用户名: 密码: 验证码:
预应力混凝土折线塔斜拉桥力学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力混凝土折线塔斜拉桥是一种新型的斜拉桥结构,其结构新颖,造型独特,具有良好的景观效果。沈阳市富民桥是世界上第一座也是至今为止唯一一座预应力混凝土折线塔单索而斜拉桥,其与直塔斜拉桥和斜塔斜拉桥相比,结构的受力和施工方法发生了很大的变化。本文以该桥为工程背景,对桥梁特殊结构的力学特点进行了理论分析,并利用现代有限元数值方法和模型试验方法,对混凝土折线塔斜拉桥的主要力学特性进行了分析研究。
     斜拉桥的主塔主要承受斜拉索传递的巨大轴力,同时承受一定不平衡荷载下的弯矩。但对于折线塔斜拉桥来说,由于主塔存在折角,在主塔轴线发生变化的折角处巨大的轴向力传递方向发生了变化,因此折角处将产生一较大水平向拉力,导致折线塔塔壁产生面外弯曲,因此国外已建折线塔斜拉桥均采用钢塔来解决折角处的应力集中等问题。本文从分析混凝土折线塔的受力特点出发,通过有限元数值分析和模型试验研究,对混凝土折线塔锚固区、主塔折角等关键部位的力学特性进行了分析研究。
     对国内外常见斜拉桥合理成桥索力和合理施工索力的优化方法进行了分析研究,比较了各种优化方法的优缺点。根据折线塔斜拉桥的静力平衡特征,给出预应力混凝土折线塔斜拉桥主要构件尺寸的设计方法,进一步采用最小弯曲能量法并结合假载法及内力平衡法来确定混凝土折线塔斜拉桥合理成桥索力。充分考虑到混凝土折线塔施工阶段的受力特点,确定主塔的浇筑顺序,采用最小二乘法对全桥进行正装迭代计算确定拉索初张力。
     分别采用反应谱法和时程分析法,对同等跨径下的预应力混凝土直塔斜拉桥和预应力混凝土折线塔斜拉桥在支承体系和不对称体系下的抗震性能进行了分析研究。分析结果表明预应力混凝土直塔斜拉桥和预应力混凝土折线塔斜拉桥动力特性基本吻合,主塔造型的改变对斜拉桥的动力特性的影响比较小。不对称体系频率计算值普遍高于支承体系,不对称体系斜拉桥整体刚度大于支承体系,两种体系在地震荷载作用下,塔顶位移和梁端位移相差不大,因此,采用不对称体系可以省去其中一个主塔下造价昂贵的大吨位支座,并且有利于桥梁的日后维修养护工作
     依据相似理论,结合沈阳市富民桥特点,对全桥施工阶段受力情况进行全过程模拟试验及成桥后荷载试验。实测了施工过程和成桥后在各种荷载作用下主梁及主塔控制截面应力和斜拉索索力。试验结果表明本文提出的预应力混凝土折线塔斜拉桥索力确定方法确定的成桥索力和初张力,能保证折线塔主梁、主塔各控制截面应力均能满足规范要求,且实测索力与理论计算索力吻合较好,可保证桥梁正常运行。
The prestressed concrete cable-stayed bridge with fold-line tower is a new structure, for its novel structure and unique shape, it has a good landscape. Fumin Bridge, which Located in Shenyang, is the first and the only prestressed concrete cable-stayed bridge with fold-line tower and a single cable plane in the world. Compared with straight tower and inclined tower cable-stayed bridge, its structure and basic mechanical property changes a lot. Based on the finite element theory and the model test, the behaviors and mechanisms of Fumin Bridge were analyzed.
     The main tower of the cable-stayed bridge subjected to axial force and bending moment transmitted from the cable. Because of the axial loading transmit direction changed at the fold area, a large amount of tension force generated, and the tower wall bended out-of-plane. Due to the request of the structure, cable-stayed bridge with fold-line tower which has been built abroad all used steel tower to solve the stress concentration at the fold area. Based on the finite element analysis and experimental study, the mechanic properties of the key parts on concrete fold-line tower such as cable, tower anchorage area were analyzed.
