用户名: 密码: 验证码:
高性能石油储罐用钢开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家战略石油储备基地建设的展开,对大型石油储罐用高强度钢板的需求日益增加。建造容积在10万m3以上的大型石油储罐对罐体材料提出了很高的综合性能要求:高强度、高韧性、高均匀性和高稳定性,同时具有良好的大线能量焊接性能。迄今为止,我国建造大型石油储罐用高强度钢板基本依赖进口,其价格昂贵且不能保证供货时间。针对国内石油储罐用高强度钢的生产现状,结合首钢公司“高附加值宽厚钢板产品开发”项目,进行了高性能石油储罐用钢开发。论文主要研究工作和结果如下:
     (1)从石油储罐用钢的使用性能特点出发,以国标GB19189-2003成分要求为基础,采用降C添加微量Nb、Ti,降低Mn、Mo含量并严格控制Pcm、S、P的成分优化设计路线,确定了高性能石油储罐用钢的化学成分。
     (2)利用MMS-300热力模拟试验机,进行高温淬火实验和连续冷却转变实验,确定了试验钢的临界转变温度、绘制了静态和动态CCT曲线,研究了石油储罐用钢的加热温度、热变形及冷却工艺参数对组织演变的影响规律。结果表明,加热温度在1150-1200℃之间奥氏体晶粒均匀细小,变形提高了试验钢的相变开始温度,当冷却速度为25~30℃/s时,可获得马氏体和贝氏体组织。
     (3)通过对调质热处理过程中石油储罐用钢组织性能变化规律及机理进行系统的研究,确定了其具有良好的组织形态与综合力学性能的淬火温度范围为910~950℃,回火温度范围为640~660℃。研究表明:随着淬火温度的升高,马氏体板条束长度方向明显变长,而宽度方向变化较小,强度呈明显上升趋势,延伸率和冲击功略有降低;随着回火温度的升高,强度呈先慢后快的下降趋势,冲击功和延伸率逐渐升高,马氏体板条内的位错重新排列形成亚晶粒,高于680℃回火时碳化物才开始发生聚集粗化。
     (4)进行了石油储罐用钢的控轧和轧后模拟在线直接淬火实验,研究了奥氏体未再结晶区总压下率、直接淬火温度、回火温度等对其组织性能的影响规律。结果表明,当未再结晶区总压下率为60%、直接淬火温度在850~910℃之间、回火温度在640~680℃范围内时,试验钢具有良好的综合力学性能。
     (5)通过对淬火态下直接淬火钢和再加热淬火钢的组织性能进行对比分析,结果表明,直接淬火钢因形变热处理效应而有细小且弥散的碳化物析出,导致其强度高于再加热淬火钢的强度,两者的延伸率相当,-20℃的冲击功均在180J以上。经相同回火处理后,冲击功和延伸率均显著提高,前者强度的下降幅度小于后者,表现出良好的回火稳定性。证实了采用在线直接淬火工艺是提高石油储罐用钢强韧性能的有效手段。
     (6)通过斜Y型坡口焊接裂纹试验、焊接热模拟试验及气电立焊焊接试验,深入系统的研究了石油储罐用钢的焊接性能,得出了线能量和峰值温度对焊接热影响区组织性能的影响规律。结果表明:开发的石油储罐用钢焊接冷裂纹倾向较小,在100kJ/cm的大热输入条件下,焊接接头的强度与母材相当,其各部位仍表现出良好的综合力学性能。
     (7)基于实验室的研究结果设计了石油储罐用钢板(SG610E)的成分,制定了相应的轧制及热处理工艺制度,成功试制了不同厚度规格SG610E钢板,其力学性能和使用性能达到或超过国家标准要求,并顺利通过了全国锅炉压力容器标准化技术委员会的技术评审。
The development of the national strategic oil reserve base construction increases the requirement of large oil storage tank steel plates. The construction of large oil storage tanks with volume more than100,000m3increases the combination properties requirement of tank materials:high strength, high toughness, high uniformity and high stability, meanwhile, it has better high heat input welding ability. So far, high strength steel plates for large oil storage tank construction in China almost all depend on imports, it's expensive and can not ensure date of delivery. The high performance steel plates for large oil storage tank were developed according to the production status of high strength oil storage tank steel plates inland, and integrating with the Capital Steel Co. project of "The Research and Development Center of High Additional Value Wide and Heavy Plate". The main works and results of this paper are as follows:
     (1)According to the performance characteristics of large oil storage tank steel plate, chemical compositions of high performance steel plate for large oil storage tank has been determined by decreasing carbon, manganese and molybdenum, adding micro-content niobium and titanium, and strictly controlling Pcm, sulphur and phosphorus, which is based on GB19189-2003chemical compositions requirement.
