用户名: 密码: 验证码:
污水地下渗滤系统脱氮关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一类无动力、自适应的污水生态处理技术,地下渗滤系统对污水中主要污染指标均具有良好的去除能力,但对氮的脱除效率尚需提高。本文围绕影响地下渗滤系统脱氮过程的主要问题,以调控系统内氧化还原环境和优化脱氮过程营养比为目标,重点研究了地下渗滤系统的基质组配方法、基质脱氮微生物结构特征和基质氮还原酶活性变化规律,形成了提高系统脱氮效率的工艺方法,通过工程连续运行,验证了上述方法的可靠性,最终建立了地下渗滤系统脱氮的关键技术。论文的主要研究成果如下。
     首先,构建了一套模拟污水地下渗滤过程的连续实验系统,通过布、散水和集水单元的结构优化,柱体连接方式优化以及采用薄层粘土覆盖内侧壁的方法,解决了以往研究中存在的水力学过程非均匀、基质充填过程中局部塌陷、渗透系数发散和水流线路边界短路的问题。
     随后,设计了一种用于提高污水地下渗滤系统脱氮效率的生物基质。与常规基质草甸棕壤相比,生物基质的孔隙度、渗透性和有机质含量均大幅提高,基质内的微生物生境条件优越,氨化、硝化和反硝化微生物群落丰富。通过条件优化实验,获得了可促进地下渗滤系统脱氮效率的基质层组配方法。分析了地下渗滤系统中脱氮微生物群落结构分布特征,结果表明:氨化细菌的数量受基质层深度和内部温度的影响较小,随着基质层深度增加,硝化细菌数量减少,反硝化细菌数量增加,两者数量都随温度的降低而减少。地下渗滤系统中典型氮还原酶活性变化规律的实验结果表明:脲酶活性分布主要受基质深度、进水氨氮浓度及环境温度影响,与总氮去除率之间呈显著正相关关系;硝酸盐还原酶(NAR)活性随基质层深度的增加而减小,受环境温度和进水水质的影响较小,与氨氮和总氮去除率间的相关性均不显著;沿基质垂直深度上NIR的活性大小次序为:40cm处>20cm处>60cm处>80cm处>100cm处,且随环境温度升高活性增强,在60-100cm区域内,NIR活性与系统总氮去除率间呈显著正相关关系。
     进而,初步建立了描述地下渗滤系统微生物脱氮过程的动力学模型。模型指出:地下渗滤系统硝化过程符合一级动力学NE=N0e-0.4812t,温度按照kT=0.2218×1.035(T-20)的关系影响硝化速率;反硝化过程中出水硝态氮浓度与水力停留时间(HRT)之间呈负指数关系,可描述为y=16.3475e-0.2548t,碳源是影响反硝化动力学常数的主要因子,在地下渗滤系统基质层适当深度补加原污水,可提高反硝化速率
     同时,研究了有助于地下渗滤系统脱氮过程的运行参数调控方法。实验结果表明:随着湿干比降低,基质渗透率和氧化还原电位(ORP)提高,含水率和比容积降低,氨化细菌数量变化不明显,硝化细菌数量提高,反硝化细菌数量减少;启动期适宜的湿干比为1:3,稳定运行时适宜的湿干比为1:1;随着进水水力负荷和污染负荷增加,系统ORP下降,适宜的表面水力负荷为0.065~0.081m3/m2·d,进水BOD负荷不宜大于16.8g BOD/m2·d;采用在散水管(垂直深度55cm)以下10cm处补加原污水的方式,控制补加比例为1:1,总氮去除率可从51.6%提高到68.1%。
     最后,通过工程连续运行,以氨氮和总氮去除率为评价标准,验证了前述研究结论。结果表明:系统稳定后,氨氮、总氮的平均去除率达到87.7%和70.1%(出水平均浓度为2.3和6.9mg/L),COD、BOD5和TP平均去除率也分别达到84.8、91.7和85.1%(出水平均浓度分别为19.7、5.7和0.3mg/L),出水水质满足《城市污水再生利用-景观环境用水水质》(GB18921-2002)标准。
As compared to conventional activated sludge treating process, SWIS has more advantages, including low construction, operation costs and easy maintenance. Howerer, there remain problems with nitrogen removal usually due to the complicated interior environment of the application. Therefore, this paper focused on the nitrogen removal effects of SWIS, taking the microbial and enzyme studies as the breakthrough point. Preparation of the substrate and controlling of the operation methods were mainly studied. Kinetic equation was established to describe the nitrogen removal process. Finally, demonstration project was operated continually, and model techniques in enhancing nitrogen removal rates of SWIS were established. The main conclusions are:
     At first, a set of SWIS simulated system was designed. Analysis of the substrate and inner environment was easy with the side sampling points. The wastewater flowed through the "cross" distribution pipe to the infiltration area. As then, the distribution of the wastewater was uniform. At the lower part of the system was the water collection area. Between this and the upper one was a partition plate with holes on it. This design could insure the uniform of the water quality for analysis. Different parts of the system was connected with flanges, therefore, the risk of collapse of the substrate was overcomed. Adhesion method was adopted around the inner part of SWIS to lessen the possibility of flow shortcut. Therefore, the system could implement several tasks for different experimental purposes.