     Optimization method of reasonable cable force in the finished and construction cable-stayed bridge was analyzed, and the advantages and disadvantages of each method were obtained. According to the static balance features of the fold-line tower cable-stayed bridge, the design method of the main component of prestressed concrete cable bridge with fold-line tower was introduced. Moreover, the least bending energy method and stress balance method were adopted to determine the reasonable cable force in the finished cable-stayed bridge. Considering the mechanic property of the concrete fold-line tower under construction stage, pouring order of the tower was determined. Least square method and iterative calculation was adopted to determine the initial cable force.
     Based on the response spectrum and time history method, the seismic performance of prestressed concrete cable-stayed bridge with straight-line tower and fold-line tower under supporting system and asymmetric system were analyzed. The results showed that the dynamic characteristics of prestressed concrete cable-stayed bridge with straight-line tower and fold-line tower basically agreements. The changes of tower shape have little influence to the dynamic characteristics of cable-stayed bridge. The calculated results show that frequency number and integral rigidity of asymmetric system were larger than supporting system. The differences between tower-top displacement and beam-end displacement of the two systems under seismic load were little. So, a costly large-tonnage bearing could be saved when the asymmetric system was adopted, which also gave advantage to the future maintenance of the bridge.
     Model tests on the full bridge under construction process and finished stage were carried out, and the controlling section stress and the cable force under various loads of main beam were obtained. The experiment results showed the method to determine the finished and initial cable force could assure the controlling section stress of prestressed concrete cable-stayed bridge, and the measured cable force and theoretical value were good agreements with the codes.
引文
1.严国敏.现代斜拉桥[M].成都:西南交通大学出版社,1996.
    2.陈明宪.斜拉桥建造技术[M].北京:人民交通出版社,2003.
    3. Chronology of Bridge, Bridgeman,2000.
    4Troitsky M S斜拉桥理论与设计[M].北京:中国铁道出版社,1980.
    5. Russell H. Beautiful Thing[M]. Bridge Design and Engineering,1999.
    6.周念先,杨共树.预应力混凝上斜张桥[M].北京:人民交通出版社,1989.
    7.林元培.斜拉桥[M].北京:人民交通出版社,1994.
    8. Gimsing S J. Cable supported bridges(second) [M]. Chichester:John Wiley,1997.
    9.Podolny W, Scalzi J B. Construction and Design of cable-stayed bridge [M]. New York: John Wiley,1976.
    10. Michel V. Recent evolution of cable-stayed bridges [J]. Engineering Structures,1999, 21(8):737-755.
    11.楼庄鸿.多孔斜拉桥[J].公路交通科技,2002,19(2):22-28.
    12.马坤全.大跨径斜拉桥建设与展望[J].国外桥梁,2000,4:13-15.
    13.刘钊.浅谈斜拉桥的发展及其施工技术(上)[J].铁道建设,1995,37(4):2-8.
    14.刘钊.浅谈斜拉桥的发展及其施工技术(下)[J].铁道建设,1996,39(2):15-18.
    15.刘菊玖,杨继前,汪正兴.斜拉桥技术的最新演变[J].国外桥梁,2000,22(1):67-75.
    16.曾宪武,王永珩.桥梁建设的回顾与展望[J].2001年桥梁学术讨论会论文集.
    17.香港昂船洲大桥设计国际竞标[J].技术论坛,2000,1:l-10.
    18.王文涛,梁奎基.国外大跨径斜拉桥使用状况综述[J].国外公路,1996,16(6):13-16.
    19.经柏林.斜拉桥的现状与展望[J].中国市政工程,2002,1:1-5.
    20.蔡国宏.斜拉桥的发展经验与展望[J].国外公路,1997,17(4):15-18.
    21.何林兴.特大跨径桥梁新设想[J].国外公路,2000,20(3):65-72.
    22.王伯惠.斜拉桥结构发展和中国经验[M].北京:人民交通出版社,2003.
    23.刘士林,梁智涛,侯金龙,等.斜拉桥[M].北京:人民交通出版社,2002.
    24.周孟波,刘自明,王邦楣,等.斜拉桥手册[M].北京:人民交通出版社,2004.
