用户名: 密码: 验证码:
轮轨黏着特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速重载铁路的快速发展,对轮轨间的黏着问题研究提出了更高的要求,尤其是速度的提高,使轮轨黏着问题的研究变得更加复杂。良好的轮轨黏着能有效地改善轮轨系统的工作性能、延长轮轨使用寿命,降低铁路设备的维护维修费用,有重大的经济意义。深入透彻的分析研究这个问题,从最根本上保障列车运行安全,保证乘客的生命安全。
     本论文研究了干态和各种介质工况下的轮轨黏着特性,以及对旧的增粘方法的理论研究和对新的增粘方法的提出。论文研究结果为我国重载与高速铁路的发展及轮轨黏着特性的研究提供了参考依据,具有一定的工程意义。本文取得的主要结果和结论如下:
     1、干态工况下,随蠕滑率的增加轮轨黏着系数先增加而后降低直至稳定。蠕滑率为1.5%时黏着系数最大。随着速度的提高,轮轨黏着系数有所下降;而降低轴重有利于提高轮轨的黏着系数。新模拟轮与模拟轨转动产生的黏着系数要小于旧的模拟轮与模拟轨转动产生的黏着系数。新模拟轮与模拟轨转动产生的黏着系数与生锈的模拟轮与模拟轨转动产生的黏着系数相差无几。随着冲角的增加,轮轨纵向黏着系数有所下降,而横向黏着系数呈现上升趋势。
     2、干态工况下运行的模拟轮轨突然转入水介质工况时,黏着系数出现大幅下降,下降了约50-60%。水介质工况下,黏着系数随蠕滑率的增加出现先增加而后下降,最后逐渐趋于稳定。蠕滑率为1%时黏着系数最大。随着速度的增加,轮轨黏着系数下降较大。随着轴重的增加,黏着系数有所上升。利用三因素四水平试验方法仅考虑速度、轴重和轨道曲线半径时,干态工况下,影响轮轨黏着系数变化的因素由大及小分别为轴重,速度,轨道曲线半径;水介质工况下,影响轮轨黏着系数变化的因素由大及小分别为速度,轴重,轨道曲线半径。
     3、在污油、油水混合物、油水砂混合物介质条件下,轮轨黏着系数均远远小于干态工况下轮轨黏着系数。其中油水砂介质下的轮轨黏着系数最大,约为0.08;污油介质下黏着系数次之,约为0.05;油水介质下的轮轨黏着系数最小约为0.03。通过比较三种油介质混合物试验后轮轨表面,发现油水砂试验后轮轨表面磨损最为明显,磨痕最宽;污油介质试验后轮轨表面磨损最小,磨痕最窄;油水介质工况下轮轨表面的磨损情况处于污油介质和油水砂介质之间。
     4、坡道工况下,干态时轮轨黏着系数在0.23~0.33之间;有水时轮轨黏着系数在0.08~0.11之间;有污油存在时轮轨黏着系数约为0.03。坡道运行时,在干态和水介质工况下,轮轨黏着系数随速度的增加而减小。干态工况下轮轨黏着系数随轴重的增加而减小;在水介质工况下,轮轨黏着系数随轴重的增加而上升。在平直道运行时,污油介质工况下磨痕最窄,磨损最小;水介质工况下次之;干态工况下磨痕最宽,磨损最大;在坡道运行时,水介质工况下磨痕最窄,磨损最小;干态工况下次之;污油介质工况下磨痕最宽,磨损最大。
     5、水介质工况下撒砂可增加轮轨黏着系数35~65%;干态工况下撒砂对轮轨黏着系数有较小影响。水介质下撒砂的增粘效果主要取决于砂子颗粒的直径及撒砂量,大砂粒直径的增粘效果更佳。随着速度的增加,水介质工况下撒砂的增加效果越差。水介质工况下撒粗砂比撒细砂磨损严重。撒粗砂后模拟轮试件表面硬度高于撒细砂后模拟轮试件表面硬度。水介质工况下撒砂会出现两条轨迹,内轨迹区域磨损相对严重,外轨迹与内轨迹之间区域磨损相对较小。
     6、水和油介质工况下施加磁场作用后可显著增加轮轨黏着系数,其中水介质下增幅达20%以上,油介质下增加达到50%。水和油介质工况下,施加磁场时速度对轮轨黏着系数影响不大;不同磁场强度对轮轨黏着系数有一定的影响作用,随着磁场强度的增加,轮轨黏着系数也相应增加;并且两侧磁场最强的部分能吸附轮轨磨损产生的铁屑,从而减少了轮轨之间的第三体磨损。
     7、通过CONTACT计算程序可以得知:蠕滑率为0时,粘着区很大,蠕滑区几乎为0;随着蠕滑率的增加,粘着区减小,蠕滑区增加,当蠕滑率为1.38%时为临界状态,即接触斑内粘着区较减小为0,蠕滑区增大至全部接触斑;随着蠕滑率的继续增加,接触斑内由蠕滑区变为宏观滑动区。纵向黏着力主要产生在轮轨蠕滑区。在蠕滑率开始增长阶段0—0.7%时,轮轨黏着系数大致呈现线性增长;随后随着蠕滑率的增大,轮轨黏着系数增长缓慢,直至出现最大值0.362,此时蠕滑率为1.38%;当蠕滑率继续增大时,轮轨黏着系数出现小幅下降,直至稳定。
With the rapid development of high-speed/heavy-haul rail, studies on the adhesion between wheel and rail required for higher level. In particular, due to the increasing speed, the research on adhesion in wheel-rail has become more complex. Sufficient wheel-rail adhesion can effectively improve the capacity of the wheel-rail system, extend the life of wheel and rail, reduce costs of railway equipment maintenance. Thus, it can bring great economic benefits. Above all, only in-depth and thorough analysis of this issue, can we guarantee safe operation of trains and ensure passenger safety.