     (2)Using the MMS-300thermal simulator, high temperature quenching experiment and continuous cooling transformation experiment were performed to determine critical transition temperature of tested steel, draw static and dynamic CCT curves. The effect of heating temperature、hot deformation and cooling process parameters on microstructure evolution has been investigated. The results showed that uniform and fine austenite grain structures can be produced when the heating temperature at the range of1150~1200℃, deformation increases the beginning transformation temperatures and martensite and bainite can be obtain when the cooling velocity is between25℃/s and30℃/s.
     (3)The microstructure and mechanical properties variation during quenching and tempering of oil storage tanks steel have been systematically studied in this thesis. It is found that the steel has excellent combination mechanical properties when the range of quenching temperature and tempering temperature are850~910℃and640~680℃, respectively. The results showed that the length of martensite laths obviously increased with the increasing of quenching temperature, while the width of martensite laths had no significant change. There were increasing trend of strength, decreasing slightly of elongation ratio and impact energy of tested steel with the increase of quenching temperature. It is showed that with the increase of tempering temperature, the sub grains were formed by rearranging of dislocations in the martensite lath, and carbides began to aggregate and coarsen when the tempering temperature is higher than680℃. The strength of tested steel first slow, quick decreased, on the contrary, impact energy and elongation ratio were rising as the tempering temperature increase.
     (4) The effect of total reduction in non-recrystallization region, direct quenching temperature and tempering temperature on microstructure and mechanical properties of oil storage tank steel has been investigated during controlled rolling and simulation on-line direct quenching after hot rolling. There was excellent combination mechanical properties of tested steel when the total reduction in non-recrystallization region is60%, direct quenched at the range of85O~910℃, tempered at the range of640~680℃
     (5)The microstructure and mechanical properties of direct quenching steel and reheat quenching steel have been compared. The direct quenching steel has already precipitated fine and dispersed carbides during quenching due to thermomechanical treatment effect, which leads to higher strength than those of reheat quenching one. The tensile strength and yield strength of direct quenching steel were obviously higher than those of reheat quenching steel, the percentage elongation was approximate and the impact energy of them was more than180J at-20℃. The strength reduce of the former is lower than the latter, both impact energy and percentage elongation of them increased significantly through the same tempering treatment, which Shows a good tempering resistance of direct quenching steels. It is proved that on-line direct quenching process is an effective method to improve the strength and toughness properties of oil storage tank steel.
     (6)The weldability of oil storage tank steel was investigated deeply and thoroughly by Y-groove type cracking experiment, welding thermal simulation experiment and gas-electric vertical position welding experiment.The effect of different heat input and peak temperature on microstructure and mechanical properties of heat affected zone was obtained through thermo mechanical simulation experiments.The results showed that the developed oil storage tank steel has small weld cold cracking tendency. On condition that the large heat input was less than100kJ/cm, the welded joints of steel and base metal had excellent mechanical properties and good low temperature toughness.
     (7)Based on the results of laboratory studies, the chemical compositions of SG610E steel has been designed, and the corresponding system of rolling and heat treatment process has been determined. Industry trial-production of oil storage tank steel with different thickness specifications was done successfully. The mechanical properties and using performance met or exceeded the national standard requirement and successfully passed the National Boiler and Pressure Vessel Standardization Technical Committee for technical review.
引文
[1]章小浒,王正东,涂善东.原油储罐用钢的开发与应用最新进展[J],压力容器,2006,23(3):38-43.
    [2]王林琳.从我国石油进口依存度持续上升建立战略石油储备的必要性[J],黑龙江对外经贸,2005,(3):20-21.
    [3]马风良,中国石油安全问题的研究[J],石油化工技术经济,2004,(2):1-7.[4]谭成文,张翠霞.发达国家实施石油战略储备的做法[J],宏观经济管理,2004,(4):53-55.
    [5]秦晓钟.国外压力容器用低合金高强度钢近况[J],化工与通用机械,2001,(6):43-53.
    [6]张汉谦.大型储罐用高强度钢板的开发和应用进展[A],2005能源工程焊接国际论坛论文集[C].上海:2005.92-98.
    [7]李敏,郑香增.大线能量焊接用钢的研究概况[J],山东冶金,2008,30(3):8-12.
    [8]富田,等.大线能量焊接用钢板[J],神户制钢技报,1979,29(4):4-8.
    [9]Abe TaKashi, Yuga Masao, Hayashi Kenji, et al. Development and Application of JFE-HITEN610E (SPV490Q) with Improved Properties for Large Oil Storage Tank Steel Plate[A], Symposium of Seminar on Construction of petroleum storage[C], Beijing:2004,183-193.
    [10]JIS G3115-2005, Steel plates for pressure vessels for intermediate temperature service, Technical Committee on Iron and Steel, Japan:Japanese Standards Association,2005.
    [11]陈学东,袁榕等.高强钢在石化企业压力容器和管道中的科学应用[J],压万容器,1998,(6):12-20.