    25.铁道部大桥局设计院技术室.荷兰鹿特丹港埃拉斯姆斯桥的设计.1998.
    26.铁道部大桥局设计院技术室.荷兰鹿特丹港的标志桥.1996.
    27.铁道部大桥局设计院技术室.西班牙Ebro河桥和Lerez河桥的斜桥塔.1998.
    28.严国敏.西班牙阿拉米罗桥.1996.
    29.西班牙建筑大师Santiago Calatrava设计作品.1996.
    30.章曾焕,卢永成,方亚非,等.哈尔滨太阳桥无背索斜拉桥设计要点[J].中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议,2002.
    31.邵旭东.长沙洪山大桥(无背索斜塔斜拉桥)设计[J].中国公路学会桥梁和结构工程学会2000年全国桥梁学术会议,2000.
    32.王福春.沈阳富民桥设计及主要技术特点[J].中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议,2002.
    33.刘永健,周绪红,颜东煌,等.单边索斜塔钢—混凝土结合梁斜拉桥塔梁根部应力分析[J].中国公路学报,2003,(2):12-19.
    34.张雪,马龙飞,王莹,等.非对称布索斜塔斜拉桥的静力平衡特征分析[J].北方交通,2007,(12):
    35.马牛静,李平杰.斜塔斜拉桥的力学分析[J].北方交通,2008,(10).
    36.蒋成强,孙学先,袁琦.斜塔斜拉桥合理成桥索力研究[J].城市道桥与防洪,2009,(4).
    37.颜东煌,刘光栋.确定斜拉桥合理施工状态的正装迭代法[J].中国公路学报,1999,(2).
    38.范立础,杜国华.斜拉索索力优化及非线性理想倒退分析[J].重庆交通学院学报,1992,(3).
    39.梁志广,李建中.斜拉桥施工初始索力的确定[J].工程力学,2000,17(3):121-126.
    40.程进,江见鲸,肖汝成,等ANSYS次开发技术及在确定斜拉桥成桥状态初始恒载索力中的应用[J].公路交通科技,2002,19(3):50-52.
    41. Wang P H. Initial shape of cable-stayed bridges [J]. Computers & Structures,1993,46(1).
    42.黄侨,吴红林,李志波.确定斜拉桥施工索力的正装计算法[J].哈尔滨工业大学学报,2004,36(12):1702-1704.
    43.李明,袁向荣,陈锋.斜拉桥施工阶段索力的最优化调整[J].石家庄铁道学院学报,2002,15(3):14-17.
    44.贾丽君,肖汝诚,孙斌,等.确定斜拉桥施工张拉力的影响矩阵法[J].苏州城建环保学院学报,2000,13(4):21-27.
    45.付军.预应力混凝土子母斜拉桥索力及施工优化研究[D].武汉:武汉理工大学,2006.
    46. Holland J H. Adaptation in natural and artificial systems [M]. University of Michigan Press,1975.
    47. Rajeev S, Krishnamoorthy C S. Discrete optimization of structures using genetic algorithms [J]. Journal of Structural Engineering,1992,118(5):1233-1250.
    48. Jenkins W M. Towards structural optimization via the genetic algorithm [J]. Computers & Structures,1991,40(5):1321-1327.
    49. Ramasamy J V, Rajasekaran S. Artificial neural network and genetic algorithm for the design optimization of industrial roofs-A comparison[J]. Computers & Structures,1996, 58(4):747-755.
    50.交通部公路研究院.公路工程抗震设计规范(JTJ004-89)[S].北京:人民交通出版社,1990.
    51.中华人民共和国标准.铁路工程抗震设计规范(GBJ111-87)[S].北京:中国计划出版社,1989.
    52. Standard specifications for highway bridges, division I-A seismic design[S]. American Association of State Highway and Transportation Officials, USA,1996.
    53. Eurocode8. Structures in seismic region design[S]. part2:Bridges (draft),1993.
    54.日本道路协会.道路桥示方书—抗震设计篇[M].1996.
    55.李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2003.
    56.范立础.桥梁抗震[M].上海:同济大学出版社,2001.
    57.范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    58.朱位秋.随机振动[M].北京:科学出版社,1992.