     This paper studies the wheel-rail adhesion properties under the dry conditions and with a variety of media, as well as theoretical research on the old methods to increase viscosity and proposes new methods. The results of paper provide an important reference basis for the development of heavy-haul and high-speed rail and research on characteristics of wheel-rail adhesion, with great scientific significance. This main results and conclusions obtained of paper are as follows:
     1、When under the dry conditions, when the creepage is less than1.5%, the adhesion coefficient increases rapidly. When creepage is about1.5%, adhesion coefficient reaches the maximum value, and then, As the creepage increases, the adhesion coefficient declines slightly and gradually becomes stable at last. Adhesion coefficient decreases with the increasing of speed. With the axle load decreased, adhesion coefficient increases. The adhesion coefficient obtained by new simulating wheel is smaller than that obtained by old simulating wheel, meanwhile, There is no difference between the adhesion coefficient obtained by new simulating wheel and that obtained by rusted simulating wheel.with the decrease of the radius of curve, while the lateral adhesion coefficient increases but longitudinal adhesive coefficient decreases.
     2、The adhesion coefficient decreases fifty to sixty percent when adding water between wheel and rail under dry condition compared with dry conditon.When under water conditions,speed is the main factor causing adhesion coefficient decreasing and the adhesion coefficient becomes smaller when speed is higher. As the creepage increases, the adhesion coefficient increases before it reaches the maximum value, after that the coefficient declines slightly and gradually becomes stable at last. As far as influence degree of three testing factors which have effect on adhesion coefficient is concerned, axle load is the fires one, then speed, finally track curve radius under dry condition, and speed is the first one, then axle load, finally track curve radius under water medium condition.
     3、The adhesion coefficient under waste oil, oil-water mixture, oil-water-sand mixture condition is smaller than the adhesion coefficient under dry condtion. By comparing the surface of the rail-wheel after experiment under three kinds of mixtures of oil dielectric, the wear of rail-wheel surface after experiment under oil-water-sand mixture is the most obvious and the wear scar is the widest; while under waste oil dielectric conditions the wear is the smallest and the wear scar is the narrowest; and under oil-water medium the wear is the mediate. The adhesion coefficient of wheel-rail under oil-water-sand media is the largest, under the oil-water media the adhesion coefficient of wheel-rail is the smallest.
     4、With the ramp condition, the adhesion coefficient between0.23and0.33under dry condition and the adhesion coefficient between0.08and0.llunder water condition; By comparing the surface of the rail-wheel after experiment under three kinds of mixtures of oil dielectric, the wear of rail-wheel surface after experiment under oil sand is the most obvious and the wear scar is the widest; while under waste oil dielectric conditions the wear is the smallest and the wear scar is the narrowest; and under oil-water medium the wear is the mediate. The adhesion coefficient of wheel-rail under oil-water-sand media is the largest, under the oil-water media the adhesion coefficient of wheel-rail is the smallest.
     5、The adhesion coefficient of wheel/rail increases by35-65%when sand was sprayed into contact surface under wet condition. However, the adhesion coefficient increases slightly when sand was sprayed under dry condition. The adhesion improving properties of sand mainly depend on diameter of sand particle and sand volume under water medium conditions, and the sand with bigger diameter would contribute to better adhesion improving properties, which means that the adhension coefficient of wheel/rail increase with sand volume sprayed increasing. Additionally, the adhesion improving properties of sand reduced with speed increasing, Inner and external track appeared on simulating specimen surface after experiment under water medium conditons, while the wear degree of inner track was more serious that external track. Results also showed wear degree of specimen surface which sprayed coarse sand on was more serious than that sprayed fine sand on; accordingly, hardness of specimen surface sprayed coarse sand on was bigger than that sprayed fine sand on.
     6、the magnetic field can increase obviously adhesion coefficient of wheel/rail under water and oil conditions. The increase rate of adhesion coefficient under water condition exceeds20%and the increase rate of adhesion coefficient under oil condition is50%. Under water and oil conditions, the speed has no obvious effecton adhesion coefficient of wheel/rail when magnetic field is used. Different magnetic field strength of the wheel-rail adhesion have a certain influence, as the magnetic field strength increases, a corresponding increase in wheel-rail adhesion; and some of the strongest magnetic field on both sides of the wheel-rail wear can be produced by adsorption of iron, thereby reducing the third body between the wheel and rail wear.