     Secondly, the experimental results of the substrate for enhancing nitrogen removal effects showed that, the bio-substrate was made of activated sludge, slag and meadow brown soil. The porosity, infiltration rate and organic matter content of the bio-substrate were raised considerably compared to the raw soil. At the same time, the number of nitrifying, nitrified and denitrified bacterial was increased. And also, the bio-substrate had higher NH4+-N adsorption, nitrifying and detrifying capacities than the meadow brown soil. In CSWIS (constructed subsurface wastewater infiltration system), the construction of the infiltration from up to down was:meadow brown soil, bio-substrate, meadow brown soil and gravel. NH4+-N removal rate was stabled on90.7%after20-25days'operation. The average NH4+-N concentration in effluent was4.4mg/L.
     The distribution of microbial in CSWIS showed that, ammonifying bacterial was affected little by depths or temperature. Conversely, the number of nitrifying bacterial reduced as the depths increased. The change of denitrifying bacterial number was opposite to that of nitrifying one, both of which rose with the elevating of the temperature. Following the input, output operation of CSWIS, the quantities of nitrifying and denitrifying bacterial fluctuated accordingly. Analyzing from SPSS software, the number of ammonifying, nitrifying and denitrifying bacterial was in considerable correlation with NH4+-N and TN removal rates.
     Studies of the enzyme distribution of CSWIS showed that, the distribution of urease was affected by depth, NH4+-N concentration of input and temperature. In the middle of the system, nearby the water distribution area, urease activity was the strongest, and in positive correlation with NH4+-N concentration and temperature. Distribution of NAR activity was affected more by depth than either changes of temperature or characteristics of input. The variation order of NAR activity with depth was20cm>40cm>60cm>80cm>100cm. Depth and temperature had profoundly influence on the distribution of NIR activity. Changes of NIR activity with depth was40cm>20cm>60cm>80cm>100cm, in positive correlation with temperature. From20cm to100cm, urease activity was in significant correlation with NH4+-N and TN removal. No significant correlation was found between NAR activity and nitrogen removal. From60cm to100cm, NIR activity was in correlation with nitrogen removal. The results implied that it is feasible to investigate urease and NIR activities as the enzyme index in determining nitrogen removal effects of CSWIS.
     Nitrifying process of SWIS accorded with the kinetic equation of NE=N0e-.48121. Temperature was the main factor affecting k, the relationship between k and temperature was kT=0.2218×1.035(T-20). With respect to denitrifying process, the NO3--N concentration of outflow was negative exponent correlation with the hydraulic retention time (HRT) of the system. Carbon source was the main factor causing the changes of k. With the distribution methods were applied in55cm and65cm, with1:1discharge ratio, k rose from0.0355to0.0488.
     The operation methods of CSWIS showed that, the infiltration rated and oxidation reduction potential (ORP) rose with the lower wet/dry ratio, while the moisture content and the ratio of volume reduced. ORP fluctuated with the inflow-outflow operation. The number of ammonifying changed little with the wet/dry ratio. Nitrifying bacterial'number raised and denitrifying'reduced accordingly. In the start-up period, the optimal wet/dry ratio was1:3; the start-up period was20days. In stable operation period, the wet/dry ratio was1:1. Nitrogen concentration was lower than the standard of GB/T18921-2002. With the increasing of hydraulic and BOD loading rates, ORP of the system decreased, and the nitrogen removal rates lowered. The optimal hydraulic and BOD loadings were0.065~0.081m3/m2·d and16.8g/m2·d。Distributary method raised TN removal rate from51.6%to68.1%.
     Finally, the continuous operation results of the demonstration project showed that, the start-up period of the system was20days, removal rates of NH4+-N、TN、COD、 BOD5and TP were87.7、70.1、84.8、91.7and85.1%, respectively. The average outflow concentration was2.3、6.9、19.7、5.7and0.3mg/L, respectively, lower than the standard of GB18921-2002.
引文
[1]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001,328-350.
    [2]孙铁珩.城市污水土地处理技术指南[M].北京:中国环境科学出版社,1997,65-75.
