用户名: 密码: 验证码:
基于磁流变力矩伺服的非球面气囊抛光技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人们对智能材料——磁流变液认识水平的不断提高,以及精密加工和制造技术的快速发展,使得磁流变液在精密加工领域的应用越来越受到国内外专家和学者的关注。在相关领域的诸多研究成果中,关于磁流变液器件以及应用方面阐述较多。不少学者将磁流变液直接作为工作介质用于抛光加工,但将其应用到力矩伺服装置用于气囊抛光加工的却鲜有报道。
     本文结合国家自然科学基金项目“模具曲面数控研抛的柔顺控制研究(50705044)”,在课题组成员前期工作的基础上,针对目前国内外关于非球面工件研抛加工中普遍存在的力/位耦合不易控制,以及采用机器人辅助气囊加工刚度差等难点问题,提出了一种基于磁流变力矩伺服(MRT)的新型气囊抛光方法,改变了以往通过调整气囊内部压力的加载方式,用MRT为气囊抛光系统提供合适的抛光力,控制方法简单。在自行研制的气囊抛光实验样机上进行了工艺实验研究,通过对非球面工件抛光加工实验,取得了较理想的效果。论文主要研究内容、技术方法及结论如下:
     1.在对课题相关内容进行大量调研的前提下,总结了目前国内外磁流变液以及器件应用和开发的现状,以及气囊抛光技术的发展现状。综合分析磁流变效应的特点以及气囊抛光方法在非球面加工领域的优越性,提出了本文的研究内容。
     2.运用传统抛光理解和接触力学相关知识,分析了抛光加工过程中抛光力与气囊工具位姿之间的耦合关系;研究了抛光膜、工件及磨粒之间的接触变形关系。研究表明,抛光过程中气囊工具的位姿受接触区法向位移变形的影响。为了保证法向位移量对气囊抛光加工表面质量不产生影响,必须在刀具进给程序中考虑法向位移的影响,并需要不断补偿。同时总结得出接触区抛光速度、抛光压力的分布规律,以Preston方程为依据,建立了材料去除模型。
     3.基于MRT力矩伺服的气囊抛光实验样机的研制。进行了MRT结构设计及力矩测试实验,研制了气囊抛光工具系统,实现了气囊抛光过程中力/位分离同步控制。推导了位置空间内机床坐标、刀具坐标之间的关系。
     4.为了进一步开展气囊抛光实验,搭建了气囊抛光系统硬件平台,建立了抛光力控制模型,设计了电流源、抛光力相关控制软件,并介绍了非球面工件基于MasterCAM软件生成数控代码的过程。
     5.气囊抛光工艺实验及非球面工件气囊抛光实验。分析气囊压缩量、励磁电流、姿态角以及气囊转速等工艺参数对接触区特性影响规律。应用此种新型气囊抛光方法对实际抛物面工件进行气囊抛光,获得表面粗糙度Ra=29nm的光滑表面。
     本文将磁流变液应用于力矩伺服装置,将其作为一种加载机构成功应用于非球面气囊抛光加工中,提出了一种基于MRT的新型气囊抛光方法,在国内外关于气囊抛光的研究中尚未见正式报道。实际应用表明,将MRT技术与气囊抛光技术融合,从根本上解决抛光过程中力/位耦合问题,显著提高了非球面工件加工的效率和精度,开辟了磁流变液(MRF)在超精密加工领域的新途径,拓宽了MRF这种智能材料的应用范围。
In recent years, with constantly understanding of Magnetorhelogical fluid (MRF)as wellasthe rapidly development in precision machining and manufacturing technology, as a newtype of smart material, MRF has attracted the interest of a large number of experts andscholars at home and abroad. Research on MRF devices and applications has a largeproportion in many related fields.Many scholars had used MRF as a working medium forpolishing, but its application to torque servo device used for bonnet polishing is seldomreported.
     The study has been supported by the National Natural Science Foundation of Chinaunder grant No.50705044. Aspheric surface polishing is not easy to control as force andposition coupling and robot auxiliary bonnet polishing has poor rigidity. Anovelmethod ofbonnet polishing based on magnetorheological torque servo has been proposed on the basis ofthe previous work of members.It changes the loading mode while by adjusting the gasbaginternal pressure in the past. It provides proper polishing force for bonnet polishing systemusing MRT. It is easy to control. The process experimental study has been preceded in theself-developed bonnet polishing prototype and the results are better.