     7、Numerical methods CONTACT has been employed that study the effect of slip ratio to wheel/rail adhesive coefficient. When the slip ratio is among0-1.38%, with the increases of the slip ratio,the adhesion area in the contact area decreases, the slip area increases, longitudinal adhesive force density increases,and the adhesion coefficient increases too. When the slip ratio is1.38%,to the a boundary station, then the contact area is completely slip, longitudinal adhesive force density go to the biggest, also the adhesion coefficient.While the slip ratio is more than1.38%,the contact area is macroscopic area, longitudinal adhesive force density decreases a little,that adhesion decreases and gradually becomes stable.
引文
[1]何华武.快速发展的中国高速铁路[J].学术动态.2006,(4):1-16.
    [2]胡家杰.弯矩作用下钢轨疲劳试验研究[D].西南交通大学硕士学位论文.2008.
    [3]张曙光.中国高速铁路与城市化发展[J].中国科学院院刊.2010,25(3):264-270.
    [4]沈志云.关于高速铁路及高速列车的研究[J].振动、测试与诊断.1998,18(1):1-7.
    [5]袁志兵.浅析普通铁路、高速铁路与重载铁路的差异[J].内蒙古科技与经济.2011,227(1):104-105.
    [6]大秦线创造世界铁路重载新纪录[J].报林.2011,1:22.
    [7]李向国.高速铁路技术[J].北京:中国铁道出版社.2005,26(1):85-87.
    [8]世界高速铁路的发展概述[J].铁道勘测与设计.2006,24(1):54.
    [9]周长江,高速铁路发展概况及展望[J].甘肃科技纵横.2005,34(3):105-106.
    [10]沈志云.关于高速铁路及高速列车的研究[J].振动、测试与诊断,1998,18(1):1-7.
    [11]金学松,温泽峰,张卫华,曾京,周仲荣,刘启跃.世界铁路发展状况及其关键力学问题.第十三届全国工程学术会议特邀报告,南昌,2004.工程力学,2004,21(增刊):90-104.
    [12]俞展猷.日本新干线高速列车的发展历程[J].机车电传动.2003,6(2):1-7.
    [13]吴国栋,李碧波.法国TGV的发展历史和技术特点[J].国外铁道车辆.2007,44(1):1-4.
    [14]周信.德国高速铁路[J].铁路知识.2002:14-15.
    [15]高铁列国志[J].新经济导刊.2010,26(1):85-87.
    [16]唐佳蕾,宋昀.第六次提速助推中国进入高速铁路时代[J].科技之友.2007,6:32-34.
    [17]张曙光.CRH2型动车组[M].北京:中国铁道出版社.2008.
    [18]张曙光.CRH5型动车组[M].北京:中国铁道出版社.2008.
    [19]张曙光.CRH1型动车组[M].北京:中国铁道出版社.2008.
    [20]苟立波.基于数据库的高速动车组车轮磨耗跟踪研究[D].北京:北京交通大学.2011.
    [21]金学松,刘启跃.轮轨摩擦学.北京:中国铁道出版社.2004.
    [22]苏辉艳.减轻重载列车轮轨磨耗的研究[J].中国铁道,1997(6):42-43.
    [23]Sun J,Sawly K J,Stone D H, et al. Progress in the reduction of wheel spalling. Proceeding of the 12th International Congress on Wheelset, China,Sept.21 to 25,1998:18-29.
    [24]金学松.轮轨蠕滑理论及其试验研究[D].成都:西南交通大学,1999.
    [25]#12
    [26]Kazuhiko Nagse.干线运行中轮轨间的黏着系数[J].国外铁道车辆.1990,5:35-41.
    [27]王广凯,李培曙.浅淡制动黏着系数的定义、影响因素及测试方法[J].铁道车辆,2004,42(9):23-25.
    [28]永濑和彦.干线上钢轨-车轮间黏着的实际状态[J].国外内燃机车.1990,2:35-41.
    [29]张振鹏.列车制动计算[M].北京:中国铁道出版社,1984.
    [30]张定贤.机车车辆轨道系统动力学[M].北京:中国铁道出版社,1996.
    [31]顾伍楼.地铁车辆计算黏着系数和牵引电动机功率选用问题简析[J].铁道机车车辆.2003,23(6):43-45.
    [32]刘宇川,吴家麟.地铁车辆黏着状态监视器的研究[J].上海铁道大学学报.1999,20(2):91-94.
    [33]陈成.地铁动车黏着系数的计算[J].机车电传动.2006,4:40-42.
    [34]杨中平.漫画高速列车[M].中国铁道出版社,2009.
    [35]中国铁道科学研究院.制动黏着系数试验研究报告[R].1991.
    [36]王丕.莫钧.陈朝发.我国铁路制动黏着系数的试验研究[J].中国铁道科学.1991,12(2):1-19.
    [37]S.KUMAR教授,钱立新.轮轨接触参数的实验室模拟及路轨冲角、蛇行运动、油水污染、真实接触面积对黏着-蠕滑性能的影响[J].中国铁道科学,2002,28(5):53-59.
    [38]宋健华.水介质条件下轮轨粘着特性研究[D].成都:西南交通大学,2010.
    [39]Halling J主编.摩擦学原理[M].上海交通大学摩擦学研究室译.北京:机械工业出版社,1981.