    [3]贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展[J].生态学报,2009,29(1):406-413.
    [4]Pi Y Z, Wang J L. A field study of advanced municipal wastewater treatment technology for artificial groundwater recharge [J]. Journal of Environmental Science,2006,18(6): 1056-1060.
    [5]孙铁珩,李宪法.城市污水自然生态处理与资源化利用技术[M].北京:化学工业出版社,2006,14-108.
    [6]张笑一,关小满,彭润芝,等.地沟式污水生态处理系统中氮素的形态转化研究[J].农业环境科学学报,2006,25(4):1065-1070.
    [7]Willm M H, Paul M. B. Hidetoshi U, et al. Ammonia oxidation kenetics determine niche separation of nitrifying archaea and bacteria [J]. Nature,2009,461(15):976-979.
    [8]戴树桂.环境化学[M].北京:高等教育出版社,2003,118-165.
    [9]蔡碧婧,谢丽,杨殿海,等.反硝化脱氮工艺补充碳源选择与优化研究进展[J].净水技术,2007,26(6):37-41.
    [10]刘艳丽,张斌,胡锋,等.干湿交替对水稻土碳氮矿化的影响[J].土壤,2008,40(4):554-560.
    [11]李正魁,张晓姣,杨竹攸,等.基于固定化氮循环细菌技术的镇江金山湖生态工程效果研究[J].环境科学,2009,30(6):1626-1630.
    [12]Tak H K, Youn K N, Chulhwan P, et al. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification [J]. Bioresource Technology,2009,100:5694-5699.
    [13]Li X N, Song H L, Lu X W, et al. Characteristics and mechanisma of the hydroponic bio-filter method for purification of eutrophic surfac water [J]. Ecological Engineering,2009. 35:1574-1583.
    [14]刘小军,高燕.浅析氮循环过程中形成的面源污染[J].黑龙江生态工程职业学院学报,2009,22(3):2-3.
    [15]李辉,徐新阳,李培军,等.人工湿地中氨化细菌去除有机氮的效果[J].环境工程学报, 2008,2(8):1044-1047.
    [16]Zhang D Q, Richard M G, Tan S K. Constructed wetlands in China [J]. Ecological Engineering,2009,35:1367-1378.
    [17]Liang Z, Liu J X. Control factors of partial nitritation for landfill leachate treatment [J]. Journal of Environmental Sciences,2007,19:523-529.
    [18]郭劲松,王春燕,方芳,等.湿干比对人工快渗系统除污性能的影响[J].中国给水排水,2006,22(17):9-13.
    [19]Rauch T, Drewes J E. Using soil biomass as an indicator for the biological removal of effluent-derived organic carbon during soil infiltration [J]. Water Researcn,2006,40: 961-968.
    [20]阮晓红,张瑛,黄林楠,等.微生物在湿地氮循环系统的效应分析[J].水资源保护,2004,6:1-7.
    [21]陈明利,吴晓芙,陈永华,等.蛭石人工湿地中吸附-生物转化系统脱氮能力及其机理研究[J].环境工程学报,2009,3(2):223-228.
    [22]Michael R, Aoife L, Liwen X. Carbon and nitrogen remival using a novel horizontal flow biofilm system [J]. Process Biochemistry,2006,4:270-2275.
    [23]Zhao L F, Zhu W, Tong W. Clogging processes causd by biofilm growth and organic particle accumlation in lab-scale vertical flow constructed wetlands [J]. Journal of Environmental Sciences,2009,21:750-757.
    [24]Chan S Y, Tsang Y F, Cui L H, et al. Domestic wastewater treament using batch-fed consructed wetland and predictive model developmen for NH3-N removal, [J]. Process Biochemistry,2008,43:297-305.
    [25]Ma J, Yang Q, Wang S Y, et al. Effect of free nitrous acid inhibitors on nitrate reduction biological nutrient removal sludge [J]. Journal of Hazardous Materials,2009,10:1-25.
    [26]Seok J J, Han S K, Lee Y W. Effect of iron media on the treatment of domestic wastewater to enhance nutrient removal effciency [J]. Process Biochemistry,2003,38:1767-1773.
    [27]Melian, J A H, Arana J, Diaz O G, et al. Effect of stone filters in a pnd-wetland system treating raw wastewater from a university campus [J]. Desalination,2009,237:277-284.
    [28]刘静.渗滤系统中氨氮的迁移转化机理及数学模拟[D].北京:北京工业大学,2008.
    [29]徐建,张德纯.Cd-1型亚硝酸盐还原酶脱氮工程菌的构建与表达[J].中国微生态学杂志,2008,20(5):463-468.