     The main research contents, technical methods and conclusions are as follows:
     1. Summarized the status and development of MRT devices and applications as well asbonnet polishing technique at home and abroad on the basis of investigation on relatedcontent. It presents the research contents of this paper through comprehensive analysis of thecharacteristics of magnetorheological effect and bonnet polishing method in the field ofpolishing aspheric surface.
     2. The mechanism of polishing force and position coupling and the interactiondeformation among polishing film、abrasive and the part are analyzed on the basis of studying the traditional polishing theories and contact mechanics. The research results show that theposition of polishing tool is affected by the normal displacement between the bonnetpolishing tool and aspheric part. In order to guarantee the normal displacement has no effecton processing surface quality, it must be considered the influence of the displacement in thetool feed program and needs to keep compensation. The polishing speed and polishingpressure distribution in the contact area are deduced. According to Preston’s law, the materialremoval model has been established.
     3. Development of the bonnet tool polishing experiment prototype based on MRT. Thestructure design of MRT and torque test has been launched. And the bonnet tool polishingsystem is developed. The problem of force-position coupling can be resolved. The relationbetween machine coordinate and tool coordinate in position space is deduced.
     4. The bonnet polishing system hardware is built in order to further develop thepolishing experiment. The control model of the polishing force based on MRT is establishedwith the target of achieving the constant material removal rates. The related software of thecurrent source and polishing force is designed. The generation of CNC code of aspheric partis introduced based on MasterCAM.
     5. Bonnet polishing process experiment and bonnet polishing of aspheric. The influencelaw on the process parameters as air compression, excitation current, attitude angle and airbagspeed in contact area characteristics is analyzed. Application of this novel polishing methodon polishing actual parabolicpart can get the smooth surface of Ra=29nm.
     In short, MRF is used for torque servo system and successfully applied to bonnet toolpolishing of aspheric surface as loading mechanism. A novel method of bonnet polishing isproposed. Research about this kind of bonnet polishing method based on MRT has not beenformally reported.
     Practice has proved that the fusion of the MRT technology and bonnet polishingtechnology can solute the polishing force-position coupling problem. It can significantlyimprove the efficiency and accuracy of the part. The original application of MRF in bonnetpolishing will further broaden the application field of this smart material.
引文
[1] Winslow W. M., Method and means for translating electrical impulsesintomechanicalforces[P]. United States Patent:2417850,1947.
    [2] Rabinow. J,The Magnetic Fluid Clutch. AIEE Trans.1948,67,1308.
    [3] Kordonsky,w.I.,et al. Physical Properties of Magnetizable Structure-reversibleMedia,J. Magn.&Magn. Mater,1990,85,1143.
    [4] Kordonski W I, Gorodkin S, Zhuravski.Static yield stress in magneto-rheologicalfluid.In:Proc of7th Int Conf on Electro-rheologicalFluids and Magneto-rheologicalSuspensions.Honolulu,1999,23(9):611-620.
    [5] Shulman, Z.P., V.I. Kordonsky, E.A. Zaaltsgendler, I. VProhov, B.M.Klus-idandS.A.Demchuk (1986).Int. J. Multiple Flow,12,935.
    [6] Carlson. J.D.,et al,Commercial Magneto-Rheological Fluids Devices.1995,5th Int.Conf.on ER Fluids,Sheffield,10-14July,1995.
    [7] Carlson J D and Weiss K D. A Growing to Magnetic Fluids. Machine Des.,1994,(8),61~64.
    [8] Carlson J D and Chrzn M J. Magnetorheological Fluid Dampers[P]. U.S. Patent,5,277,281.1994.
    [9] Carlson J D and Weiss K D. Magnetorheological Materials Based on Alloy Particles[P]. U.S. Patent,5,382,373.1995.
    [10]Ashour O,Rogers C A, Kordonskey W. Magnetorheological Fluids:Materials,Characterization, and Devices[C].. Proceeding of sixth international conferenceonadaptive structures. Edited by Rogers C A et al,1995,23~34.