    [12]Date Akihiro, Mamada Nobuhiko, Watanable Yoshiyuki, et al..History of the development and characteristics of HT610N/mm2-class steel plates for large oil storage tanks[A], Symposium of Seminar on Construction of petroleum storage[C], Beijing:2004,140-152.
    [13]季伟明.高效焊接技术在10万m3油罐施工中的综合庆用[J],石油工程建设,2000,(6):16-19.
    [14]KOJIMA Akihiko, KIYOSE Akihito. Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles[J], NIPPON STEEL TECHNICAL REPORT,2004, (6):2-6.
    [15]NAGAHARA Massaki, FUKAMI Hidenori.530N/mm2Tensile Strength Grade Steel Plate for Multi-purpose Gas Carrier [J], NIPPON STEEL TECHNICAL REPORT,2004, (6):11-13.
    [16]MINAGAWA Masanori, SHIDA Koji.390MPa Yield Strength Steel Plate for Large Heat-input Welding for Large Container Ships[J], NIPPON STEEL TECHNICALREPORT,2004, (6):7-10.
    [17]TERADA Yoshio, KOJIMA Akihiko. High-strength Line pipes with Excellent HAZ Toughness [J], NIPPON STEEL TECHNICALREPORT,2004, (6):88-93.
    [18]KOJIMA Akihiko, YOSHII Ken-ichi. Development of High HAZ Toughness Steel Plates for Box Columns with High Heat Input Welding[J], NIPPON STEEL TECHNICAL REPORT,2004, (6):39-44.
    [19]吴云龙,宋虎堂,陈小玲,等SPV490Q低合金高强度钢板在12.5万m3原油储罐上的应用[J],炼油技术与工程,2004,34(3):50-53.
    [20]季伟明SPV490Q钢与16MnR钢横缝埋弧自动焊工艺评定[J],石油工程建设,2000,(1):35-37.
    [21]钟京卫.十万立方米储罐用高强钢SPV490Q的冬季焊接施工[J],石油化工设备技术,2002,23(2):46-49.
    [22]肖英龙.贮罐和压力容器用高性能厚板的开发[J],宽厚板,2005,11(4):40-44.
    [23]Kenji, Seiji, Ichiro. High Performance 550MPa Class High Tensile Strength Steel Plates for Building, JFE TECHNICAL REPORT,2005, (5):53-59.
    [24]Kenji, Kiyomi, Takashi. High Performance for Tank and Pressure Vessel Use High Strength Steel Plates with Excellent Weld-ability and superior Toughness for the Energy Industry[J], JFE TECHNICAL REPORT,2005, (5):66-73.
    [25].Akio, Kazuo. JFE Steel's Advanced Manufacturing Technologies for High Performance Steel Plates[J], JFE TECHNICAL REPORT,2005, (5):10-15.
    [26]Shinichi, Katsuyuki, Toshikazu. High Tensile Strength Steel Plates with Excellent HAZ Toughness for Shipbuilding[J], JFE TECHNICAL REPORT 2005, (5):16-23.
    [27]Tatsumi, Hiroyuki, Yasushi. High Tensile Strength Steel Plates and Welding Consumables for Architectural Construction with Excellent Toughness in Welded Joint[J], JFE TECHNICAL REPORT,2005, (5):45-52
    [28]钢铁信息参考(内部资料)
    [29]李书瑞,董汉雄,黄静,等.大型原油储罐用WH610D2钢板的性能[J],轧钢,2005,59-61.
    [30]章小浒,许强,陆戴丁,等.十万立方米原油储罐用钢板的国产化研究[J],石油化工设备技术,2001,22(5):32-37.
    [31]高威,隋明璋,黄开佳.大型原油储罐技术综述[J],石油化工设备,2000,29(5):28-31.
    [32]陈晓,李书瑞,陈颜堂,等.600MPa级压力容器用钢的研究进展[A],中国石油学会储运专业委员会主编,石油储备库建设技术研讨会论文集[C],北京,2004,158-166.
    [33]李书瑞,陈晓,董汉雄,等.大型原油储罐用WH610D2钢的试验研究[J],压力容器,2001,18:36-41.
    [34]魏家斌,董雪玮.大型储罐用SPV490Q厚钢板焊接实践[J],化工建设程,2002,24(5):16-24.
    [35]谢良法,姚连登,焦胜利,等.调质钢板的生产实践与试验研究[J],宽厚板,2000,6(3):5-9.
    [36]王青,李经涛,赵颜灵.舞钢大型储罐用钢的研制开发[A],中国石油学会储运专业委员会主编,石油储备库建设技术研讨会论文集[C],北京,2004,167-182.
    [37]陈晓.高性能压力容器和压力钢管用钢[M],北京,机械工业出版社,1999,3-5.