    [30]Zheng S K, Li W. Effects of hydraulic loading and room temperature on performance of anaerobic/aerobic system for ammonia-ridden and phenol-rich coking effluents [J]. Desalination,2009,247:362-369.
    [31]David A, Jaime N. Energy requirements for ntrification and biological nitrogen removal in engineered wetlands [J]. Ecological Engineering,2009,35:184-192.
    [32]Jin Y J, Yun C C, Shin H S, et al. Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process [J]. Water Research,2004,38:347-357
    [33]Galvez J M, Gomez M A., Hontoria E, et al. Influence of hydraulic loading and flowrate on urban wastewater nitrogen removal with a submerged fixed-film reactor [J]. Journal of Hazardous Materials,2003,101:219-229.
    [34]Moreno B, Gomez M A, Gonzalez J L, et al. Inoculation of a submerged filter for biological denitrification of nitrate polluted ground water:a comparative study [J]. Journal of Hazardous Materials,2005,117:141-147
    [35]Liang Z, Liu J X. Landfill leachate treatment with a novel process:Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system [J]. Journal of Hazardous Materials,2008,15:202-212.
    [36]代莹,李全燕,孙铁珩.地下渗滤生物强化系统的建立及水力负荷对系统脱氮效果的影响[J].黑龙江工程学院学报,2009,23(2):71-74.
    [37]李英华,王书文,孙铁珩,等.浮动生物床/地下渗滤联合工艺处理校园污水的设计与管理[J].环境工程学报,2007,1(3):31-35.
    [38]黄娟,王世和,鄢璐,等.潜流型人工湿地的脲酶活性分布特性[J].东南大学学报(自然科学版),2008,38(1):166-169.
    [39]Masoud T, Azadeh S. Long-term impact of municipal sewage irrigation on treated soil and black locust trees in a semi-arid suburban area of Iran [J]. Journal of Environmental Sciences, 2009,2:1438-1445.
    [40]Shinya M, Akihiko T, Satoshi T. Modeling of membrane-aerated biofilm:Effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification [J]. Biochemical Engineering Journal,2007,37:98-107.
    [41]Attilio T, Gunter L, Simona C, et al. Modeling pollutant removal in a pilot-scale two-stage subsurface flow constructed wetlands [J]. Ecological Engineering,2009,35:281-289.
    [42]Kadam A, Oza G, Dutta S, et al. Municipal wastewater treatment using novel constructed soil filter system [J]. Chemosphere,2008,71:975-981.
    [43]Yuzuru K, Yunhei I, Motoyuki M, et al. Nitrogen Removal and N,O Emission in a Full-Scale Domestic Wastewater Treatment Plant with Intermittent Aeration [J]. Journal of Fermentation and Bioengineering,1998,86(2):202-206.
    [44]Tatsuo S, Kazuichi I, Hajime I, et al. Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor [J]. Journal of Bioscience and Bioengineering,2006,102(4):346-351.
    [45]张之崟,雷中方.土壤渗滤法工艺运行中的主要问题及其缓解方案[J].环境科学与管理,2006,31(5):41-43.
    [46]郑兰香,鞠兴华.温度和C/N比对生物膜反硝化速率的影响[J].工业安全与环保,2006,32(10),13-15.
    [47]郑毅,刘春平,石云.污水土地处理及其资源化利用[J].土壤通报,2009,40(3):664-667.
    [48]李海红,郭俊玉,赵宏杰.污水土地处理系统污染物迁移转化的模拟研究[J].五邑大学学报(自然科学版),2008,22(3):70-74.
    [49]Tuncsiper. B. Nitrogen removal in a combined vertical and horizontal subsurface-flow constructed wetland system [J]. Desalination,2009,247:466-475.
    [50]Gill L W, Luanaigh N O, Johnston P M, et al. Nutrient loading on subsoils from on-site wastewater effluent, comparing septic tank and secondary treatment systems [J]. Water Research,2009,43:2739-2749.
    [51]Fountoulakis M S. Terzakis S, Chatzinotas A, et al. Pilot-scale comparison of constructed wetlands operated under high hydraulic loading rates and attached biofilm reactors for domestic wastewater treament [J]. Science of Total Environment,2009,407:2996-3003.
    [52]Kvarnstrom M E, Christian A L M, Tore K. Plant-availability of phosphorus in filter substrates derived from small-scale wastewater treatment systems [J]. Ecological Engineering, 2004,22:1-15.
    [53]Jing S R, Lin Y F. Seasonal effect on ammonia nitrogen removal by constructed wetlands treating polluted river water in southern Taiwan [J]. Environmental Pollution,2007,127: 291-301.
