用户名: 密码: 验证码:
水压试验机缓变故障检测、预测及维护方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种流体输送管道,钢管是国民经济各个领域不可缺少的重要钢材之一,其质量特别是检验钢管质量的相关技术、设备的革新受到了普遍的关注,并取得了长足的进步。压力试验是钢管生产过程中必需的质量检测环节,对钢管的质量检验具有重要作用。水压试验机正是为进行钢管压力试验而设计制造的检验设备。一方面,由于水压试验是钢管生产过程中的一个非常关键的质量检验工序,水压试验机的运行状态直接影响到钢管的生产效率,另一方面,该设备是一个复杂的高压系统,一旦发生故障,严重影响到生产的安全可靠运行,甚至可能会造成人员和财产的重大损失。因此,如果能够利用适当的过程监测、故障检测及预测方法,实时监测、预测设备运行状态,为企业管理人员制定生产决策提供可靠依据,对提高设备的检验能力、保障生产可靠运行具有重要的实际意义。
     本文以宝钢钢管厂1995年从德国DEMAG公司引进的3号线水压试验机作为研究对象,在深入分析其主体液压系统工作机理的基础上,针对该类水压试验机液压系统缓变故障的特点,提出了具有一定实际应用价值的缓变故障检测、预测及维护方法:
     (1).分析并研究了水压试验机主体液压系统工作机理,通过简化其增压系统及平衡系统结构,分别给出了相应的数学模型。在此基础上,以AMESim作为软件环境,针对主要子系统(油源系统、增压系统、平衡系统等),着重考虑了各子系统中可能存在的故障,分别搭建相应可进行故障模拟的子模型,最终建立水压试验机主液压系统整体仿真模型,实现了该设备液压系统在正常工况以及常见故障工况下的动态性能仿真。根据该系统的故障仿真结果,可以将液压系统缓变故障划分为两大类,即具有周期性故障征兆的缓变故障和不具有周期性故障征兆的缓变故障。
     (2).针对第一类具有周期性故障征兆的缓变故障,如水压试验机液压泵单柱塞松靴故障,选择反映该类故障的特征过程变量,提出了基于混沌振子与滑动窗口符号序列统计相结合的早期故障检测方法。该方法首先根据混沌振子对外界微弱周期信号敏感和对噪声免疫的特点,利用Duffing振子检测液压泵早期松靴故障。由于混沌振子在进行弱信号检测时,是通过视觉观察振子相变来实现的,不便于实现检测算法的自动化。因此,提出一种滑动窗口符号序列统计方法来实现振子状态的实时自动判别,从而实现液压泵早期松靴故障的在线自动检测。
     (3).针对第二类不具备周期性故障征兆的缓变故障,仅仅由一个过程变量信息往往无法有效提取出故障信号,本文提出一种基于多变量统计分析的概率故障预测方法。该方法对过程三维数据展开,利用主成分分析方法对展开后的数据矩阵进行分析,对应于批次,提取反映系统运行状态的统计量指标——综合统计量。其次,为了利用该统计量进行系统运行状态的预测,对指标进行滑动窗口累积和运算,降低该指标的随机波动性,增强其规律性。最后利用贝叶斯AR模型对累积后的指标进行预测,获得其概率分布,并计算相应的故障概率以及系统失效时间。
     (4).在分析系统或设备退化过程的基础上,针对第一类缓变故障,提出利用Duffing振子在一个周期中处于混沌以及大周期状态的时段比值识别设备退化模式切换点,制定维护决策;针对第二类缓变故障,按照可靠度将系统运行状态划分为正常状态、临界状态和故障状态。由故障概率计算系统的可靠度,通过判断系统所处的退化模式以及可靠度制定维护策略,实现预测维护。
     最后,在总结全文的基础上,本文还对缓变故障预测领域未来的研究重点和热点问题进行了展望。
As one type of fluid transporting pipeline, steel tube, which is an essential and vital steel product in various fields of the national economy, has attracted spread interests in its quality, relevant techniques for its quality detection and innovation of the relevant equipments in particular. Great progress has been achieved in these fields. Being a necessary part of quality inspection during the production process of steel tube, pressure test plays an important role in the assessment of steel tube. Hydraulic tube tester, which is especially designed and produced in order to test the pressure resistance ability of steel tube, is a complex system composed of mechanics, hydraulics and electronic control, et al. On one hand, as the hydrostatic testing process is a critical quality inspection procedure in the production of steel tube, the running status of hydraulic tube tester has a direct effect on production efficiency of steel tube. On the other hand, as a complex high-press system, the failure of hydraulic tube tester will not only seriously affect the safety and reliability of process operation, but even result in huge loss of personnel and property. Therefore, it is significant to study feasible real-time monitoring, fault detection and prediction methods to support reliable basis for production management, which will improve the performance of machine detection and guarantee the safety and reliability of production.