    [38]高云青,程铁军,李颂宏,等.国产12MnNiVR代替SPV490钢在大型储罐中的焊接[J],焊接技术,2005,34(4):74-76.
    [39]王蕾,陈晓,习大辉.大线能量低焊接裂纹敏感性钢的研究[J],材料导报,2002,(5):24-26.
    [40]郗祥远,钟桂香,樊永红,等.大型原油储罐钢材国产化的探讨与分析[J],石油化工建设,2007, 29(5):23-24.
    [41]贺贵仁,向东.大型油罐国产化高强度钢板、焊材的技术探讨与应用[J],石油化工建设,2006,28(5):30-50.
    [42]陈银莉,余伟,蔡庆伍,等.调质工艺对SPV490钢组织和性能的影响[A],中国钢铁年会论文[C],2003,504-506.
    [43]郭桐,叶建军,崔强.调质型WDB620厚板的工艺研究[J],宽厚板,2006,12(6):17-22.
    [44]杨海林,杨秀芹.热处理工艺对14Cr1MoR钢的组织和性能的影响[J],金属热处理,2003,28(11):35-37.
    [45]祁志江,梁冰.国内首例150000m3双盘浮顶油罐壁板热处理[J],大众科技,2005,82(8):158-159.
    [46]崔占全,康国旺,郭建,等.含0.08%C的新型压力容器用钢热处理工艺及性能[J],物理测试,2003,(6):8-10.
    [47]孙重安,王培玉.非调质低焊接裂纹敏感性高强钢WDB620[J],云南水力发电,2004,20(3):67-68.
    [48]罗中和.推动大型石油储罐用高强度钢板研发[N],大型石油储罐配套焊材开发项目启动,中国冶金报—用户服务导刊,2004.
    [49]陈晓,陈颜堂,王蕾等.大线能量低焊接裂纹敏感性钢的显微组织[J],中国有色金属学报,2004,(14):217-223.
    [50]陈颜堂,陈晓,李书瑞等.大线能量低焊接裂纹敏感性压力容器用钢的性能[J],机械工程材料,2005,29(6):39-43.
    [51]陈晓,李书瑞,董汉雄等.600MPa级大线能量焊接用钢综合性能研究[J],中国钢铁年会论文集,2005,874-879.
    [52]陈晓.低焊接裂纹敏感性WDL系列钢的力学性能及组织结构[J],钢铁,1996,31(12):39-44.
    [53]]陈颜堂,丁庆丰,刘惟忠等.大线能量焊接用钢模拟热影响区的组织与性能[J],金属热处理,2005,30(9):19-23.
    [54]王蕾,陈晓,习天辉.大线能量低焊接裂纹敏感性钢的研究[J],材料导报,2002,16,(5):24-26.
    [55]陈晓,卜勇,张莉芹等.大线能量低焊接裂纹敏感性钢性能及组织研究[J],钢铁研究,2002,(6):21-25.
    [56]陈晓.低焊接裂纹敏感性WDL系列钢的力学性能及组织结构[J],钢铁,1996,31(12):39-44.
    [57]章小浒,李晓燕.大焊接线能量储罐用钢的开发与应用[J],压力容器,2003,20(1):16-19.
    [58]习天辉,陈晓,董汉雄.低温压力容器用WHD2钢焊接性能及抗H2S应力腐蚀性能的研究[J],压力容器,2001,18:10-13.
    [59]习天辉,陈晓,袁泽喜.大线能量焊接用钢热影响区组织和性能的研究进展[J],特殊钢,2003,24(5):1-5.
    [60]徐鹏程,章小浒,陆戴丁.10×104m3原油储罐用钢板及其焊接接头性能[J],石油化工设备,2005,34(6):58-61
    [61]张莉芹,袁泽喜,陈晓等.大线能量低焊接裂纹敏感性钢的焊接(一)——热影响区强韧性机理研究[J],压力容器,2002,19(7):29-34.
    [62]张莉芹,卜勇,陈晓.大线能量低焊接裂纹敏感性钢的焊接(二)——热影响区组织及晶内铁素体形核机理研究[J],压力容器,2002,19(8):35-38.
    [63]王刚,纪连权,张荫第.大型石油储罐气电立焊焊接工艺的研究[J],焊接技术,1996,(3):12-13.
    [64]廖建国.大线能量焊接用厚钢板的发展[J],宽厚板,2002,8(2):44-48.
    [65]尹士安,徐立宗,田燕.在大型原油贮罐建造中采用埋弧自动焊工艺焊接国产调质钢CF62的试验研究[J],压力容器,1998,(4):21-25.
    [66]王刚,李丽,李景波等.大直径厚壁管气电立焊焊接技术研究[J],焊接,2001,(4):32-33.
    [67]肖可畏,黄伟.WDB620钢焊接性试验及焊接工艺评定[J],水力发电,2005,31(9):48-50.