    [54]石云,刘春平,甘磊,等.氧化还原环境对污水土地处理系统的影响[J].山西农业科学,2008,36(3):61-65.
    [55]马勇,彭永臻.A/O生物脱氮工艺的反硝化动力学试验[J].中国环境科学,2006,26(4):464468.
    [56]李剑波.强化垂直流-水平流组合人工湿地处理生活污水研究[D].上海:同济大学,2008.
    [57]Ryuhei I, Yanhua W, Tomoko Y, et al. Seasonal effect on N,O formation in nitrification in constructed wetlands [J]. Chemosphere,2008,73:1071-1077.
    [58]George N, SHAUKAT F. Simultaneous nitrification-denitrification in slow sand filters [J]. Journal of Hazardous Materials,2003,96:291-303.
    [59]Li Y L, He Y L, Ohandja D G, et al. Simultaneous nitrification-denitrification achieved by an innovative internal Y. Z.-loop airlift MBR:Comparative study [J]. Bioresource Technology, 2009,99:5867-5872.
    [60]Zhang B H, Wu D Y, Wang C, et al. Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment [J]. Journal of Environmental Sciences,2007,19:540-545.
    [61]孙铁珩,周启星,张凯松.污水生态处理技术体系及应用[J].水资源保护,2002,(3):6-13.
    [62]金丹越,张登峰,卢少勇,等.污水土壤渗滤技术研究进展[J].农业资源与环境科学,2007,23(4):350-354.
    [63]李晓东,孙铁珩,李海波,等.小区生活污水处理模式的研究进展[J].生态学杂志,2008,27(2):269-272.
    [64]黄娟,王世和,雒维国,等.植物光合特性及其对湿地DO分布、净化效果的影响[J].环境科学学报,2006,26(11):1828-1832.
    [65]Dirk M, Binayak P M, Andre V, et al. Spatial analysis of saturated hydraulic conductivity in a soil with macropores [J]. Soil Technology,1997,10:115-131.
    [66]Zhang M K, Wang L P, He Z L. Spatial and temporal variation of nitrogen exported by runoff from sandy agricultural soils [J]. Journal of Environmental Sciences,2007,19:1086-1092.
    [67]Fang L, Chao C Z, Zhao D F, et al. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved [J]. Journal of Hazardous Materials,2008,160:161-167.
    [68]Snakin V V, Krechetov P P, Kuzovnikova T A, et al. The system of assessment of soil degradation [J]. Soil Technology,1996,8:331-343.
    [69]Avinash M K, Pravin D N, Oza G H, et al. Treatment of municipal wastewater using laterrite-based constructed soil filter [J]. Ecological Engineering,2009,35:1051-1061.
    [70]Belinda E H, Tim D F, Ana D. Treatment performance of gravel filter media:Implications for design and application of storm water infiltration systems [J]. Water Research,2007,41: 2513-2524.
    [71]Khateeb M A E, Herrawy A Z A, Kamel M M, et al. Use of wetlands as post-treatment of anaerobically treated effluent [J]. Desalination,2009,245:50-59.
    [72]章吉.生态型土地毛管处理系统技术研究[D].同济大学,2006.
    [73]Kang W C, Kyung G S, Jin W C, et al. Removal of nitrogen by a layered soil infiltration system during intermittent storm events [J]. Chemosphere,2009,76:690-696.
    [74]Nemade P D, Kadam A M, Shankar H S. Wastewater renovation using constructed soil filter (CSF):A novel approach [J]. Journal of Hazardous Materials,2009,170:657-665.
    [75]Tyrrell T, Law C S. Low nitrate:phosphate ratios in the global ocean [J]. Nature,1997, 387(19):793-796.
    [76]张建,黄霞,魏杰,等.地下渗滤污水处理系统的氮磷去除机理[J].中国环境科学,2002,22(5):438-441.
    [77]Raja S G, Thomas F P, Stephen E, et al. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories [J]. Nature,2002, 415(10):156-159.
    [78]Du X L, Xu Z X, Wang S. Enhanced removal of organic matter and ammonia nitrogen in a one-stage vertical flow constructed wetland system [J]. Journal of Biotechnology,2008,136: 633-646.
    [79]肖恩荣,梁威,贺锋,等.SMBR-IVCW系统处理高浓度综合污水[J].环境科学学报,2008,28(9):1785-1792.
    [80]Fen X Y, Ying L. Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities [J]. Ecological Engineering,2009,35: 1043-1050.
    [81]Van S C, Siegrist R., Logan A, et al. Hydraulic and purification behaviors and their interactions during wastewater treatment in soil infiltration systems [J]. Pergamin,2001, 35(4):953-94.
