统设计[J].振动与冲击,2007,26(11):36–40.
    [82]吴英姿,鲍雪山,徐新盛,等.基于峰值预滤波次级通道在线建模的主动噪声控制系统[J].振动与冲击,2008,27(1):89–92.
    [83]吴英姿,鲍雪山,徐新盛.应用频域ICA对参考输入进行预处理的ANC系统[J].振动与冲击,2008,27(8):81–84.
    [84]伭炜,鲍雪山,徐新盛.一种改进型FX结构在线建模有源噪声抵消系统[J].振动与冲击,2008,27(4):78–81.
    [85]李想,鲍雪山,王建国.基于抗串扰自适应噪声抵消器的参考输入预处理ANC系统[J].振动与冲击,2008,27(10):111–114.
    [86]鲍雪山,王杰,徐新盛.两参考输入复滤波NLMS主动噪声控制系统性能分析[J].噪声与振动控制,2006,(3):99–103.
    [87]鲍雪山,徐新盛,吴英姿.一种新的具有信噪比处理增益的前馈型ANC系统设计[J].振动与冲击,2007,26(11):36–40.
    [88]吴英姿,鲍雪山,徐新盛.应用频域ICA对参考输入进行预处理的ANC系统[J].振动与冲击,2008,27(8):81–84.
    [89]李想,鲍雪山,王建国.基于抗串扰自适应噪声抵消器的参考输入预处理ANC系统[J].振动与冲击,2008,27(10):111–114.
    [90]吴英姿,鲍雪山,徐新盛,等.基于峰值预滤波次级通道在线建模的主动噪声控制系统[J].振动与冲击,2008,27(1):89–92.
    [91]G.Jin,T.Yang,Y.Xiao,et al.A Simultaneous Equation Method-based Online
    [92]Secondary Path Modeling Algorithm for Active Noise Control[J].Journal ofSoundand Vibration,2007,303(3-5):455–474.
    [93]朱海潮,施引,黄映云,等.气流管道有源降噪研究[J].应用声学,1995,14(1):13–18.
    [94]朱海潮,施引.空间有源消声实验研究[J].应用声学,1996,15(3):12–17.
    [95]于华民,朱海潮,施引.基于非最小相位系统自适应逆控制的有源消声研究[J].振动工程学报,2003,16(3):331–334.
    [96]于华民,朱海潮,施引.一种自适应逆控制管道有源消声系统及其实现[J].振动与冲击,2004,23(4):116–118.
    [97]常振臣,王登峰,郑联珠,等.车内噪声主动控制系统设计与试验研究[J].公路交通科技,2003,20(6):75–78.
    [98]王登峰,刘学广,刘宗魏,等.基于发动机转速的车内有源消声控制策略和自适应算法[J].公路交通科技,2004,21(10):126–129.
    [99]刘学广,王登峰,刘宗魏,等.车内多次级声源自适应有源消声研究[J].农业机械学报,2005,36(2):27–30.
    [100]刘宗魏,王登峰,姜吉光,等.用主动噪声控制法改善车内声品质[J].吉林大学学报(工学版),2008,38(2):258–262.
    [101]刘学广.车内低频噪声多次级声源有源消声系统研究[D].长春:吉林大学,2004.
    [102]刘宗巍.车内噪声品质建模分析与自适应主动控制研究[D].长春:吉林大学,2007.
    [103] J.Ni,F.Li.A Variable Step-Size Matrix Normalized Subband Adaptive Filter[J].IEEE Trans.Audio,Speed,and Language Processing,2010,18(6):1290–1299.
    [104]孙旭,陈端石.基于无限脉冲响应滤波器的自适应滤波E型有源噪声控制算法[J].声学学报,2003,28(2):171–176.
    [105]饶柱石,罗超,耿厚才,等.复杂封闭空间有源消声系统的建模新方法[J].振动工程学报,2003,16(4):415–419.
    [106]宫赤坤,仇立选,单世宝.多通道自适应有源噪声控制研究[J].噪声与振动控制,2008,(1):33–35.
    [107]宫赤坤,张从敏.基于卡尔曼滤波的有源噪声自适应逆控制[J].噪声与振动控制,2008,(3):96–99.
    [108]张晓宇,仪垂杰.基于神经网络的有源噪声控制实验研究[J].噪声与振动控制,2009,(2):66–68.
    [109]张晓宇,仪垂杰.多通道反馈主动噪声分布控制系统的实现[J].噪声与振动控制,2009,(3):59–62.
    [110]张兴华,任雪梅.基于2阶Renyi熵的自适应主动噪声控制[J].控制理论与应用,2009,26(12):1401–1404.
    [111]张兴华,任雪梅,黄鸿.自适应非线性FIR主动噪声控制[J].北京理工大学学报,2010,30(5):532–536.
    [112] X.Zhang,X.Ren.A Novel Active Noise Control Using Neural Networkswithout the Secondary Path Identification[C]//Proceedings of the8th WorldCongress on Intelligent Control and Automation,2010.2010:5037–5041.
    [113]吴斌,费仁元,周大森,等.基于神经网络的动反馈管道有源消声系统声学通道辨识[J].机械工程学报,2002,38(2):100–103.