    [68]季伟明.高效焊接技术在10万m3油罐施工中的综合应用[J],石油工程建设,2000,(6):16-19.
    [69]汪辉,郑云龙,卜华全等12MnNiVR钢板焊接裂纹敏感性的试验研究[J],压力容器,2003,20(6):19-23.
    [70]常跃峰,谢良法,姚连登,等.非调质低焊接裂纹敏感性钢WDB620研究与开发[J],钢铁,2003,38(11):52-57.
    [71]郭桐,韦明,侯彩霞,等.改善大线能量焊接韧性的冶炼技术研究[J],宽厚板,2007,13(2):19-21.
    [72]王青,李经涛,赵彦灵.舞钢大型储罐用钢的研制开发,中国石油学会储运专业委员会主编,石油储备库建设技术研讨会论文集,北京,2004,167-182
    [73]苏国阳,马玉璞,梁福鸿.鞍钢压力容器用07MnCrMoVR钢板的研制[A],中国石油学会储运专业委员会主编,石汕储备库建设技术研讨会论文集[C],北京,2004,215-224.
    [74]万淑兰,王林,邓万华07MnCrMoVR钢制球形容器的焊接[J],焊接技术,1999,(4):30-32.
    [75]汪辉,王洪刚,徐鹏程储罐用07MnNiVR钢焊接接头力学性能试验[J],石油化工设备,2007,36(1):8-12.
    [76][76-79]郝森,付魁军.Nb-Ti微合金钢大线能量焊接粗晶区组织和韧性的研究[J],鞍钢技术,2005,(5):15-18.
    [77]张禄林,苏国阳,王丽慧,等.原油储罐用钢08MnNiMoVR的开发[J],压力容器,23(10):16-22.
    [78]郗祥远,钟桂香,樊永红,等.大型原油储罐钢材国产化的探讨与分析[J],石油化工建设,2007,29(5):23-24.
    [79]刘孟,傅博,程钢O8MnNiVR石油储罐用钢模拟焊接热影响区组织与韧性研究[J],鞍钢技术,2008,(5):38-40.
    [80]马朝晖,王国栋,张汉谦,等08MnNiVR(B610E)(?)高强度调质钢板的焊接性能[J],宝钢技术,2008,(6):34-38.
    [81]米广生,陈德志,瞿帆.国产高强钢板(B610E)在15万m3油罐中的焊接[J],石油化工建设,2007,29(5):25-28.
    [82]张汉谦,江来珠.大型原油储罐用B610E(08MnNiVR)高强度调质钢板研制[J],宝钢技术,2006,(4):20-22.
    [83]唐文军,江来珠,侯洪,等.Nb对压力容器用高强度钢B610E组织和性能的影响[J],压力容器, 2006,23,(1):10-14.
    [84]马朝晖,王国栋08MnNiVR原油储罐用钢的腐蚀性能研究[J],腐蚀科学与防护技术,2009,21(3):252-254.
    [85]宋金玲,马朝晖,侯洪,等08MnNiVR高强度钢板埋弧横焊焊接试验研究[J],压力容器,2008,25(9):58-60.
    [86]Graville B A. Cold Cracking in Welds in HSLA Steels[A], Proceedings of International Conference of Welding in HSLA Micro-alloyed Structural Steels[C], Ohio:Metal Park,1978,85-101.
    [87]彭其凤,丁洪太.热处理工艺及设计[M],上海:上海交通大学出版社,1994,84-92.
    [88]林慧国,傅代直.钢的奥氏体转变曲线[M],北京:机械工业出版社,1988,227.
    [89]康大韬,郭成熊.工程用钢的组织转变与性能图册[M],北京:机械工业出版补,1992,35.
    [90]赵振东.钢的淬火回火工艺参数的确定[J],金属热处理,1999,(3):28-29.
    [91]朱兴元,刘忆.金属学与热处理[M],北京:北京大学出版社,2006,110.
    [92]彭晟,朱松鹤,张恒华,等.高强度船板钢奥氏体晶粒长大的规律[J],钢铁,2009,44(2):72-74.
    [93]李鹤林.高强度微合金管线钢显微组织分析与鉴别图谱[M],北京:石油工业出版社,2001.
    [94]Zhou C D, Fan J F, Li H R, et al. Microstructural characteristics and mechanical properties of spray formed high speed steel for work roll[J], Acta Metallurgica Sinica,2004,17(4):548-553.
    [95]Liu J B, Hu L J, Wang Y T, et al. Microstructure transformation in the welding heat affected zone of 800MPa grade ultrafine structured steel[J], Acta Metallurgica Sinica,2004,17(3):238-246.
    [96]Chang Kai di, Gu Jia lin, Fang Hong sheng, et al. Effect of morphology for novel bainite/martensite dual phase high strength steel on it s hydrogen embrittlement susceptibility[J].Journal of Iron and Steel Research,2001,8(1):37-40.