    [82]张建,黄霞,施汉昌,等.掺加草炭的地下渗滤系统处理生活污水[J].中国给水排水, 2004,20(6):4144.
    [83]张之崟,雷中方.土壤渗滤法工艺运行中的主要问题及其缓解方案[J].环境科学与管理,2006,31(5):41-43.
    [84]王德春,孙凌帆.浅议污水土地处理COD去除率的影响因素[J].广东化工,2009,36(8):144-181.
    [85]邹仲勋,周国锋,王秋慧.深井布水地下渗滤系统处理生活污水的研究[J].西南给排水,2008,30(6):10-12.
    [86]王书文,刘庆玉,焦银珠,等.生活污水土壤渗滤就地处理技术研究进展[J].水处理技术,2006,32(3):5-10.
    [87]王海丽,孔海南,吴德意,等.生态土壤深度处理系统启动周期的研究[J].环境科学研究,2004,17(5):60-63.
    [88]蔡祖聪,赵维.土地利用方式对湿润亚热带土壤硝化作用的影响[J].土壤学报,2009,46(5):795-801.
    [89]谭波.污水毛细逆渗土地处理系统的实验研究[D].湖南师范大学,2007.
    [90]邓泓,叶志鸿,黄铭洪.湿地植物根系泌氧的特征[J].华东师范大学学报(自然科学版),2007,(6):69-76.
    [91]黄传琴,邵明安.干湿交替过程中土壤胀缩特征的实验研究[J].土壤通报,2008,39(6):1244-1247.
    [92]C Y, Peng J W, et al. Real-time control of an immobilized-cell reactor for wastewater treatment using ORP [J]. Water Research,2002,36:230-238.
    [93]ByongH J, Kazuhik M, Yasunori T, et al. Removal of nitrogenous and carbonaceous substances by a porous carrier-membrane hybrid process for wastewater treatment [J]. Biochemical Engineering Journal,2003,14:37-44.
    [94]Lin Y F, Jing S R, Lee D Y, et al. Nutrient removal from aquaculture wastewater using a constructed wetlands system [J]. Aquaculture,2009,209:169-184.
    [95]Demetrios N. H, Ioannis D. M, Sotirios G G. Organic and nitrogen removal in a two-stage rotating biological contactor treating municipal wastewater [J]. Bioresource Technology,2004, 93:91-98.
    [96]甘磊,刘春平,谭波.污水土地处理系统ORP变化特征与COD去除率关系的试验研究[J],2008,33(6):84-86.
    [97]吕锡武,李彬,宁平,等.强制通风型地渗系统处理分散生活污水的初步研究[J].给水 排水,2008,34(3):52-55.
    [98]Zhang Z Y, Lei Z F, Zhang Z Y, et al. Organics removal of combined wastewater through shallow soil infiltration treatment:A field and laboratory study [J]. Journal of Hazardous Materials,2007,149:657-665.
    [99]关小满,张笑一,彭润芝.污水土地生态处理退单技术的中型试验研究[J].生态学报,2005,25(4):854-860.
    [100]蔡丹丹,田秀平,韩晓日,等.养殖池塘底泥脲酶活性与水体NH4+-N关系的研究[J].沈阳农业大学学报,2009,40(3):301-304.
    [101]陈俊敏.人工快速渗滤系统机理及其在农村生活污水处理中的应用研究[D].四川:西南交通大学,2008.
    [102]马丽珠,陈建中,和丽萍.土壤渗滤系统处理生活污水[J].环境科学导刊,2009,28(6):71-75.
    [103]李海红,郭俊玉,赵宏杰.污水土地处理污染物迁移转化的模拟研究[J].五包大学学报(自然科学版),2008,22(3):70-74.
    [104]李卓,汪雁,孔瑾.土壤氧化还原电位测定方法的探讨与研究[J].环境科学与管理,2008,33(10):172-174.
    [105]Zhang J, Huang X, Liu C X, et al. Nitrogen removal enhanced by intermittent operation in a subsurface wastewater infiltration system [J]. Ecological Engineering,2005,25:419-428.
    [106]李彬,吕锡武,钱文敏.改进地渗系统处理分散生活污水启动周期的研究[J].安全与环境工程,2007,14(1):39-44.
    [107]潘晶.地下渗滤系统微生物特征及强化脱氮工艺研究[D].沈阳:东北大学,2008.
    [108]魏才倢,朱擎,吴为中,等.两段式沸石多级土壤渗滤系统强化脱氮试验[J].中国环境科学,2009,29(8):833-838.
    [109]董泽琴.构筑湿地部分亚硝化-厌氧氨氧化自养脱氮研究[D].沈阳:中国科学院沈阳应用生态研究所,2006.