    [11]Jolly M R, Carlson J D, Munoz B C. A model for the behaviormagnetorheologicalmaterials[J]. Smart Mater. Struct,1996(5):607-614.
    [12]Jolly M R, Bender J W, Carlson J D. Properties and applications ofcommercialmagnetorheological fluids[C]. Proc. SPIE1998,3327:262-275.
    [13]Jolly M R, Bender J W, Carlson J D. Properties and applications ofcommercialmagnetorheological fluids [J]. Journal of Intelligent Material Systems andStructures,2000,10(1):5-13.
    [14]Ulicny J C, Mance A M. Evaluation of electroless nickel surface treatment for ironpowderused in MR fluids[J]. Materials Science and Engineering: A.2004,369(1-2):309-313.
    [15]Ginder J M. Shear Stress in Magnetorheological Fluids: Role of MagneticSaturation[J].Applied Physics Letters.1994,65:3410-3418.
    [16]Ginder J M, Davis L C, Elie L D. Rheology of magnetorheological fluids: modelsandmeasurements[C]. Proceedings of the Fifth International Conference on ER Fluids andMRSuspensions. Sheffield, UK,1996:504-514.
    [17]Phule P P, Ginder J M. Synthesis and Properties of Novel Magnetorheological FluidsHavingImproved Stability and Redispersbility[C]. In: M Nakano, K Koyama, Proceedingsof the6thInternational Conference on Electro-rheological Fluids, Magneto-rheologicalSuspensions andtheir Application, Japan, World Scientific,1998,445-453.
    [18]Phule P P. Magnetorheological (MR) fluids: Principles and applications[J]. SmartMaterialsBulletin,2001,2:7-10.
    [19]Rosensweig R E. On magnetorheology and electrorheology as states of unsymmetricstress[J].Rheol.1995,39(1):179-192.
    [20]J. Davis Carlson, et al. Magnetorheological Fluid Devices And ProcessOfControllingForce In Exercise Equipment Utilizing Same[P]. US Patent,No.08/304005
    [21]J. Davis Carlson,et al. Portable Controllable Fluid Rehabilitation Devices[P].U.S.Patent,No.08/613704.
    [22]J. Davis Carlson,et al. Controllable Brake[P]. U.S. Patent,No.08/674371.
    [23]J. Davis Carlson, et al. Magnetorheological Brake With Integrated Flywheel[P].U.S.Patent,No.6186290131.
    [24]J. Davis Carlson, Magnetorheological Fluid Actuators, Adaptronics andSmartStructures[M]..Spring-Verlag Belin Heidelberg,1999,P.180~195.
    [25]Zhu Y, Mcneary M, Breslin N. MR suspensions and their applications. In: Procof the6thInt Conf on ER Fluids. Singapore: World Scientific,1998,478-485.
    [26]Felt D W,Hagenbuchle M, Liu J.MR suspensions and associated technology. In:Proc of the5th Int Conf On ER Fluids.Singapore:World Scientific,1996,512-516
    [27]Tang X. and H.Conrad (1996),Quasi-static Measurement on a Magneto-rheological Fluid,J.Rheol.,40(6),116.
    [28]Cutillas S, Bossis G, Cebers A. Rheological properties of MR fluids[J]. Phys. Rev E,1998,57(1):804-811.
    [29]Bossis G, Khuzir P, Lacis S etal. Yield behavior of magnetorheological suspensions[J].Journalof Magnetism and Magnetic Materials. Vol:258-259, March,2003,258-259:456-458.
    [30]Kordonsky W I, Additional magnetic dispersed phase improves the MR-fluidproperties[J].Journal of Intelligent Material Systems and Structures,1996,7(5):522-525.
    [31]El Wahed A K, Sproston, John L., Schleyer, Graham K. ElectrorheologicalandMagnetorheological fluids in blast resistant design applications[J]. Material andDesign.2002,23(4):391-404.
    [32]Kormann C, Laun H. M, Richter H J. MR Fluids with Nano-Sized MagneticParticlesTechnology[J]. International Journal of Modern Physics B,1996,10(23-24):3167-3172.