     Based on the aforementioned consideration, by setting the3#hydraulic tube tester in the Baosteel Tube Branch, imported from the DEMAG Compony, Germany in1995, as the research object, this dissertation further studies its work mechanism and thus developes a series of incipient fault detection, prediction and maintenance methods focusing on the characteristics of incipient fault occurred in the hydraulic system of this type of hydraulic tube tester, which shows important practical values.
     (1). The boost system and balance system are simplified to construct their corresponding mathematical models after the operation mechanism of the main hydraulic system in the hydraulic tube tester has been summarized and analyzed. Based on this, some submodels concerning fault simulation are developed for the main subsystems, such as oil supply system, boost system, balance system and so on. Finally, the whole simulation model is developed for the main hydraulic system of hydraulic tube tester based on the AMEsim software, which realizes the dynamlic simulation of this hydraulic system under normal and commonly faulty conditions, respectively. According to the simulation results of this hydraulic system, the incipient faults can be divided into two categories, i.e. incipient fault with and without periodic fault symptom.
     (2). For the first type of incipient fault with periodic fault symptom, taking single piston loose shoes fault of hydraulic pump in the hydraulic tube tester for example, by selecting a characteristic variable, an early fault detection algorithm is proposed by a combination of Chaos oscillator and sliding window symbol sequence statistic methods. The proposed method firstly chooses Chaos oscillator to diagnose this type of incipient fault based on the insight that the phase transition of Duffing oscillator is very sensitive to a periodic weak signal and immune against to other noises. Then, considering that it is not easy for computer to discriminate the intermittent chaos phenomenon, sliding window symbol sequence statistics method is developed to realize online real-time diagnosis, and critical parameter configuration are analyzed for window size and depth of symbol tree.(3). For the second type of incipient fault without periodic fault symptom, which is not
     realistic to effectively detect the connotative fault symptom through a single process variable, a probabilistic fault prediction method is developed based on multivariate statistical analysis technique. The proposed method firstly unfolds three-way batch process data into a two dimensional matrix, applies principle component analysis (PCA) to this two dimensional matrix to extract corresponding statitistical index reflecting the status of the running system, i.e. the combined index. Then, sliding window cumulative sum mentod is proposed to decrease the stochastic volatility, and increase the regularity buried in each statistical time-series. After that, Bayesian AR model is used to predict the transformed index to get its probability distribution at future time, and calculates its corresponding fault probability and time to failure.(4). Based on the analysis of system's or equipment's deterioration process, for the first type
     of incipient fault, a predictive maintenance method is developed by identifying the mode change point according to the ratio of two time spans, which are the duration of chaos motion and large periodic motion of the Duffing oscillator in a cycle. For the second type of incipient fault, the proposed method partitions the system statuses into3statuses, i.e. normal status, critical statuse and fault status. Then, it calculates the reliability according to the fault probability, and realizes predictive maintenance by determinining the deterioration mode and reliability of current system.
     Finally, the potential further research direction in the area of incipient fault detection and prediction is discussed after summarizing the whole work in this thesis.