    [110]Van C S, Siegrist R, Logan A, et al. Hydraulic and purification behaviors and their interaction during wastewater treatment in soil infiltration systems. [J]. Water Research,2001, 35:953-964.
    [111]王洪,李海波.氨氮废水生物处理工艺及研究进展[J].2008.36(5):97-103.
    [112]Tuncsiper B, Ayaz S L, Gunes K. Performance of a pilot-scale, three-stage constructed wetland system for domestic wastewater treatment [J]. Environmental Technology,2009, 30:1187-1194.
    [113]Schwarzenbach P P, Escher B I, Fenner K, et al. The challenge of micropollutants in aquatic systems [J]. Science,2006,313:1072-1077.
    [114]倪吾钟,沈仁芳,朱兆良.不同氧化还原电位条件下稻田土壤中15N标记硝态氮的反硝化作用[J].中国环境科学,2000,20(6):519-523.
    [115]张春艳,韩宝平,王晓.从潜流式人工湿地设计谈提高氮去除率方法的途径[J].四川环境,2007,26(1):80-84.
    [116]Kuschk P, Wieber A, Kappelmehyer U, et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate [J]. Water Research,2003,37:4236-4242.
    [117]Stephanie L, Jay F. Use of an ecological treatment system (ETS) for removal of nutrients from dairy wastewater [J]. Ecological Engineering,2006,28:235-240.
    [118]Tang X, Huang S, Miklas S. Nutrient removal in wetlands during intermittent artificial aeration [J]. Environmental Engineering Science,2008,25:1279-1285.
    [119]Zou J L, Dai Y, Sun T H, et al. Effect of amended soil and hydraulic load on enhanced biological nitrogen removal in lab-scale SWIS [J]. Journal of Hazardous Matererials,2009, 136:816-822.
    [120]杨健,严群,吴一繁.分层填料土地毛管渗滤系统处理生活污水的研究[J].环境科学与技术,2008,31(6):107-110.
    [121]李晨华,唐立松,李彦.干湿处理对灰漠土土壤理化性质及微生物活性的影响[N].土壤学报,2007,41(2):365-367.
    [122]徐金兰,黄廷林,唐智新,等.高效石油降解菌的筛选及石油污染土壤生物修复特性的研究[N].环境科学学报,2007,27(4):622-628.
    [123]黄翔峰,何少林,陈广,等.高效藻类塘系统处理农村污水脱氮除磷及其强化研究[J].环境工程,2008,26(1):7-10.
    [124]黄廷林,唐智新,徐金兰,等.黄土地区石油污染土壤生物修复室内模拟试验研究[J].农业环境科学学报,2008,27(6):2206-2210.
    [125]张之崟,雷中方,张振亚,等.土壤渗滤系统中亚硝态氮的变化与系统运行性能的关系[J].复旦学报(自然科学版),2006,45(6):755-761.
    [126]海热提,范立维,谢涛,等.两级潜流人工湿地在中国东北高寒地区的应用研究[J].环境科学,2007,28(11):2443-2447.
    [127]Jung J Y, Chung Y C, Shin H C, et al. Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process [J]. Water Research,2004,38:347-354.
    [128]Biswas S, Bose P. Zero-valent iron-assisted autotrophic denitrification [J]. Journal of Environmental Engineering,2005,131:212-217.
    [129]黄廷林,肖洲强,徐金兰,等.生物菌剂修复陕北石油污染土壤实验研究[J].西安建筑科技大学学报(自然科学版),2007,39(1):14-17.
    [130]张增胜,杨耀芳,徐功娣,等.农村生活污水分散处理技术研究进展[J].污染防治技术,2008,21(6):65-67.
    [131]秦志伟,洪剑明.人工湿地不同的水流方式和基质对氮和磷的净化的比较[N].首都师范大学学报(自然科学版),2006,27(5):102-106.
    [132]何连生,刘鸿亮,席北斗,等.人工湿地氮转化与氧关系研究[J].环境科学,2006,27(6):1183-1187.
    [133]Lucas A, Rodriguez L, Villasenor J, et al. Denitrification potential of industrial wastewaters, [J]. Water Researcn,2005,39:3715-3721.
    [134]Mohan S V, Rao N C, Prasad, K K,et al. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (An SBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater [J]. Process Biochemistry,2008,40: 2849-2857.
    [135]项学敏,杨洪涛,周集体,等.人工湿地对城市生活污水的深度净化效果研究:季和夏季对比[J].环境科学,2009,30(3):713-719.
    [136]吴敏,阙愿林,杨健.土地毛细管渗滤系统对城市生活污水的季节性处理效果[N].苏州科技学院学报(工程技术版),2008,21(1):13-17.