    [33]Laun H, Kormann C M, Willenbacher N. Rheometry on magnetorheological (MR) fluids.I.Steady shear flow in stationary magnetic fields[J]. Rheologica Acta,1996,35(5):417-423.
    [34]Polunina I A, Roldughin V I, Matrosova G S et al. Surface modification of ferromagneticsforpolymer composites[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2004,239(1-3):95-99.
    [35]Vicente J, Duran J, Delgado D G et al. Electrokinetic and viscoelastic propertiesofmagnetorheological suspensions of cobalt ferrite[J]. Colloids and SurfacesA:Physicochemical and Engineering Aspects,2001,195(1-3):181–188.
    [36]Ilarraza-Lomel A, Arizmendi C M, Salas-Brito A L. Controlling a leaky tap[J]. PhysicsLettersA. August9,1999,259(2):115-128.
    [37]Lokander M, Stenberg B. Improving the magnetorheological effect inisotropicmagnetorheological rubber materials[J]. Polymer Testing,2003,22(6):677-680.
    [38]Milecki A. Investigation and control of magneto–rheological fluid dampers[J].InternationalJournal of Machine Tools and Manufacture. February,2001,41(3):379-391.
    [39]Aldemir U. Optimal control of structures with semiactive-tuned mass dampers[J]. JournalofSound and Vibration, September25,2003,266(4):847-874.
    [40]Bica I. The obtaining of magneto-rheological suspensions based on silicon oil andironparticles[J]. Materials Science and Engineering: B. Vol:98, Issue:2, March15,2003,98(2):89–93.
    [41]Kimata M, Nakagawa D, Hasegawa M. Preparation of monodisperse magnetic particlesbyhydrolysis of iron alkoxide[J]. Powder Technology,2003,132(2-3):112-118.
    [42]Jha S, Jain V K. Design and development of the magnetorheological abrasive flowfinishing(MRAFF) process[J]. International Journal of Machine Tools and Manufacture,2004,44(10):1019-1029.
    [43]Li W H, Du H, Chen G,et al. Experimental investigation of creep and recovery behaviorsofmagnetorheological fluids[J]. Materials Science and Engineering: A.2002,333(1-2):368-376.
    [44]唐新鲁.有关电流变液磁流变液机理若干问题的研究[D].合肥:中国科学技术大学,1996.
    [45]江万权,朱春玲,陈祖耀,周刚毅和张培强.超细α-Fe粒子对磁性粒子浓悬浮体系磁流变性能的增强[J].化学物理学报,2001,14(5):629-632.
    [46]江万权,朱春玲,陈祖耀和张培强.微米级高聚物包埋型金属铁复合粒子的球磨法制备及其磁流变效应[J].化学物理学报,2001,14(5):543-547.
    [47]周刚毅,金昀,向勇等.磁场作用下磁流变液结构演化的实验研究[J].实验力学,2000,15(2):233-239
    [48]金昀,周刚毅,汪小华等.磁流变液剪切屈服应力的数值计算[J].中国科技大学学报,2001,31(2):168-173.
    [49]程彬,朱玉瑞,陈祖耀等.超细金属铁颗粒的高分子修饰及其悬浮液的磁流性能[J].化学物理学报,2000,13(2):215-219.
    [50]潘胜,吴建耀,胡林,沈峰,孙猛和周鲁卫.磁流变液的屈服应力与温度效应[J].功能材料,1997,28(2):264-267.
    [51]关新春,欧进萍,李金海.磁流变液组分选择原则及其机理探讨[J].化学物理报,2001,15(5):592-596.
    [52]李金海,关新春,欧进萍.可调范围宽、悬浮稳定的磁流变液的配制[J].功能材料,2004,35(4):414-416.
    [53]关新春,欧进萍,李金海.磁流变液组分选择原则及其机理探讨[J].化学物理学报,2001,14(5):592-596.
    [54]关新春,李金海,欧进萍.软性沉降磁流变液的研制及性能实验研究[J].功能材料与器件,2004,1:115-119.
    [55]刘奇,唐龙,张平,廖昌荣,陈伟民.稳定型磁流变体材料研究[J].材料导报,2006,20(8),133-135.