    59.星谷胜,常宝琦译.随机振动分析[M].北京:地震出版社,1977.
    60.纽兰,方同译.随机振动与谱分析概论[M].北京:机械工业出版社,1980.
    61.庄表中.非线性随机振动理论及应用[M].杭州:浙江大学出版社,1986.
    62.徐昭鑫.随机振动[M].北京:高等教育出版社,1990.
    63.俞载道,曹国敖.随机振动理论及其应用[M].上海:同济大学出版社,1988.
    64. Yamamura N, Hiroshi T. Response analysis of flexible MDF systems for multiple-support excitations [J]. EESD,1990,19:345-357.
    65. Berrah M K, Eduardo K. A modal combination rule for spatially varying seismic motions [J].EESD,1993,22:791-800.
    66. Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitaions [J]. Earthquake Engineering and Structural Dynamics,1992,21:713-740.
    67. Kiureghian A D, Neuenhofer A. A discussion on seismic random vibration analysis of multi-support seismic excitations [J]. Journal of Engineering Mechanics,1995,121: 1031-1037.
    68. Yutaka N, Kiureghian A D, David L. Multiple-support response spectrum analysis of the golden gate bridge[M]. Berkeley:University of California at Berkeley,1993.
    69. Ernesto H Z, Vanmarcke E H. Seismic random vibration analysis of multi-support structural systems [J]. ASCE, Journal of Engineering Mechanics,1994,120:1107-1128.
    70. Zavoni E H, Vanmarcke E H. Seismic random-vibration analysis of multi-support structural systems [J]. Journal of Engineering Mechanics, ASCE,1994,120(5):1107-1128.
    71.刘洪兵.大跨度斜拉桥多支承激励地震响应分析[J].土木工程学报,2001,34(6)38-44.
    72.刘洪兵.多支承激励地震响应分析的简化反应谱法[J].中国公路学报,2002,15(1):34-37.
    73.项海帆.斜张桥在行波作用下的地震反应分析[J].同济大学学报,1983, 11(2):1-8.
    74.范立础,王君杰,陈玮.非一致地展激励下大跨度斜拉桥的响应特征[J].计算力学学报,2001,18(3):358-363.
    75. Walter P, John B S. Construction and Design of Cable-Stayed Bridge [J]. John Wiley, 1976:1-10.
    76. Ito M, Fuji Y, Miyata T, et al. Cable-Stayed Bridges:Recent Developments and their Future [J]. Elsever Science Publishers,1991:1-28.
    77. Rene W, Bernard H, Walmar I, et al. Cable-Stayed Bridges [J]. London:Thams Telford Ltd,1988:1-12.
    78. Tang M C. Design of Cable-Stayed Girder Bridges [J]. Journal of Structural Division, ASCE,1972,98(8):1789-1802.
    79. Reis A J, Oliveira J J. The Europe Bridge in Portugal:Concept and Structural Design [J]. Journal of Constructional Steel Research,2004,60(4):363-372.
    80. Chrimes M M. The Development of Concrete Bridges in the British Isles Prior to 1940 [J]. Structures and Buildings,1996,116(3-4):404-431.
    81. Miyamoto A, Kawamura K, Nakamura H. Development of a Bridge Management System for Existing Bridges [J]. Advances in Engineering Software,2001,32(10-11):821-833.
    82. Smyth W J. UK Concrete Bridges since 1940 [J]. Structures and Buildings,1996, 116(3-4):432-448.
    83. Jacques B. Design Development of Steel-Concrete Composite Bridges in France[J]. Journal of Constructional Steel Research,2000,55(1-3):229-243.
    84. David P, Billington A N. History and Aesthetics of Calble-Stayed Bridges [J]. Journal of Structural Engineering,1990,117(19):3103-3134.