引文
[1].潘孝礼.穿孔过程关键参数软测量与优化控制[D].沈阳:东北大学,2008.
    [2].肖东.无缝钢管生产过程质量预报及关键参数优化控制[D].沈阳:东北大学,2009.
    [3].朱瑞华.螺旋焊管静水压试验的自动控制研究[D].大连:大连理工大学,2005.
    [4].胡学发.水压试验机故障诊断与故障预测方法研究[D].沈阳:东北大学,2008.
    [5].陈国金.大直径焊接钢管水压试验机的研制[J],重型机械,2001,(04):19-22.
    [6].吴水康.钢管水压试验机的建模与特性分析[D].上海:上海交通大学,2005.
    [7].郭伟.炮弹内腔压力检测系统的研制[D].合肥:合肥工业大学,2007.
    [8].于建民,张雷.钢管水压试验机管端密封方式的探讨[J],焊管,1997,20(1):38-41.
    [9].卫凌云,刘继高,杜学斌,.我国首条双头高压水压试验机生产线的研制[J],钢管,2006,35(02):39-42.
    [10].刘继高.国产首台全自动高压水压试验机[J],重型机械,2001,(01):7-9.
    [11].董磊,胡慧慧.基于组态王6.5的油井管静水压试验控制系统[J],石油矿场机械,2005,34(03):82-83.
    [12].刘东菊,陈书帛.400型套管水压试验机的研制与设计[J],石油机械,2001,29(11):28-30.
    [13].雷幼桐.水压试验机的改造[J],采矿技术,2005,05(03):33-34,78.
    [14].胡学发,赵珍,王福利,何大阔.钢管水压试验机主液压系统建模与仿真[J],系统仿真学报,2008,20(18):4994-4997.
    [15].胡学发,赵珍,王福利,何大阔.基于灰度聚类的钢管水压试验机故障诊断[J],东北大学学报(自然科学版),2007,28(11):1529-1532.
    [16].胡学发,王姝,王福利,何大阔.基于mica-Fda的水压试验机故障诊断方法研究[J],仪器仪表学报,2008,29(08):1-5.
    [17].胡学发,王姝,王福利,何大阔.基于子时段递摊mfda的水压机故障诊断方法[J],仪器仪表学报,2009,30(02):247-251.
    [18].王姝,胡学发,赵珍,王福利.基于mpca-Ar的故障预测方法研究[J],仪器仪表学报,2009,30(08):1778-1782.
    [19].邓东生,李伟,苏爱明,唐峰.油套管静水压试验机的型式与结构[J],石油矿场机械,2004,33(03):72-75.
    [20].申正曙,杜广玮.Demag钢管水压试验机的工作原理及其故障分析[J],钢管,2000,29(02):22-26.
    [21].卫凌云,杜学斌,刘继高.高压钢管水压试验机技术特点[J],焊管,2006,29(03):59-62.
    [22].单云涛.可编程控制器在水压实验机上的应用及设计[J],焊管,2003,26(02):48-50.
    [23].李均荣.浅谈钢管液压试验机中液压、增压控制回路[J],冶金丛刊,2004,149(01):11,12,21.
    [24].杨红娟,刘积录,高尚辉.Φ140mm~Φ426mm钢管水压试验机液压系统的安装调试[J],重型机械科技,2007,(03):47-50.
    [25].张君.水压试验机液爪系统噪声控制的研究[J],机械设计与制造,2006,(04):121-122.
    [26].池红卫.复杂过程工业系统故障诊断与预测方法的研究[D].天津:天津大学,2004.
    [27].黄文虎.设备故障诊断原理、技术及应用[M].北京:科学出版社,1996.
    [28].贺湘宇.挖掘机液压系统故障诊断方法研究[D].长沙:中南大学,2008.
    [29].Sriyananda H., To will D. R. Fault Diagnosis Using Time Domain Measurements[J], Radio and Electronic Engineer,1973,43(9):523-533.