    [97]刘宗吕.材料组织结构转变原理[M],北京:冶金工业出版社,2006,16-30.
    [98]Zhou Yun, Xue Xiao huai, Qian Bainian, et al. Microstructure and property of coarse grain HAZ X80 pipeline steel [J], Journal of Iron and Steel Research,2005,12(6):54-58.
    [99]崔忠圻.金属学与热处理[M],北京:机械工业出版社,1986,270-305.
    [100]俞德刚,谈育煦.钢的组织强度学-组织与强韧性[M],上海:上海科学技术出版社,1983,158-187.
    [101]门学勇.钢的相变实验及组织分析[M],哈尔滨:哈尔滨工业大学出版社,1990,33-42.
    [102]雷廷权,赵连成.钢的组织转变泽文集[M],北京:机械工业出版社,1985,167-193.
    [103]俞德刚.铁基马氏体时效-回火转变理论及其强韧性[M],上海:上海交通大学出版社,2008,194-207.
    [104]Dhua S K, Mukerjee D, Sarma D S. Influence of Tempering on the Microstructure and Mechanical Properties of HSLA-100 Steel Plates[J], Metall.Mater.Trans.A,2001,32A,2259-2270.
    [105]肖桂枝,邸洪双,贾学军.热处理工艺对30MnSiPC钢棒力学性能的影响[J],钢铁,2007,42(4):73-77.
    [106]贺秀丽.回火工艺对原油储罐用钢板组织结构和性能的影响[D],山东:山东大学,2006.
    [107]康永林,陈庆军,王克鲁.700MPa级低碳贝氏体钢的热处理工艺研究[J],材料热处理学报,26(3):96-99.
    [108]余宗森,田中卓.金属物理[M],北京:冶金工业出版社,1982,223-286.
    [109]Chiaki OUCHI. Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Processes[J].ISIJ International,2001,41(6):542.-553.
    [110]CHEN Xiao, LI Shu-rui. Research Progress on Grade 600MPa Pressure Vessel and Pipe with High Properties[C], Seminar on Construction of Petroleum Storage, Beijing:2004,158-166.
    [111]小指军夫著,李伏桃译控制轧制-控制冷却-改善材质的轧制技术发展[M],北京:冶金工业出版社,2002.
    [112]Chapman B P, Cooke M A, Thompson S W. Austenite Grain Size Refinement by Thermal Cycling of a Low-carbon, Copper-containing Martensitic Steel[J].Scripta Metallurgicaet Materialia,1992, 26(10):1547-1552.
    [113]Ouchi Chiaki. Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Processes[J], ISIJ International,2001,41(6):542-553.
    [114]Taylor K A, Hansen S S. Effects of Vanadium and Processing Parameters on the Structures and Properties of Direct-quenched Low-carbon Mo-B Steel[J], Metallurgical and Materials Transactions A,1991,22A:2359-2374.
    [115]Taylor K A, Hansen S S. The boron hardenability effect in thermomechanically processed, direct-quenched 0.2% carbon steels[J], Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1990,21A(6):1697-1708.
    [116]Mekkawy M F, Fawakhry K A, Mishreky M L, et al. Direct Quenching of Low Manganese Steels Microalloyed with Vanadium or Titanium[J], Iron and Steel maker,1990, (10):75-88.
    [117]Hwang Guen Chul, Lee Sunghak, Yoo Jang Yong, et al. Effect of Direct Quenching on Microstructure and Mechanical Properties of Copper-bearing High-strength Alloy Steels[J], Materials Science and Engineering,1998,252 A:256-268.
    [118]Taylor K A, Hardenability and Mechanical Properties of 0.5Mo-B Steels:Direct Quenching Versus Reheat Quenching[J], Iron and Steel maker,1993, (2):43-51.
    [119]Chang Woong Seong. Microstructure and Mechanical Properties of 780MPa High Strength Steel Produced by Direct-quenching and Tempering Process[J], Journal of Materials Science,2002,37:1973-1979.
    [120]YooJ Y, Choo W Y, Park T W. Microstructures and Age Hardening Characteristics of Direct Quenched Cu Bearing HSLA Steel[J], ISIJ International,1995,35(8):1034-1040.
    [121]Ghosh S K, Haldar A, Chattopadhyay P P. Effect of Pre-strain on the Ageing Behavior of Directly Quenched Copper Containing Micro-alloyed Steel[J], Materials Characterization,2008,59(9):1227-1233.
    [122]S.K.Dhua, D.Mukerjee, D.S.Sarma. Effect of Cooling Rate on the As-Quenched Microstructure and Mechanical Properties of HSLA-100 Steel Plates[J], Metall.Mater.Trans. A,2003,34A:2493-2504.
    [123]S.K.Ghosh, A.Haldar, P.P.Chattopadhyay. Effect of Copper Additions in Directly Quenched Titanium-Boron Steels[J], J.Mater Sci,2007,42:9453-9459.