    [40]陆大雄.摩擦学导论[M].北京:北京出版社,1990.
    [41]陈厚嫦,臧其吉,陈泽深.高速铁路列车轮轨黏着特性的理论探讨[J].铁道学报.1998,20(5):28-34.
    [42]B44/R P14, Question B44. Adhesion of locomotives from the point of view of their construction and operation. Synthesis report:The current state of knowledge about wheel-rail adhesion,1978. ORE/UIC.
    [43]Victor Sergeant.黏着的利用[J].国外内燃机车.1997,11:12-16.
    [44]王夏秋,刘钟华.关于轮轨黏着系数的合理选用问题[J].铁道学报.1987,9(3):9-15.
    [45]H. Schwarze.与速度有关的高负荷轮轨接触的黏着力(一)[J].变流技术与电力牵 引.2002,3:8-12.
    [46]H.Schwarze.与速度有关的高负荷轮轨接触的黏着力(二)[J].变流技术与电力牵引.2002,4:7-12.
    [47]陈似松.提高机车黏着能力,适应铁路重载运输[J].内燃机车.1998,7:36-39.
    [48]Pritchard C. Traction between rolling steel surfaces:a survey of railway and laboratory experiments, Friction and Traction,7th Leeds-Lyon Symposium on Tribology, Leeds, 1980,197-206.
    [49]Broster. Pritchard C, Smith D.A. Wheel/rail adhesion:its relation to rail contamination on British Railway, Wear.1974,29,309.
    [50]申鹏,宋健华,王海洋等.环境条件对轮轨黏着特性影响的试验研究[J].铁道学报.2011,23(5):26-30.
    [51]E. Niccolini, Y. Berthier. Wheel-rail adhesion:laboratory study of "natural" third body role on locomotives wheels and rails[J]. Wear,2005,258:1172-1178.
    [52]S. Descartes, C. Desrayaud, E. Niccolini, et al. Presence and role of the third body in a wheel-rail contact[J]. Wear,2005,258:1081-1090.
    [53]Loosli H.E. Adhesion between wheel and rail. ASME Paper 82-RT-4,1982.
    [54]Watkins D. J. Explring adhesion with British Rail's tribometer train, Railway Engineering Journal,1975,4-6.
    [55]Ohyama T, Shirai S. Adhesion at higher speeds and its control, JNR Quarterly Reports, 1982,23(3):97.
    [56]Benz D. Untersuchung des tribochmischen Einflusses von Luftverunreinigungen auf das Walzeibungsverhalten verschiedener Werkstoffe, ZEF-Glaser Annalen,1982, 106,7/8,273.
    [57]覃为刚,唐怀平.轮轨水介质黏着分析[J].西南交通大学学报.2000,35(5):509-512.
    [58]Watkins S.G. al2-month adhesion survey of a 280km route, BR Report, TM TRIB9, 1976.
    [59]Beagley T.M. Adhesion survey on Southern Region (Witley Bank), BR Report, TM TRIB6,1974.
    [60]DB Report, Haftwertuntersuchungen bei Geschwindigkeiten und laubbedeckten schienen durch simulierten Laubfall,1977.
    [61]Taylor R.K. and Pollicott, Assessment of cleaning of leaf affected track on Southern Region 1978,BR Report TM TRIB 35,1979.
    [62]裴有福,金元生,温诗铸.轮轨黏着的影响因素及其控制措施[J].国外铁道车辆.1995,2:5-11.
    [63]ORE B44/RP3. Adhesion tests of spring 1975,1977.
    [64]H. Harrison, T. McCanney, J. Cotter. Recent developments in coefficient of friction measurements at the rail/wheel interface[J]. Wear,253(2002):114-123.
    [65]P. Clayton. Tribological aspects of wheel-rail contact:a review of recent experimental research[J].Wear.191(1996):170-183.
    [66]Bugarcic H. Ahlbrecht H, lange O. Optimierung der Bremshilfsmittel bei Stadtbahn und Stadtschnell-bahn-Fahrzeugen, Verkehr und Technik,1982(4),120.
    [67]伴巧等.水膜对轮轨黏着的影响[J].国外内燃机车.2000,4:23-25.
    [68]王伯铭.高速动车组总体及转向架[M].成都:西南交通大学出版社.
    [69]金雪岩,刘启跃,王夏秋.轮轨黏着-蠕滑特性试验研究[J].铁道学报,2000,22(1):36-39.
    [70]Ohyama T. Adhesion characteristics of wheel/rail system and its control at high speeds, QR of RTRI,33(1992),No,l,19-30.
    [71]Ohyama T. Tribological studies on adhesion phenomena between wheel and rail at high speeds, Wear,144(1991)263-275.
    [72]陈泽深.轮轨间黏着机理再认识[J].铁道机车车辆.1995,1:19-37.
    [73]Boiteux B. Freinage des vehicules ferrovaires,1982.
    [74]SNCF, Recherches sur adherence en freinage,1981.
    [75]ORE B44/RP9.
    [76]ORE B44/RP14, Synthesis report:the current state of knowledge about wheel/rail adhesion,1978
    [77]王夏秋,刘钟华.从轮轨黏着原理谈提高重载列车牵引力的途径[J].西南交通大学学报.1987,2:1-8.