    85. Troitsky M S. Cable-Stayed Bridge Theory and Design [J]. London:Granada Publishing Ltd,1977:12-64.
    86. Cetin Y S, Tanvir W. Analysis and Design of Bridges [J]. Boston:Martimas Nijhoff Publishers,1984:1-43.
    87. Baidar B, Leslie G J. Bridge Analysis Simplified [J]. New York:Mcgraw-Hill Book Company,1985:1-35.
    88. Charies S. Whitney Bridges [J]. New York:Crown Publishers Inc,1983:1-56.
    89. Thomas G L, Dennis W. Double Diamonds:New Brand for a Texas Bridge [J]. Civil Engineering ASCE,1992,70(4):42-45.
    90. Cope R J. Concrete Bridge Engineering Performance and Advances [J]. England: Elsenier Applied Science Publishers Ltd,1987:1-39.
    91. Ernst H J. Der E-Modul von Seilen unter Beruchtigun des Durchanges[J]. Der Bauingeniear,1965,40(2).
    92. Walter P. Concrete Cable-Stayed Bridges [J]. Transportation Research Board National Academy of Science Bridge Engineering.1978,2(8):65-72.
    93. Baron F, Lien S Y. Analytical Studies of a Cable-Stayed Bridge [J]. Computers & Structures,1973, (3):443-465.
    94.单炜,李玉顺,于玲,等.哈尔滨四方台大桥索塔锚固区节段足尺模型试验研究[J].中国公路学报,2005.
    95.李立峰,邵旭东,曾田胜.斜拉桥小尺寸预应力索塔的布束设计及试验研究[J].公路,2000,(10).
    96.严少波,裴志勇.斜拉桥索塔锚固区空间应力分析模型[J].国外公路,2000(3).
    97.李新平,梁敏.斜拉索塔索锚固区局部应力分析[J].工程设计CAD与智能建筑,2001(10).
    98.韩富庆.安庆长江公路大桥索塔锚固区受力分析[J].合肥工业大学学报(自然科学 版),2002(6).
    99.刘孝尧.铜陵长江公路大桥简介[J].华东公路,1996(2).
    100.沈桂平,顾萍.斜拉桥索梁锚固区空间应力分析[J].上海铁道大学学报(自然科学版).1996(4).
    101.项贻强.都阳湖口大桥索塔节段足尺模型试验与分析研究[J].中国公路学报,2000,13(4).
    102.董明,李新乐,李睿,等.景洪澜沧江斜张桥索塔顶端空心段的测试分析[J].昆明理工大学学报,2000,25(4).
    103.项贻强.南京长江二桥南汉桥斜拉索塔节段足尺模型的研究[J].士木工程学报,2000(1).
    104.李兴华.芜湖长江大桥索塔锚固区模型试验研究[J].中国铁道科学,2001,22(5).
    105.张望喜.武汉军山长江公路大桥索塔锚固区带锚块足尺节段模型试验研究[J].中南公路工程,2001(4).
    106.东南大学华东预应力技术联合开发中心.润扬长江公路大桥北汉斜拉桥索塔锚固区足尺模型试验研究报告[R].南京:东南大学华东预应力技术联合开发中心,2002.
    107.唐红元.斜拉桥预应力混凝土索塔关键问题研究[D].南京:东南大学,2006.
    108. Kasuga H, Arai J E, Breen K. Optimum Cable-Force Adjustment in Concrete Cable-Stayed Bridges [J]. Journal of Structural Engineering,1995,121(4):685-694.
    109. Baumal A E, Macphee J J, Calamai P H. Application of Genetic Algorithms to the Design Optimization of an Active Vehicle Suspension System Homogenization [J]. Comput Meth Appl Mech Engrg,1998,163:87-94.
    110.项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.
    111.范立础.桥梁工程(下)[M].北京:人民交通出版社,1987.
    112.顾安邦.桥梁工程[下)[M].北京:人民交通出版社,2000.
    113.肖汝诚.确定大跨径桥梁结构合理设计状态的理论与方法研究[D].上海:同济大学,1996.
    114.宁平华,张靖,陈加树.广州市珠江大桥主桥斜拉桥合理斜拉索力设计[D].中国土木工程学会桥梁年会论文集,1996,2:36-42.
    115.陈德伟,范立础.确定预应力混凝土斜拉桥最优恒载索力方法的探索[J].同济大学学报,1998,26(2):120-124.
    116.杜国华,姜林.斜拉桥的合理索力及其施工张拉力[J].桥梁建设,1989,2:11-17.