    [124]S.W.Thompson, D.J.Colvin, G.Krauss Austenite Decomposition during Continuous Cooling of HSLA-80 Plate Steel[J], Metall.Mater.Trans.A,1996,27A(6):1557-1571
    [125]M.T.Miglin, J.P.Hirth, and A.R.Rosenfield, Microstructure of Quenched and Tempered Cu-Bearing High-Strength Low-Alloy Steel[J], Metall.Trans A,1986,17A:791-798.
    [126]G.E.Hicho and R.J.Fields. Effects of Varying Austenitizing Temperature and Cooling Rate on the Ability of HSLA-80 Steel to Achieve Impact Properties Comparable to HSLA-100 Steel[J], Heat Treat,1990,8(2):101-107.
    [127]N.Shikanai, M Suga. Influence of Direct-Quenching Conditions and Alloying Elements on Mechanical Properties of HSLA Steel Plates Physical Metallurgy of Direct-Quenched Steels[J],Proceedings of the Symposium on Physical metallurgy of Direct-Quenched Steels, Chicago:1992,93-105.
    [128]S.Sangal, S.Yannacopoulos. Continuous Controlled Rolling of a HSLA Steel[J], Can.Metall. Q., 1992,31(1):55-61.
    [129]Shikanai N, Mitao S, Endo S. Recent development in microstructural control technologies through thermo-mechanical control process applied for JFE steel's high performance plates[J], JFE TECHNICAL REPORT,2008,6:1-6.
    [130]Tamaki. Morphology and Transformation Kinetic of Martensite and Bainite Formed from Direct-Quenched Steels[C], Chicago, Illinois, USA,1992,71-91.
    [131]袁国,王国栋,王日清,等.中厚钢板热处理技术及设备发展概况[J],钢铁研究学报,2009,21(5):1-7.
    [132]Fujibayashi A, Omaha K. JEF steel's advanced manufacturing technologies for high performance steel plates[J], JFE TECHNICAL REPORT,2005, (5):10-15.
    [133]Omaha K, Yoshimura H, Yamamoto S. The leading high performance steel plates with advanced manufacturing technologies[J], NKK TECHNICAL REPORT,2002,179:57-62.
    [134]林承江,时捷,王华昆.控轧直接淬火钢的微观组织与力学性能[J],天津冶金,2005,127(3):30-33.
    [135]Edwards R, Kennon N. Kinetics of bainite formation from deformed austenite[J], Journal of the Australian Institute of Metals,1974,19(1):45-50.
    [136]颜晓峰,章洪涛,等.含铌16Mn钢的奥氏体晶粒粗化和NbC固溶析出行为[J],钢铁研究学报,2000,12(2):49-53.
    [137]Khlestov V M, Konopleva E V, Mcqueen H J. Kinetics of austenite transformation during thermo-mechanical processes[J], Canadian Metallurgical Quarterly,1998,37(2):75-89.
    [138]杜林秀.低碳钢变形过程及冷却过程的组织演变与控制[D],沈阳:东北大学,2003.
    [139]Serajzadeh S.A. Study on austenite decomposition during continuous cooling of a low carbon steel [J], Materials and Design,2004,25:673-679.
    [140]雷廷权,姚忠凯,杨德庄,等.钢的形变热处理[M],北京:机械工业出版社,1979,30-56.
    [141]王立群,刘微,陈新旺.含铌钢碳氮化物二相粒子在控轧控冷工艺中析出规律研究[J],宽厚板,2005,11(2):7—10.
    [142]航空航天工业部航空装备失效分析中心编著.金属材料断口分析及图谱[M],北京:科学出版社, 1991,36-37.
    [143]崔约贤,王长利.金属断口分析[M],哈尔滨:哈尔滨工业大学出版社,1998,34-75.
    [144]胡光立,谢希文.钢的热处理[M],北京:冶金工业出版社,1993,87-88.
    [145]陈祥,李言祥.高硅铸钢残余奥氏体分布形态及其对力学性能的影响[J],金属学报,2007,43(3),235-239.
    [146]钟十红.钢的回火工艺和回火方程[M],北京:机械工业出版社,1993,2-21.
    [147]杨建强,曾君.大型储罐倒装法施工立缝气电立焊工艺电焊机[J],2007,37(10):73-74.
    [148]李亚江.焊接组织性能与质量控制[M],北京:化工工业出版社,2005,89-275.
    [149]方鸿生,刘东雨.贝氏体钢的强韧化途径[J],机械工程材料,2001,25(6):1-5.
    [150]Mstsuda F. Effect of M-A constituent on fracture behavior of 780 and 980MPa class HSLA steels subjected to weld HAZ thermal cycle[J], Trans.JWRI,1994,23(2):231-238.