    [78]孙琼.轮轨接触振动及其对轮轨黏着的影响[J].铁道机车车辆.2002增刊,166-172.
    [79]孙琼.高速铁路轮轨粘滑特性及其试验研究[D].中国铁道科学研究院,1998.
    [80]R V Dukkipati, R Dong. Idealized steady state interaction between railway vehicle and track[J]. IMechE 1999.213:15-29.
    [81]李荣伟,李培曙.有效改善黏着适应高速车辆制动要求[J].铁道车辆.2000,38(6):9-11.
    [82]Naoki TANABE, Yukihiko HIROTA, Tamaki OMICHI, et al. Study on the Factors which cause the wheel skidding of JR Ltd. Express EMUs[J]. JSME International Jouranl.2004 47(2):488-495.
    [83]Norimichi KUMAGAI, Izumi HASEGAWA. A study on adhesion between wheels and rails in wheel slipping for high availability of braking force[J]. The Japan Society of Mechanical Engineers.2004,70(689):142-148.
    [84]J J Choi, S H Park, J S Kim. Dynamic adhesion model and adaptive sliding mode brake control system for the railway rolling stocks[J]. IMechE 2007,221:313-320.
    [85]申恩福.电传动内燃机车黏着系数及小半径曲线黏着系数的试验研究[J].铁道机车车辆.2000,3:20-23.
    [86]Mehdi Ahmadian.机车自导向转向架对改善曲线轨道上黏着的利用[J].机车电传动.2002,4:10-15.
    [87]杨欣,唐松柏.装用径向转向架内燃机车曲线黏着性能试验方法研究[J].铁道机车车辆.2002,2:26-29.
    [88]Shen Peng, Wang Cai-yun, Zhong Wen, at el. An experimental investigation on railway adhesion properties under water medium and dry condition respectively[J]. Advanced Materials Research, v189-193, p3554-3559,2011, Manufacturing Process Technology.
    [89]王海洋.坡道对轮轨黏着特性的影响[D].西南交通大学.2011.
    [90]金学松,邬平波.轨道振动对轮轨接触压力影响的数值分析[J].铁道学报.2001,23(1):23-28.
    [91]温泽峰.钢轨波浪形磨损研究[D].西南交通大学.2006.
    [92]李荣伟,李培曙.有效改善黏着适应高速车辆制动要求[J].铁道车辆.2000,38(6):9-11.
    [93]潘晓明,陈国胜.SS5型高速电力机车黏着性能存在的问题和改进措施[J].铁道机车车辆.1997,1:21-25.
    [94]吕兴华,何露霞.试论黏着补偿及黏着改善[J].内燃机车.1995,5:24-27.
    [95]李培曙.防滑器的防滑作用与黏着利用[J].铁道车辆.1998,36(3):17-19.
    [96]张开文,汤祥根.高速列车充分利用黏着制动距离计算[J].西南交通大学学报.1994,29(3):259-262.
    [97]Hiro-o YAMAZAKI, Masao NAGAI, Takayoshi KAMADA. A Study of adhesion force model for wheel slip prevention control[J]. JSME International Jouranl.2004, 47(2):496-501.
    [98]冈英也.合成(增粘)闸瓦的改进技术[J].国外机车车辆工艺.2008,9:18-23.
    [99]邱存勇.电力机车黏着控制现状与展望[J].信息与电子工程.2008,6(4):301-306.
    [100]骆开源.电力机车黏着牵引力的在线检测[J].西南交通大学学报.1997,32(1):35-38.
    [101]徐立恩,陈华国,曾云.广州地铁车辆国产化改造的黏着利用控制[J].机车电传动,2008,6:44-47.
    [102]李江红,陈华国,胡照文.国产化北京地铁车辆的黏着控制[J].机车电传动.2005.6:40-42.
    [103]王辉,肖建.机车模糊黏着控制及其仿真研究[J].机车电传动.2002,3:19-23.
    [104]李江红,马健,彭辉水.机车黏着控制的基本原理和方法[J].机车电传动.2002,6:4-8.
    [105]Mehdi Ahmadian.机车自导向转向架对改善曲线轨道上黏着的利用[J].机车电传动.2002,4:10-15.
    [106]R. Schreiber. RE465型机车优化黏着利用的试验结果[J].电力牵引快报.1997,2:29-32.
    [107]大野熏.轮轨间滚动摩擦及其控制[J].国外铁道车辆.2001,38(1):36-40.
    [108]渡边朝纪.新干线高速化用的PWM逆变器的空转滑行再黏着控制[J].电力牵引快报.1996,1:9-14.
    [109]伊藤顺一.从黏着的角度比较动力分散与动力集中[J].国外铁道车辆.2001,38(2):22-25.
    [110]黄学辉,米彩盈.牵引模式对CO-CO架悬式机车黏着性能的影响[J].机车电传动.2008,1:39-41.
    [111]申恩福.电传动内燃机车黏着系数及小半径曲线黏着系数的试验研究[J].铁道机车车辆.2000,3:20-23.
    [112]Mehdi Ahmadian.机车自导向转向架对改善曲线轨道上黏着的利用[J].机车电传动.2002,4:10-15.