    [30].Abbott Kathy H, Schutte Paul C., Palmer, Michael T,RICKS WENDELLR. Faultfinder: A Diagnostic Expert System with Graceful Degradation for Onboard Aircraft Applications[A]. Proceedings of the 14th Symposium on Aircraft Integrated Monitoring Systems [C], Germany, Federal republic of dfvlr,1988,353-370.
    [31].Hogan Pau, Burrows Clifford R., Edge, K. A. Development of a Knowledge Based System for the Diagnosis of Faults in Hydraulic Circuits[C], New York, American Society of Mechanical Engineers,1990.
    [32].Watton J., Lucca-Negro O., Stewart J. C. On-Line Approach to Fault Diagnosis of Fluid Power Cylinder Drive Systems[J], Proceedings of the Institution of Mechanical Engineers, Part I Journal of Systems&Control Engineering,1991,208(14):249-262.
    [33].Yu D., Shields D. N. Bilinear Fault Detection Observer[J], Automatica,1996,32(11): 1597-1602.
    [34].W J Crowther, K A Edge, C R Burrows, R M Atkinson, D.1 Woollons. Fault Diagnosis of a Hydraulic Actuator Circuit Using Neural Networks-an Output Vector Space Classification Approach[J], Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering,1998,212(1):57-68.
    [35].Pollmeier K., Burrows C. R., Edge K. A. Condition Monitoring of an Electrohydraulic Position Control System Using Artificial Neural Networks[A]. Proceedings of the ASME Fluid Power Systems and Technology Division[C], New York, American Society of Mechanical Engineers, The Fluid Power and Systems Technology Division,2004, 137-146.
    [36].许益民.基于两级bp网络伺服阀故障诊断专家系统的研究与应用[J],中国机械工程,1999,10(05):545-549.
    [37].张若青,裘丽华.基于动态神经网络的液压伺服系统故障检测[J],机械工程学报,2002,38(03):46-49.
    [38].高英态.轧机agc液压系统故障诊断技术的研究[D].秦皇岛:燕山大学,2000.
    [39].曾良才.板带轧机液压agc综合测试系统及故障诊断研究[D].武汉:武汉理工大学,2005.
    [40].陈章位,路甬祥,傅周东.液压设备状态监测和故障诊断技术[J],液压与气动,1995,(02):2-8.
    [41].董选明,裘丽华,王占林.故障诊断神经网络系统的专家知识表达方法[J],北京航空航天大学学报,1996,22(01):27-32.
    [42].张建华,王占林.基于模糊神经网络的故障诊断方法的研究[J],北京航空航天大学学报,1997,23(04):502-506.
    [43].方志宏,傅周东陈章位.基于Bp神经网络的液压系统泄漏故障诊断[J],机械科学与技术,1998,17(01):116-118.
    [44].潘宏,傅周东 陈章位.基于小波分析的液压系统泄漏检测[J],机械科学与技术,1998,17(04):636-638,648.
    [45].黄志坚,裘丽华.液压故障智能诊断逻辑方法的研究[J],中国机械工程,2002,13(15):1298-1301.
    [46].胡燕平,黄之初,毛征宇.液压系统的智能故障诊断技术的研究现状与发展[J],机床与液压,2005,(11):1-3,34.
    [47].周汝胜,焦宗夏,王少萍.液压系统故障诊断技术的研究现状与发展趋势[J],机械工程学报,2006,42(09):6-14.
    [48].杜京义.基于核算法的故障智能诊断理论及方法研究[D].西安:西安科技大学2007.
    [49].饶泓.基于多源信息融合与rough集理论的液压机故障诊断方法研究[D].南昌:南昌大学,2009.
    [50].李德刚.设备预知维护的体系理论及支撑技术研究[D].长沙:湖南大学,2006.
    [51].陈琦.基于可靠性的设备维护优化研究[D].天津:天津大学,2008.
    [52].孔造杰.[业维护管理系统rom理论与方法研究[D].天津:天津大学,2003.