    [137]尹海龙,徐祖信,李松,等.土壤渗滤处理系统运行控制的模拟研究[J].环境污染与防治,2006,28(9):644-648.
    [138]黄映恩,雷中方,张振亚,等.土壤渗滤系统中土壤酶活性与系统脱氮效果的关系研究[J].复量学报(自然科学版),2009,48(1):94-99.
    [139]Chen S, Song W, Liu Y. Design of wastewater reclamation and reuse by underground filtration [J]. Water Was. Eng,2007,24:32-37.
    [140]Michael A, William C. Nitrogen removal in recirculating sand filter systems with upflow anaerobic components [J]. Journal of Environmental Engineering,2007,133:464-471.
    [141]邵留,徐祖信,尹海龙.污染水体脱氮工艺中外加碳源的研究进展[J].工业水处理,2007,27(12):10-14.
    [142]王季震,赵宏杰,陈晓东,等.污水的土地处理中污染物迁移转化规律的试验研究[J].灌溉排水学报,2006,25(6):36-39.
    [143]邵留,徐祖信,金伟,等.以稻草为碳源和生物膜载体去除水中的硝酸盐[J1].环境科学,2009,30(5):1415-1419.
    [144]杨佘维,谢可军,赵婷,等.植物-土壤渗滤法对农村生活污水的处理工艺研究[J].安全与环境工程,2009,16(1):51-53.
    [145]Kadlec R, Ttanner C, Hally V, et al. Nitrogen spiraling in subsurface flow constructed wetlands implication for treatment repines [J]. Ecological Engineering,2005,25:365-371.
    [146]Glen T. Wastewater management in the 21st century [J]. Journal of Environmental Engineering,2007,133:671-677.
    [147]陈明利,吴晓芙,陈永华,等.蛭石人工湿地中吸附-生物转化系统脱氮能力及其机理研究[J].环境工程学报,2009,3(2):223-228.
    [148]李彬,吕锡武,钱文敏,等.分流型地渗系统的污水强化脱氮研究[J].水处理技术,2007,33(8):35-37.
    [149]Gabriela V, Helmut W, Marcell N, et al. Effects of plants and filter materials on bacteria removal in pilot scale constructed wetland [J]. Water Research,2005,39(7):1361-1373.
    [150]Taylor J P, Wilson B, Mills M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques [J]. Soil Biology and Biochemistry,2002,34(3):387-401.
    [151]孙玉梅.GC-MS联用技术对地下水中半挥发性有机物监测的方法研究[D].北京:中国地质大学,2006.
    [152]李军红.城镇污水处理工艺综合效益评价模型的建立[J].南开大学学报(自然科学版),2007,40(5):15-20.
    [153]Arve H, Adam M, Lasse, V. A high-performance compact filter system treating domestic wastewater [J]. Ecological Engineering,2006,28:374-379.
    [154]魏才倢,朱擎,吴为中,等.2种不同模块化填料组合的多级土壤渗滤系统的比较[J].环境科学,2009,30(6):1860-1866.
    [155]孔刚,许昭怡,王勇,等,地下土壤渗滤沟的工艺构造对氮磷去除的影响[J].环境科学与技术,2006,29(2):7-11.
    [156]李英华,孙铁珩,李海波,等.地下渗滤系统不同基质层对污染物的去除效果[J].东北大学学报,2009,31(5):746-749.
    [157]沈晓清,王卫琴.地下土壤渗滤系统处理农村生活污水应用研究[J].工业安全与环保,2009,35(7):15-17.
    [158]鲍士日.土壤农化分析[M].北京:中国农业出版社,2000:11-29.
    [159]杨绍斌,李晓明.现代微生物学实验技术.沈阳:辽宁民族出版社,2007:22-43.
    [160]魏才倢,吴为中,杨逢乐,等.多级土壤渗滤系统技术研究现状及发展[J].环境科学学报,2009,29(7):1351-1357.
    [161]黄映恩,雷中方,张振亚,等.土壤渗滤系统中土壤酶活性与系统脱氮效果的关系研究[J].复旦学报(白然科学版),2009,48(1):95-99.
    [162]孙宗健,丁爱中,滕彦国.人工土壤渗滤的吸附效应[J].环保科学与技术,2009,32(7):42-45.
    [163]刘静.渗滤系统中氨氮的迁移转化机理及数学模拟[D].北京:北京工业大学,2008.
    [164]侯国华,范志云,甘一萍,等.土壤渗滤对有机微污染物去除性能研究[J].环境工程学报,2009,3(7):1271-1273.
    [165]国家环境保护总局.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002:107-696.
    [166]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:294-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700