    [113]杨欣,唐松柏.装用径向转向架内燃机车曲线黏着性能试验方法研究[J].铁道机车车辆.2002,2:26-29.
    [114]и.A.жAPOB.防滑器的工作指标[J].国外铁道车辆.2008,45(2):35-38.
    [115]林台平,林晖.电磁轨道制动装置的研究[J].中国铁道科学.1997,18(1):14-26.
    [116]阮玉华.高速列车防滑器的设计[J].网络财富.2008,10:254.
    [117]и.A.жAPOB.防滑器的工作指标[J].国外铁道车辆.2008,45(2):35-38.
    [118]孙翔.机车的传动、驱动、控制与黏着[J].铁道学报.1994,16:9-15.
    [119]李培曙.防滑器的防滑作用与黏着利用[J].铁道车辆.1998,36(3):17-19.
    [120]姚寿文,陈朝发,钱立新.智能型电子防滑器控制系统的研究[J].中国铁道科 学.2001,22(4):21-25.
    [121]傅佩喜.CRH2型动车组研磨子国产化研究[J].铁道车辆.2010,48(7):27-30
    [122]冈英也.合成(增粘)闸瓦的改进技术[J].国外机车车辆工艺.2008,9:18-23.
    [123]森本文子.摩擦特性优异的铸铁合成闸瓦的开发[J].国外机车车辆工艺.2009,5:21-26.
    [124]十村太郎.高黏着合金铸铁闸瓦的开发[J].国外机车车辆工艺.1995,3:36-37.
    [125]大野熏.多孔质氧化铝增黏着滑块的研制[J].国外铁道车辆.1986,4:44-45.
    [126]大野熏.增粘材料喷射装置[J].国外内燃机车.2007,2:11-14.
    [127]伴巧.减缓轮轨摩擦的研究[J].国外铁道车辆.2006,43(6):37-40.
    [128]裴顶峰,张国文,党佳等.动车踏面清扫器研磨子的研制[J].中国铁道科学.2011,32(3):142-144.
    [129]Bugarcic H. Ahlbrecht H, lange O. Optimierung der Bremshilfsmittel bei Stadtbahn und Stadtschnell-bahn-Fahrzeugen[J], Verkehr und Technik,1982(4),120.
    [130]Hisayo DOI, Takefumi MIYAMOTO, Yukio NISHIYAMA, et al. A new experimental device to investigate creep forces between wheel and rail[J].8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems(CM2009), Firenze, Italy, September 15-18,2009.
    [131]大野熏.通过喷射陶瓷粒子来增大轮轨间的黏着力[J].国外铁道车辆.1997,8:24-29.
    [132]J. Gysi永磁性轨道制动及其轮轨黏着系数的研究结果[J].国外铁道车辆.1994,6:42-44.
    [133]刘汝让.磁轨制动及其作用原理[J].机车车辆工艺.2001,5:1-4.
    [134]B.A. CoлOMиH高速列车用轨道制动装置[J].铁道机车车辆工人.2004,3:35-38.
    [135]OKE.永磁轨道制动[J].国外铁道车辆.1997,5:34-37.
    [136]Carter F. W. On the action of a locomotive driving wheel. Proc. R. Soc., London, A 1926,112:151-157.H Fromm (1927):Berechung des Schlupfes beim Rollen deformierbarer Scheiben Zeitschrift fur angewandte Mathematik und Mechanik 7, 27-58.
    [137]H. Harrison, T. McCanney, J. Cotter. Recent developments in coefficient of friction measurements at the rail/wheel interface[J]. Wear,253(2002):114-123.
    [138]P. Clayton. Tribological aspects of wheel-rail contact:a review of recent experimental research[J]. Wear.191(1996):170-183.
    [139]Shen Z. Y., Hedrick J. K. and Elkins J. A., A comparison of alternative creep-force models for rail vehicles dynamic analysis, Proc.8th IAVSD Symp.,Cambridge, MA,1984,591-605.
    [140]J. J Kalker. On elastic line contact. Journal of applied Mechanics,1972,39:1125.
    [141]J. J Kalker. Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer Academic Publisher, Dordrecht/Boston/London.1990.
    [142]J.J Kalker. On the rolling contact of two elastic bodies in the presence of dry friction[C]. Thesis Delft,1967.
    [143]陈厚嫦.轮轨黏着特性研究[D].中国铁道科学研究院.1998.
    [144]裴有福.轮轨黏着机理的研究[D].北京:清华大学,1996.
    [145]H.Chen, A.Yoshimura, T.Ohyama, Numerical analysis for the influence of water film on adhesion between rail and wheel, Proc Instn Mech Engrs Vol 212 Part J, 1998,359-368.
    [146]Greenwood, J. A. and Tripp, T. H. The contact of two nominally flat rough surfaces. Proc. Instn Mech. Engrs,1971,185,623-633.
    [147]H. Chen, T. Ban, M. Ishida,T. Adhesion between rail/wheel under water lubricated contact[J]. Wear,2002, (253):75-81.
    [148]H. Chen, T. Ban, M. Ishida,T. Nakahara. Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions. Wear,2006, (265): 1504-1511.