    [53].Moubrary, J. Reliability-Centered Maintenance[M]. New York:Industrial Press,2001.
    [54].Amik Garg, S.G. Deshmukh. Maintenance Management:Literature Review and Directions[J], Journal of Quality in Maintenance Engineering,2006,12(3):205-238.
    [55]王凌.维修决策模型和方法的理论与应用研究[D].杭州:浙江大学,2007.
    [56].Dieulle L., Berenguer C., Grall A., Roussignol M. Sequential Condition-Based Maintenance Scheduling for a Deteriorating System[J], European Journal of Operational Research,2003,150(2):451-461.
    [57].John T. Renwick, Paul E. Babson. Vibration Analysis-a Proven Technique as a Predictive Maintenance Tool[J], Ieee Transactions on Industry Applications,1985, 1a-21(2): 324-332.
    [58].Sottile J., Kohler J. L. Techniques for Improved Predictive Maintenance Testing of Industrial Power Systems[J], Industry Applications, IEEE Transactions on,1989,25(6): 992-999.
    [59].Qinghua Zhang, Michele Basseville, Albert Benveniste. Early Warning of Slight Changes in Systems and Plants with Application to Condition Based Maintenance[J], Automatica, 1992,30(1):95-113.
    [60].Michele Basseville, Igor V. Nikiforov. Detection of Abrupt Changes:Theory and Application[M]. Prentice-Hall, Inc., Simon & Schuster Company, Englewood Cliffs, NJ, 1993.
    [61].Hooper, F. A. Predictive Maintenance of Steam Traps:Combining Demand Side Management and Performance Contracting[A]. Eighty-Sixth Annual Conference of the International District Energy Association, Official Proceedings[C], Seattle,1995,291-299, 370.
    [62].Kerzerho, J. P., Antunes, F., Gerval, J. P., Cardoso, E. L., Tisseau, J. Prototyping an Integrated System for Predictive Maintenance[A]. Large Scale Systems:Theory and Applications,1995,883-887,943.
    [63].Lewin, D. R. Predictive Maintenance Using Pca[J], Control Engineering Practice,1995, 3(3):415-421.
    [64].Regev, A., Adani, R. Predictive Maintenance Comes to Online Gas Analyzers[J], Intech, 1995,42(10):44-45.
    [65].Trego, L. Aircraft Engine Predictive Maintenance[J], Aerospace Engineering,1995, 15(8):10-10.
    [66].Butler, K. L. An Expert System Based Framework for an Incipient Failure Detection and Predictive Maintenance System[A]. International Conference on Intelligent Systems Applications to Power Systems(ISAP'96.) [C], Orlando(USA),1996,321-326.
    [67].Fedor, T. G. Predictive Maintenance Technologies and Their Effect on Unscheduled Maintenance Downtime[A].55th Ironmaking Conference Proceedings,1996,547-547, 791.
    [68].Frend, R., Saller, E. Predictive Maintenance in Automotive Stamping Facilities[J], Sound and Vibration,1996,30(11):16-21.
    [69].Geraghty, T. Maintenance Goes Predictive[J], Control and Instrumentation,1996,28(1): 34,36.
    [70].Hall, D. L. Concepts of Condition-Based Maintenance for Intelligent Ships[A]. Intelligent Ships Symposium Ⅱ-Symposium Proceedings,1996,313-328,448.
    [71].陈向坚,李平英.机电设备故障诊断预测维修系统[J],湖北工学院学报,1995,10(S1):126-128.
    [72].王太勇,李书明,赵作恒,尹琪,杨索娥,钟波,唐华.设备智能诊断与预测维修系统[J],中国安全科学学报,1997,7(S1):17-19,25.
    [73].余刃,张永刚 叶鲁卿.Icmms中的预知维护及其功能层通用参考模型[J],水电能源科学,1999,17(04):19-22.
    [74].山本聪.欧美火电厂的预测性检修和检修周期的延长[J],国际电力,2000,(01):52-55.