    [56]常建,杨运民,彭向和等.一种磁流变液流变特性测试装置的研究[J].仪器仪表学报,2001,22(4):354-368.
    [57]司鹄,彭向和.磁流变材料的流变性能研究[J].材料科学与工程,2002,20(1):61-63.
    [58]Li H, Peng X, and Chen W. A Micro-to-macroscopic Analysis for the Yield StressofMagne-torheological Fluids, Proc. Int. Conf. Heterogeneoud Materials Mechanics,edited byFan j, McDowell D and Huang K, Chongqing University Press, Chongqing:,2004:276-280.
    [59]吴旻,张秋禹,罗正平等.轻质磁性材料的制备及在磁流变液中的应用[J].报,2001,14(5):597-600.
    [60]杨仕清,彭斌,王豪才等.超细C0-Ni合金复合磁流变液的制备及流变性质研究[J].功能材料,2001,32(2):142-146.
    [61]胡林,张朝平,罗玉萍.铁/蛋白质复合微粒的结构及其磁流变性能[J].复合材料学报.2001,18(3):14-17.
    [62]翁建生,胡海岩.磁流变液的流变力学特性试验和建模[J].应用力学学报,2000,17(3):1-5.
    [63]彭金松,萧蕴诗,苏永清等.磁流变液特性和潜在应用[J].液压与气动,2003,8:27-29.
    [64]李金,张华良.磁流变液研究和应用[J].上海大学学报,2004,10(1):21-29.
    [65]丁立强,梅德庆,陈子辰等.磁流变阻尼技术及其应用[J].机电工程,2003,20(5):109-112.
    [66]刘丁雷,李德才,袁祖贻.磁流变液的发展及应用[J].新技术新工艺,1999,6:14-15.
    [67]张锋,余景池,张学军等.磁流变液抛光技术[J].光学精密工程,1999,7(5):1-8.
    [68]刘奇,张平,王东亚等.磁流变体(MRF)材料的制备与性能研究[J].功能材料.2001,32(3):257~259.
    [69]贺建民,黄金,钟银辉,磁流变液在圆筒间的粘塑性流动[J].功能材料,2006,37(6):992-993.
    [70]龚荣洲,官建国,方亮等.酞菁钴/铁纳米填充母粒的制备及其稳定性[J].化学物理学报,2000,13(3):354-358.
    [71]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144-150.
    [72]夏毅敏,郭勇,何清华.磁流变液一种新型的流体传动介质.润滑与密封,1998,2:56-58.
    [73]黄豪彩,黄宜坚.磁流变技术及其在机械工程中的应用[J].制造技术与机床,2003,4:24-27.
    [74]Jin K, Wen W. The evolution of bending chains in magnetorheological fluid atexternalfield[J]. Physics Letters A.2001,286(5):347-352.
    [75]Ni Y Q, Chen Y, Ko J M, at el. Neuro-control of cable vibration usingsemi-activemagneto-rheological dampers[J]. Engineering Structures,2002,24(3):295-307.
    [76]Chen K C, Yeh C S. Description of magnetorheological behavior with internal variables.[J]International Journal of Engineering Science, February,2002,40(4):461-482.
    [77]Spencer B F Jr., Dyke S J, Sain M K. Dynamical model of a magnetorheologicaldamper[J].Proceedings of the11th Conference on Engineering Mechanics, FortLauderdale, FL, USA.ASCE Press, Part1(of2), May19-221996:361-370.
    [78]Spencer B F Jr., Yang G, Carlson J D. Smart dampers for seismic protection of structures:afull-scale study[C]. In: Proceedings of2nd World Conference on Structural Control, vol.1,Kyoto, Japan,1998:417–426.
    [79]Dyke S J, Spencer B F, Sain M K. Experimental study of magnetorheological dampersforseismic hazard mitigation[C]. Proceedings of the199715th Structures Congress.Part2(of2),Apr13-161997, Portland, OR, USA, ASCE Press,1997:1358-1362.
    [80]Dyke S J, Spencer B F, Sain M K. Experimental study of MR dampers forseismicprotection[J].Smart Materials and Structures,1998,7(5):693-703.