    [149]H. Chen, M. Ishida, A. Numura, et al. Estimation of wheel/rail adhesion coefficient under wet condition with measured boundary friction coefficient and real contact area[J].8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems(CM2009), Firenze, Italy, September 15-18,2009.
    [150]大山忠夫.高速化与高黏着[J].国外铁道车辆.1997,5:50-53.
    [151]杨翊仁,张继业,金学松.轮轨水介质接触的完全数值分析方法[J].铁道学报.1998,20(4):31-36.
    [152]杨翊仁,张继业,赵华.水介质对轮轨黏着特性的影响[J].铁道学报.2000,22(2):31-34.
    [153]H.Chen, M.Ishida, T.Nakahara, Analysis of adhesion under wet conditions for three-dimensional contact considering surface roughness, Wear.258(2005), 1209-1216.
    [154]Nagase, K. A study of adhesion between the rails and running wheels on main lines: results of investigations by slipping adhesion test bogie. Proc. Instn Mech.Engrs, Part F:J. Rail and Rapid Transit,1989,203,33-43.
    [155]金雪岩,王夏秋.直线工况轴重对轮轨磨损影响的试验研究[J].西南交通大学学报,2001,36(3):264-267.
    [156]W.J. Wang, P. Shen, J.H. Song, J. Guo, Q.Y. Liu, Z.R. Zhou, Study on the adhesion behavior of wheel/rail under dry and water conditions, (CM2009), pp287-292.
    [157]申鹏,宋建华,李自彬等.轮轨黏着特性试验研究[J].润滑与密封.2009,34(7):10-13.
    [158]申鹏,宋建华,张向龙等.不同条件下轮轨黏着特性试验研究[C].2009全国博士生学术会议(现代摩擦学材料).西安交通大学.
    [159]宋建华,申鹏,王文健等.水介质条件下轮轨黏着特性研究[J].润滑与密封.2010,35(10):42-45.
    [160]张卫华,周文祥,陈良麒等.高速轮轨黏着机理试验研究.铁道学报,2000,22(2):20-25.
    [161]Akira Matsumoto, Yasuhiro Sato, Hiroyuki Ono, Yonjin Wang, Masayuki Yamamoto, Masuhisa Tanimoto, Yasushi Oka, Creep force characteristics between rail and wheel on scaled model, Wear.253 (2002):199-203
    [162]Hisayo DOI, Takefumi MIYAMOTO, Yukio NISHIYAMA, Shintaro OHE and Hideya KAMACHI, ANEW EXPERIMENTAL DEVICE TO INVESTIGATE GREEP FORCES BETWEEN WHEEL AND RAIL,8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2009), Firenze, Italy, September 15-18,2009,47-52.
    [163]O.Arias-Cuevas, Z.Li, R.Lewis, E.A.Gallardo-Hernandez, Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts, Wear(2009) 1-9.
    [164]Beagley,T. M.,McEwen,I. J.,and Pritchard,C.Wheel/rail adhesion-boundary lubrication by oily fluids. Wear,1975,33,77-88.
    [165]Kumar,S., Krishnamoorthy,P.K., and Prasanna Rao,D.L., Wheel-rail wear and adhesion with and without sand for a north American locomotive, J.Eng.Ind.Trans. ASME,1986,108,141-147.
    [166]R.S. Dwyer-Joyce, R. Lewis, N. Gao, et al. Wear and fatigue of railway track caused by contamination, sanding and surface damage [J].6th International Conference on Contact Meachamcs and Wear of Rail/Wheel Systems(CM2003) in Gothenburg, Sweden, June 10-13,2003.
    [167]R Lewis, R S Dwyer-Joyce, J Lewis. Disc machine study of contact isolation during railway track sanding[J]. IMechE 2003,11-24.
    [168]R Lewis, J Masing. Static wheel/rail contact isolation due to track contamination[J]. IMechE 2006,43-53.
    [169]R Lewis, R S Dwyer-Joyce. Wear at the wheel/rail interface when sanding is used to increase adhesion[J]. IMechE 2006,29-41.
    [170]Oscar Arias-Cuevas, Zili Li. Roger Lewis. A laboratory investigation on the influence of the particls size and slip during sanding on the adhesion and wear in the wheel-rail contact[J].8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems(CM2009), Firenze, Italy, September 15-18,2009.
    [171]E. A Gallardo-Hernandez, R. Lewis. Twin disc assessment of wheel/rail adhesion[J]. Wear,2008,265:1309-1316.
    [172]S.R. Lewis, R. Lewis. An alternative method for assessment of railhead traction[J]. 8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2009), Firenze, Italy, September 15-18,2009.
    [173]S.R. Lewis, R. Lewis, U. Olofesson, et al. Effect of humidity, temperature and railhead contamination on the performance of friction modifiers:pin-on-disk study[J].8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2009), Firenze, Italy, September 15-18,2009.
    [174]R Lewis,]E. A Gallardo-Hernandez, T Hiltion, et al. Effect of oil and water mixtures on adhesion in the wheel/rail contact[J]. IMechE 2009,275-283.
    [175]Oscar Arias-Cuevas, Z. Li, R. Lewis. Investigating the lubricity and electrical insulation caused by sanding in dry wheel-rail contacts[J]. www.springerlink.com, 22 December 2009.