    [75].朱泓,马孝江,张冰焰.滚动轴承故障诊断与预知维修数据库系统研制[J],大连理工大学学报,2000,40(04):461-464.
    [76].刘昌玉,叶鲁卿,lung Benoit, Morel Gerard水轮机调速系统的预知维护[J],武汉理工大学学报,2001,23(04):45-47.
    [77].崔凯,赵宏宇,赵光艳.发电设备的状态检修技术[J].吉林电力,2002,(03):26-27.
    [78].牛万忠.汽轮发电机组状态检修分析[J],汽轮机技术,2002,44(04):236-238.
    [79].柏林,秦树人,汤宝平.基于虚拟仪器的预测维修系统的研发[J],中国机械工程,2003,14(16):1400-1402.
    [80].刘东,王泽震,涂强,葛扬志,李华彪,刘稚钧.平湖油气田风机设备故障诊断及维修策略[J],噪声与振动控制,2003,(02):43-45,48.
    [81].王健,张琦,况冰,郑伟,刘芳.基于bp网络的装备预知维修[J],兵工自动化,2004,23(03):6-8.
    [82].辛道勇,王健,张琦,乔忠云,刘占山.基于ann的工程机械预知维修专家系统研究[J],机械与电子,2004,(04):63-67.
    [83].傅闯,叶鲁卿,余刃,刘永前,陈木华.基于多智能体和人工神经网络的水电厂预知维护系统的研究[J],中国电机工程学报,2005,25(06):81-87.
    [84].夏乐天.马尔可夫链预测方法及其在水文序列中的应用研究[D].南京:河海大学,2005.
    [85].赵剑锋.基于润滑油监测技术的铁路大型养路机械预知维修[J],润滑与密封,2005,(06):154-156,175.
    [86].王兰英,张世平,王爱如,李军.钢管静水压试验机移动端驱动方式的探讨[J],焊管,2005,28(03):44,45.
    [87].耿建军,师蕊.Φ48~Φ168水压试验机工艺流程及特点[J],山西建筑,2004,30(03):120-121.
    [88].刘东菊,陈书帛.400型套管水压试验机的研制与设计[J],石油机械,2001,29(11):28-30.
    [89].王平.50mpa(Φ177.8)石油套管静水压试验机的改造[J],石油矿场机械,2006,35(01):104-105.
    [90].雷幼桐.水压试验机的改造[J],采矿技术,2005,5(03):33-34,78.
    [91].段锁林,安高成,魏聪梅,王明智.水压试管机计算机监控系统设计[J],中国机械工程,2002,13(12):1038-1039.
    [92].谭宝成,陈晓伟,王娜.水压试验机控制系统的算法研究和实现[J],西安工业大学学报,2006,26(06):549-552.
    [93].赵静一,上官倩芡,马保海.10mn水压机液压系统故障树分析[J],液压与气动,1999,(03):36-38.
    [94].赵静一,陈卓如,王益群,上官倩芡.水压机液压系统主缸无力的fta分析[J],燕山大学学报,1999,23(01):7-10.
    [95].吴水康.水压试验机伺服增压系统数学模型的建立[J],流体传动与控制,2004,4(03):20-22.
    [96].李鸣,李俊,苏国侦.电液比例控制技术在钢管水压试验机上的应用[J],机床与液压,1996,(06):11-12,28.
    [97].刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989.
    [98].王传礼,许贤量.阀控非对称缸机构建模探讨[J],矿山机械,1998,(7):66-68.
    [99].张明辉.大型履带起重机回转液压系统仿真研究[D].大连:大连理工大学,2006.
    [100].李吉,李华聪.仿真软件amesim应用研究[J],航空计算技术,2006,36(1):56-58.
    [101].黄先祥,马长林,高钦和,李锋.大型装置起竖系统协同仿真研究[J],系统仿真学报,2007,19(1):1-2,25.
    [102].吴跃斌,谢英俊,徐立,陈鹰.1mn级新型减摇鳍液压系统仿真[J],机床与液压,2004,(4):61-63,32.