    [151]Mutsuo Nakanishi, Yu-ichi komizo. Improvement of Welded HAZ Toughness by Dispersion with Nitride Particles and Oxide Particles[J], J.Jpn.Weld Soc,1983,52(2):117-131.
    [152]荆洪阳,霍立兴,张玉凤,等.马氏体-奥氏体组元形态对高强钢焊接热影响区韧性的影响[J],机械工程学报,1995,31(6):102-106.
    [153]高惠临,董玉华.管线钢焊接临界粗晶区局部脆化现象的研究[J],材料热处理学报,2001,22(2):60-65.
    [154]张文铖.焊接冶金学(基本原理)[M],北京:机械工业出版社,1995,132-190.
    [155]Enomoto M. Nucleation of ferrous solid-solid phase transfor-orations at inclusions, encyclopedia of materials:science and technology[M], Amsterdan, Holand:Elsevier Science Ltd,2001,6393-6397.
    [156]Enomoto M, Maruyama N, Wu K M, et al. Alloying element accumulation at ferrite/austenite boundaries below the time-temperature-transformation diagram bay in an Fe-C-Mo alloy[J], Mater Sci&Eng,2003,343A:151-157.
    [157]Takamura litrichi, Show Mizoguchi. Roles of oxides in steels performance [A], Proc of the 6'th International Iron and Steel Congress[C]., Nagoya:ISU,1990.
    [158]Barbaro F J, Krauklis P, Easterling K E. Formation of acicular ferrite at oxide particles in steels[J], Mater Sci Technol,1989,5:1057-68.
    [159]Mabuchi Hidesato, Uemori Ryuji, Fujioka Masaaki. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels[J], ISIJ International,1996,36(11):1406-1412.
    [160]He Kejian, Baker T N. Zr containing precipitates in a Ti-Nb microalloyed HSLA steel containing 0.016wt% Zr addition[J], Mater Sci & Eng,1996,215A:57-66.
    [161]Sawai Takashi, Wakoh Masamitsu, Ueshima Yoshiyuki, et al. Analysis of oxide dispersion during solidification in Ti, Zr deoxidized steels[J], IS1J International,1992,32(1):169-173.
    [162]陈颜堂,陈晓,李书瑞,等.大线能量低焊接裂纹敏感性压力容器用钢的性能[J],机械工程材料,2005,29(6):39-43.
    [163]国旭明,钱百年,王玉.夹杂物对微合金钢熔敷金属针状铁素体形核的影响[J],焊接学报,2007, 28(12):5-12.
    [164]张德勤,雷毅,刘志义.微合金钢焊缝金属中的针状铁素体[J],石油大学学报(自然科学版),2003,27(4):141-146.
    [165]余圣甫,李志远,刘顺洪,等.高韧性药芯焊丝焊缝金属的显微组织[J],材料开发与应用,1999,14(3):22-25.
    [166]余圣甫,石仲堃,李志远,等.药芯焊丝焊缝中的夹杂物对针状铁素体形成的影响规律[J],应用科学学报,应用科学学报,2000,18(3):192-197.
    [167]余圣甫,李志远,石仲堃,等.低合金高强度钢药芯焊丝焊缝中夹杂物诱导针状铁素体形核的作用[J],机械工程学报,2001,37(7):65-70.
    [168]张德勤,田志凌,杜则裕.微合金钢焊缝金属中夹杂物的研究[J],钢铁,2002,37(2):52-56.
    [169]Lee T K, Kin H J. Kang B Y, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds[J], ISIJ International,2000,40(12):1260-1268.
    [170]Yamamoto Kohichi, Hasegawa Toshiei, Takamura Jin-ichi. Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels[J], ISIJ International 1996,36(1):80-86.
    [171]Edmonds D V, Cochrane R C. Structure-property relation-ships in bainitic steel[J], Metal Trans.A, 1990,21A:1527-1540.
    [172]吕德林,李砚珠.焊接金相分析[M],北京:机械工业出版社,1987,194-215.
    [173]刁天辉,陈晓,袁泽洗,等.大线能量焊接用钢热影响区组织和性能的研究进展[J],特殊钢,2003,(5):1-5.
    [174]卜勇,尹法章,胡本芙,等.稀土和Ca、Mg元素对高强度钢焊接热影响区组织和韧性的影响[J],钢铁,2006,41(4):71-76.
    [175]卜勇,胡本芙,尹法章,等.低碳钢中以氧化物为核心针状铁索体的形成[J],北京科技大学学报,2006,28(4):387-360.
    [176]韩顺吕.针状铁素体的物理冶金学(待续)[J],材料开发与应用,1995,10(5):2-7.
    [177]周振丰.焊接冶金学(金属焊接性)[M],北京:机械工业出社,1996,7-9.
    [178]铃木春义.钢材的焊接裂纹[M],清华大学教研组译,1979,9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700