    [114]刘太文,伊善贞,费仁元.自适应有源消声次级源安装角度优化试验与研究[J].北京工业大学学报,2004,30(3):274–277.
    [115] Y.Zhou,Q.Zhang,X.Li,et al.Analysis and DSP Implementation of an ANCSystem Using a Filtered-Error Neural Network[J].Journal of Sound and Vibration,2005,285(1-2):1–25.
    [116] Q.Zhang,W.S.Gan,Y.Zhou.Adaptive Recurrent Fuzzy Neural Networks forActive Noise Control[J].Journal of Sound and Vibration,2006,296(4-5):935–948.
    [117]张涛,周亚丽,张奇志.Filter-S LMS算法的非线性有源噪声控制的研究[J].噪声与振动控制,2008,(2):62–65.
    [118]李爱琴,张奇志,周亚丽.非线性逆控制在有源噪声控制的应用[J].噪声与振动控制,2008,(2):66–68.
    [119] L.Bai,Q.Yin.A Modified NLMS Algorithm for Adaptive NoiseCancellation[C]//IEEE International Conference on Acoustics Speech and SignalProcessing (ICASSP),2010.2010:3726–3729.
    [120] http://baike.baidu.com/view/829792.htm#2
    [121]梁杰.基于双耳听觉模型的车内声品质分析与评价方法研究[D].长春:吉林大学汽车工程学院,2007.
    [122] Kendall M G,Smith B B.On the method of paired comparisons[J]. Biometrika31,1940:324-325.
    [123] Bradley R.A,Terry M.E.The method of paired comparisons[J].Biometrika39,1952:324-345
    [124] Chouard N,Weber R.On the influence of the ordering of noise insequencesfor paired comparison judgment utilization.Yokohama,Japan:Proceeding ofInter-noise,1994:1089-1092.
    [125] Groβmann H,Holling H,Schwabe R.Optimal designs for main effects inlinear paired comparison models[J].Journal of Statistical Planning andInference,126,361-376.
    [126] H.David.TheMethodofPairedComParisons.OxfordUniversityPress1988
    [127] N.Kousgaard. The Applieation of Binary Paired Comparisons to ListeningTests. Symp.on perception of Reproduced Sound, Denmark1987
    [128] Chouard N,Hmpel T.A semantic differential design especially developed forthe evaluation of interior car sounds[C].Berlin:ASA-EAA-DAGA,1999.
    [129] Buss S,Chouard N,Schulte-Fortkamp B.Semantic differential tests showIntercultural differences and similarities in perception of car sounds[C].Fortschritte der Akustik:DAGA,2000.
    [130] Hempel T,Chouard N.Evaluation of interior car sound with a new specificsemantic differential design[C].Berlin:ASA-EAA-DAGA,1999.
    [131] Hempel T,Chouard N.Evaluation of interior car sound with a new specificsemantic differential design[J].J Acoust Soc Am,1999,105(2):1280-1285.
    [132] Parizet E.Paired comparison listening tests and circular error rates[J].ActaAcustica united with Acustica,2002(88):594-598.
    [133]陈克安,马苗,张燕妮等.汉语语境下的车辆噪声听觉属性评价与分析[J].声学学报(中文版).2008,33(4).348-353.
    [134] Kuwano S, Fastl H, Namba S, Nakamura S, Uchida H. Subjective evaluationof car door sound. In: Proceedings of the Sound Quality Symposium SQS;2002.
    [135] http://baike.baidu.com/view/4232135.htm.
    [136] Steinberg, L.(2005).Psychological control: Style or substance? In J. G.Smetana(Ed.), New directions for child and adolescent development: Changes inparental authority during adolescence(pp.71-78). San Fransico: Jossey-Bass.
    [137] L·克罗克,J·阿尔吉纳.经典和现代测试理论导论[M].华东师范大学出版社,2004,P246.
    [138]陈小平,胡泽.听觉临界频带及其在声频信号处理中的应用[J].北京广播学院学报(自然科学版),2004,11(2):28-35.
    [139] Kousuke Noumura, Junji Yoshida. Perception Modeling and Quantificationof Sound Quality in Cabin. SAE paper,2003-01-1514
    [140]罗党,王淑英.决策理论与方法[M].北京:机械工业出版社,2010.
    [141] C.H.汉森,S.D.施耐德著,仪垂杰等译.噪声和振动的主动控制[M].科学出版社:北京.2002.
    [142] Y.S. Wang, C.-M. Lee,D.-G.Kim. Sound-quality prediction for nonstationaryvehicle interior noise based on wavelet pre-processing neural network model[J].Journal of Sound and Vibration.2007,299:933-947.
    [143] H.L.olson,E.G.May. Eleetronie sound absorber [J].Journal of the AeoustiealSoeiety of America,1953,25(6):1130-1136
    [144]刘恩泽,严济宽,陈端石.噪声主动控制系统研究概况及发展趋势.噪声与振动控制,1999,(3):
    [145]徐永成等.有源消声技术与应用评述.国防科技大学学报,2001,23(2):
    [146] Nelson P A, Elliott S J. Active control of sound[M]. Academic Press, London,1993.
    [147] Manpeil Tamamura,Eiji Shibata. Applieation of active noise control forengine related cabin noise. JSAE Review.1996.17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700