    [103]].马长林,黄先祥,郝琳.基于amesim的电液伺服系统仿真与优化研究[J],液压气动与密封,2006,(1):32-34.
    [104]].施康,曾良才,朱学彪.基于amesim的电液伺服系统故障仿真研究[J],流体传动与控制,2009,34(03):25-27.
    [105]].付永领,,祁晓野,.Amesim系统建模和仿真——从入门到精通[M].北京:北京航空航天大学出版社,2006.
    [106].胡国良.盾构模拟试验平台电液控制系统关键技术研究[D].杭州:浙江大学,2006.
    [107].祁雪乐,宋健,王会义,李亮.基于amesim的汽车esp液压控制系统建模与分析[J],机床与液压,2005,(8):115-116,122.
    [108].郑久强,龚国芳,胡国良,杨华勇.盾构刀盘变转速液压驱动系统[J],2006,(4):36-38.
    [109].吕锋,王秀青,梁彦.基于多传感器信息融合的变压器故障检测与诊断[J],继电器,2003,31(12):5-8,12.
    [110].姜万录,王益群.混沌振子在液压泵故障诊断听应用[J],机床与液压,1999,(05):52-53,83.
    [111].麻健,权龙陆世鑫.倒频谱在液压泵故障诊断中的应用[J],机床与液压,1998,(02):55-56.
    [112].牛慧峰.免疫机理与支持向量机复合的故障诊断理论及试验研究[D].秦皇岛:燕山大学,2009.
    [113].李大勇,王建军.轴向柱塞泵运行工况与振动的研究[J],华北电力技术,2005,(04):5-6,18.
    [114].Y. Gao, Q. Zhang, X. Kong. Wavelet-Based Pressure Analysis for Hydraulic Pump Health Diagnosis[J], IEEE Transactions of the ASAE,2003,46(4):969-976.
    [115].Yingjie Gao, Qin Zhang. A Wavelet Packet and Residual Analysis Based Method for Hydraulic Pump Health Diagnosis[J], Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2006,220(6):735-745.
    [116].牛慧峰,姜万录.免疫支持向量机方法在液压泵故障诊断中的应用[J],中国机械工程,2008,19(14):1736-1739,1743.
    [117].刘红梅,王少萍,欧阳平超.基于小波包和elman神经网络的液压泵故障诊断[J],北京航空航天大学学报,2007,33(01):67-71.
    [118].Wang Yongsheng, Ma Xiangling, Wei Yu, Fan Hongda. A New Method of Weak Signal Detection Using Chaos Phase Change[A]. the eighth international conference on electronic measurement and instrument,2007,812-816.
    [119].姜万录,张淑清,王益群.基于混沌和小波的故障信息诊断[M].北京:国防工业出版社,2005.
    [120].陈季萍.轴向柱塞泵松靴故障特征信号的分析与选取[J],煤矿机械,2002,(10):84-85.
    [121].文忠,李立萍.基于duffing振f的弱chirp信号检测与参数估计[J],自动化学报,2007,33(05):536-539.
    [122].Guanyu Wang, Dajun Chen, Jianya Lin, Xing Chen. The Application of Chaotic Oscillators to Weak Signal Detection[J], IEEE transaction on industrial electronics,1999, 46(2):440-444.
    [123].DEVAMEY, R. L. Chaotic Dynamical Systems[M]. New York:Addison-Wesley,1989.
    [124].李崇晟,屈梁生.基于混沌和符号序列统计的滚动轴承故障诊断[J],西安交通大学学报,2005,39(03):261-265.
    [125].Felix Salfner, Miroslaw Malek. Using Hidden Semi-Markov Models for Effective Online Failure Prediction[A].26th IEEE International Symposium on Reliable Distributed Systems,2007,161-174.
    [126].Sloughter, J. M., A. E. Raftery, T. Gneiting. Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging[J], Monthly Weather Review,2007,135: 3209-3220.