    [176]Z. Li, Oscar Arias-Cuevas, R. Lewis, et al. Rolling-sliding laboratory tests of friction modifiers in leaf contaminated wheel-rail contacts[J]. Tribol Lett,2009, 33:97-109.
    [177]Oscar Arias-Cuevas, Z. Li, R. Lewis. Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts[J]. Wear,268:543-551.
    [178]Weihua Zhang, Jianzheng Chen, Xuejie Wu, et al. Wheel/rail adhesion and analysis by using full scale roller rig[J]. wear,253(2008):82-88.
    [179]Ohyama T. Some basic studies on the influence of surface contamination on adhesion force between wheel and rail at high speeds. QR of RTRI,1989, 30(3):127-135.
    [180]Ohyama T. Adhesion at high speeds,its characteristics,its inprovement and some related problems. Japanese Railway Engineering,1989,100:19-23.
    [181]Tadao Ohyama, TriboIogicaI studies on adhesion phenomena between wheel and rail at high speeds, Wear,144 (1991):263-275.
    [182]on Sundh, Ulf Olofsson. Seizure mechanisms of wheel-rail contacts under lubricated conditions using a transient ball-on-disc test method[J]. ScienceDirect. 41(2008):867-874.
    [183]Jon Sundh, Ulf Olofsson. Krister Sundvall. Seizure and wear rate testing of wheel-rail contacts under lubricated conditions using pin-on-disc methodology[J]. Wear,265(2008):1425-1430.
    [184]白井城造,大山忠夫.高速铁道车辆的黏着特性及其控制[J].电力机车与城轨车辆.1980,7:30-47.
    [185]王文健.车轮滚动剥离磨损特性研究[D].西南交通大学硕士学位论文,2004.
    [186]郭俊.轮轨滚动接触疲劳损伤机理研究[D].西南交通大学博士学位论文,2006.
    [187]宋建华.水介质工况轮轨黏着特性研究[D].西南交通大学硕士论文,2010.
    [188]鲍维千.关于机车黏着的一些概念及提高机车黏着性能的措施[J].内燃机车,1999,1:8-13.
    [189]张鹏顺.弹性流体动力润滑及其应用[M].北京:高等教育出版社,1995.
    [190]数学手册编写组.数学手册[M].北京:人民教育出版社,1979:853-859.
    [191]马炜,王齐荣,米隆.铁路最大坡度标准的制定[J].铁道标准设计,1998年4月.
    [192]杨勇军.坡道对机车轴重转移的影响分析[J].铁道机车车辆,2007,27(2):7-11.
    [193]金辉,葛安林,秦贵和等.基于纵向动力学的坡道识别方法研究[J].机械工程学报.2002,38(1):79-82.
    [194]马大炜.关于大秦线重载列车下坡道安全运行和纵向力问题[J].铁道车辆,2005,43(1):1-4.
    [195]周圣齐.坡道制动浅析[J].铁道车辆,1981,10:1-8.
    [196]吴彬,宁立福.中俄联运罐车在长大坡道上制动力不足的原因及改进措施[J].铁道车辆,43(1):41-42.
    [197]何欣,岳辉.铁路动车组动力与线路坡度适应能力分析[J].工业科技,2006,35:65-66.
    [198]王海洋.坡道条件下轮轨粘着特性试验研究[D].西南交通大学硕士论文,2011.
    [199]孙琼,臧其吉.喷撒颗粒的增粘机理研究[J].中国铁道科学,2000,21(4):44-50.
    [200]Battelle Memorial Institute, "Evaluation of Subotitutes for Sand for Use under Loeomotive Drivers" Reports No. S-1254. submitted to Southern Pacific Company.
    [201]Stanford Research Institute, "Applieation of Antilubricants to Locomotive Drivers" Project No. E-915. prepared for Southern Pacific Company.
    [202]Swenson, C. A. "Wheel Wear on High Adheoion Loeomotive", Propared for Seeond International Hoavy Haul Raii Conferenee, Sept.1982.
    [203]Garin, P.V. "Improving Rail Adhesion for Diessel Loeomotives", Paper No.57-A-268, presented at Annual Meeting of ASME, New York. Dec 1957.
    [204]任吉林,林俊明.电磁无损检测[M].北京:科学出版社,2008:320-321.
    [205]哈尔滨工业大学理论力学教研室.理论力学(I)[M].高等教育出版社,2002.
    [206]徐芝纶.弹性力学简明教程[M].北京:人民教育出版社,1979.
    [207]申鹏,王文健,张鸿斐等.撒砂对轮轨黏着特性的影响[J].机械工程学报.2010,46(16):74-78.
    [208]S.Kumar;李亚斌.北美机车在撒砂和不撒砂情况下的轮轨磨损与粘着[J].国外内燃机车,1987,10-17.
    [209]王彩芸.钢轨滚动接触磨损行为研究[D].西南交通大学硕士论文.2009.
    [210]张鸿斐.油介质下轮轨粘着特性研究[D].西南交通大学硕士论文.2011.
    [211]申鹏,张宏斐,刘启跃等.油污染对轮轨黏着特性试验研究[J].润滑与密封.2012,37(3):25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700