    117.王勋文,辛学忠,潘家英,等.确定PC斜拉桥恒载初始索力方法的探讨[J].桥梁建设,1996,4:1-5.
    118.范立础,杜国华.斜拉索索力优化及非线性理想倒退分析[J].重庆交通学院学报,1992,3.
    119.陆楸,徐有光.斜拉桥最优索力的探讨[J].中国公路学报,1990,1:38-48.
    120.肖汝诚,项海帆.斜拉桥索力优化的影响矩阵法[J].同济大学学报,1998,26(3):235-240.
    121.施笃铮,汪劲丰,项贻强,等.斜拉桥施工过程中的索力控制与优化研究[J].中国公路学报,2002,15(2):57-60.
    122.秦顺全,林国雄.斜拉桥安装计算—倒拆法与无应力状态控制法评述[J].中国土木工程学会桥梁及结构工程学会第九届年会论文集,1992.
    123.徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000.
    124.肖汝诚,林平.计算结构力学在桥梁结构施工设计与施工控制中的应用[J].计算结构力学及其应用,2000,10(1).
    125.陈德伟.斜拉桥的非线性分析及工程控制[D].上海:同济大学,1990.
    126.张宝胜.三塔斜拉桥静力性能研究[D].西安:长安大学,2001.
    127.颜东煌.斜拉桥合理设计状态确定与施工控制[D].湖南:湖南大学,2001.
    128.华孝良,徐光辉.桥梁结构非线性分析[M].北京:人民交通出版社,1999.
    129. Wang P H. Study on Nonlinear Analysis of a Highly Redundant Cable-Stayed Bridge [J]. Computers and Structures,2002,80(2):165-182.
    130. Adeli H, Zhang J. Fully Nonlinear Analysis of Composite Girder Cable-Stayed Bridges [J]. Computers and Structures,1995,54 (2):267-277.
    131. Ying X. Nonlinear Analysis and Load-carrying Capacity of Cable-stayed Bridge [J]. The Hong Kong University of Science and Technology,1998.
    132.过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999:73-107.
    133.陈惠发,A.E萨里普,余天庆,等.混凝土和土的本构方程[M].北京:中国建筑工业出版社,2004.
    134.叶爱君,胡世德,范立础.斜拉桥抗震结构体系研究[J].桥梁建设,2002,(4):1-4.
    135.公路桥梁抗震设计细则JTG/TB02-01-2008 [S]北京:人民交通出版社,2008.
    136.谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006.
    137.俞载道.结构动力学基础[M].上海:同济大学出版社,2000.
    138.爱德华.结构静力与动力分析—强调地震工程学的物理方法[M].北京:中国建筑工业出版社,2006.
    139.建筑抗震设计规范GB50011-2001 [S]北京:中国建筑工业出版社,2001.140. Aly S. Nazmy, Ahmed M. Abdel-Ghaffar. Nolinear Earthquake-response Analysis of
    Log-span Cable-stayed Bridge [J]. Earthquake Engineering & Structural dynamics,1990,19: 45-62.
    141. Clough R W, Penzinen J. Dynamics of Structures (Revised Edition) [M]. Graw Hill Inc.,1993.
    142. Nakamura Y, Kiwreghian A D, Lin D. Multiple-support Response Spectrum Analysis of the Golden Gate Bridge [R]. Report No. UCB/EERC-93/05, Earthquake Engineering Research Centre,1993.
    143.王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社,1997.
    144.张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社,2003.
    145.李德寅,王邦楣,林弧超.结构模型试验[M].北京:科学出版社,1996.
    146.达利,赖利,韩铭索,等.试验应力分析[M].北京:海洋出版社,1987.
    147.霍斯多尔犬,徐止忠,等.结构模型分析[M].北京:建筑工业出版社,1986.
    148.梅山魁,林弧超译.结构试验和结构改计[M].北京:人民交通出版社,1980.
    149.党贵文,党星海.相似理论内容的扩充的分析[J].兰州理工大学学报,2004(5):123-125.
    150.武汉大桥局桥梁科学研究院.沈阳市浑河寓民斜拉桥全桥模型试验研究[J].2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700