    [127].陈长征,刘强.概率因果网络在汽轮机故障诊断中应用[J],中国电机工程学报,2001,21(3):78-81.
    [128].Gilks W R, Richardson S, Spiegelhalter D J. Markov Chain Monte Carlo in Practice[M]. London:Chapman & Hall,1996.
    [129].David S, Andrew T, Nicky B. Bugs 0.5:Bayesian Inference Using Gibbs Sampling Manual[M]. Cambridge, U.K.:MRC Biostatistics Unit,1996.
    [130].朱慧明,韩玉启,郑进城.基于正态-Gamma共轭先验分布的贝叶斯ar(P)预测模型[J],统计与决策,2005,(1):8-9.
    [131].赵春晖.多时段间歇过程统计建模、在线监测及质量预报[D].沈阳:东北大学,2009.
    [132].陆宁云.间歇工业过程的统计建模、在线监测、故障诊断及质量预测[D].沈阳:东北大学,2004.
    [133].S. Wold, P. Geladi, K. Esbensen, J. Ohman. Multi-Way Principal Components and Pls-Analysis[J], J. Chemometrics 1987,1:47-56.
    [134].Nomikos P, MacGregor J F. Monitoring Batch Processes Using Multiway Principal Component Analysis[J], AIChE J,1994,40(8):1361-1375.
    [135].Nomikos P, MacGregor J F. Multi-Way Partial Least Squares in Monitoring Batch Processes[J], Chemometrics and Intelligent Laboratory Systems,1995, (1):30,97-108.
    [136].Nomikos P, MacGregor J F. Multivariate Spc Charts for Monitoring Batch Processes[J], Technometrics,1995,37(1):41-59.
    [137].Westerhuis.1 A, Kourti T, MacGregor J F. Comparing Alternative Approaches for Multivariate Statistical Analysis of Batch Process Data[J], J Chemometrics,1999,13(3-4): 397-413.
    [138].Wold S. Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models[J], Technometrics.1978,20(4):397-405.
    [139].Jackson,J.E. A User's Guide to Principal Components[M]. New York:Wiley,1991.
    [140].张孝令,刘福升,张承进,葛颜祥.贝叶斯动态模型及其预测[M].济南:山东科学技术出版社,1992.
    [141].Hamilton.时间序列分析[M].北京:中国社会科学出版社,1998.
    [142].朱慧明,林静.贝叶斯计量经济模型[M].北京:科学出版社,2009.
    [143].包云霞.贝叶斯动态模型的随机模拟研究:山东科技大学,2005.
    [144].Scollnik P M. Actuarial Modeling with Mcmc and Bugs[J], North American Actuarial Journal,2001,5(2):96-125.
    [145].林静,韩玉启,朱慧明,陈杰.基于mcmc稳态模拟的weibull回归模型及其可靠性应用[J],系统仿真学报,2006,18(5):1161-1163,1185.
    [146].邵伟,彭耀,刘强,孙立新.电液伺服阀在135mw汽轮机组deh系统的应用与维护[J],山东煤炭科技,2007,(06):7-8.
    [147].Ghislain Verdier, Nadine Hilgert, Jean-Pierre Vila. Adaptive Threshold Computation for Cusum-Type Procedures in Change Detection and Isolation Problems[J], computational statistics and data analysis,2008,52:4161-4174.
    [148].Nguyen, Duy Quang, Brammer, Christopher, Bagajewicz, Miguel. New Tool for the Evaluation of the Scheduling of Preventive Maintenance for Chemical Process Plants[J], Industrial & engineering chemical research,2008,47:1910-1924.
    [149].Chu, Chengbin, Proth, Jean-marie, Wolff, Philippe. Predictive Maintenance:The One-Unit Replacement Model[J], Internation Journal of Production economics,1998,54: 285-295.
    [150].陈敏泽,周东华.动态系统的故障预报技术[J],控制理论与应用,2003,20(06):819-824.
    [151].高社生,张玲霞.可靠性理论与工程应用[M].北京:国防工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700