    [81]Marathe S, Gandhi F, Wang K W. In: Regelbrugge M E. Proc.of SPIE(Vol.3329).Washington: SPIE,1998.390~401.
    [82]Kamath G M, Wereley N, Jolly M R, In: Regelbrugge M E.Proc. of SPIE (Vol.3329).Washington: SPIE,1998.356~377.
    [83]Madhavan V, Kamath G M, Wereley N. In: Tao R, Proc. Ofthe7th Int. Conf. on ER Fluidsand MR Suspensions.Singapore: World Scientific,2000.639~647.
    [84]关新春.磁流变液及其智能结构减振驱动器的理论与试验研究[D].哈尔滨:哈尔滨工业大学博士论文.2000.
    [85]关新春.磁流变液、碳纤维水泥石及其智能制品的理论与试验研究[D].哈尔滨:哈尔滨工业大学博士后研究工作报告.2002:55-72.
    [86]张思才,徐友钜和廖昌荣.微型汽车悬架系统磁流变减振器研究[J].西南交通大学学报,2002,37(增刊):5-8.
    [87]廖昌荣,余淼,陈伟民,梁锡昌和黄尚廉.汽车磁流变减振器设计原理与实验测试[J].中国机械工程,2002,13(6):1391-1394.
    [88]孙鸿.磁流变减振器设计及控制系统仿真[D]长春:吉林大学硕士学位论文.2006.
    [89]胡利永.基于回转式磁流变阻尼器的张力控制研究[D].长春:吉林大学,2010.
    [90]郭大蕾,胡海岩.基于磁流变减振器的车辆悬架半主动控制研究——建模与直接自适应控制[J].振动工程学报,2002.3第15卷第1期.
    [91]郭大蕾,胡海岩.基于磁流变减振器的车辆悬架半主动控制研究——间接自适应控制[J].振动工程学报,2002.9.第15卷第1期.
    [92]孙伟,胡海岩.基于多级磁流变减振器的操纵面振动半主动抑制——数值仿真与风洞试验[J].振动工程学报,2005.3第18卷第1期.
    [93]孙伟,胡海岩.基于多级磁流变减振器的操纵面振动半主动抑制——减振器设计与试验建模[J].振动工程学报,2005.3第18卷第1期.
    [94]隋莉莉,欧进萍.半主动磁流变减振驱动器的工作原理及应用[J].哈尔滨建筑学报,2002,35(3):9-13.
    [95]李忠献,吴林林,徐龙河.磁流变阻尼器的构造设计及其阻尼力性能的试验研究[J].地震工程与工程振动,2003,23(1):128-132.
    [96]谢俊,刘军,马履中.汽车磁流变减振器流变力学特性的研究[J].江苏大学学报,2002,23(6):26-29.
    [97]董平,李黎,叶昆.智能磁流变(RM)阻尼器的实验研究[J].噪声与振动控制,2002,2:42-44.
    [98]黄金,杨岩,魏玉卿等.圆筒式磁流变液制动原理及力矩分析[J].固体力学学报,2002,6:25-29.
    [99]孟维佳.双平板式磁流变液离合器的研究设计[D].哈尔滨工业大学,2006.
    [100]陆峰.磁流变力矩伺服器在非球面柔顺研抛中的应用研究[D].宁波大学,2011.
    [101]苏会强.基于磁流变液的回转式阻尼器及其性能研究[D].宁波大学,2009.
    [102]郑军,张光辉,曹兴进.磁流变传动装置工作机理研究[J].重庆大学学报,2007,30(11):19-22.
    [103]郭崇志,蒋贤芳.圆盘式磁流变离合器的有限元分析[J].机床与液压,2009,43(7):93-98.
    [104] J.H.Yoo, N.M.Wereley. Design of a High-Efficiency Magnetorheological Valve[J].Journal of Intelligent Material Systems and Structures,2002,13(10):679-687.
    [105] S.Gorodkin, A.Lukianovich, W.Kordonski. Magnetorheological Throttle Valve inPassive Damping Systems [J].Journal of Intelligent Material Systems andStructures,1998,9(8):637-641.
    [106] Dyke S J, Sperncer Jr B F, Sain Tr M K, et al.[J].Smart.Mat.&Struct.,1996,5(5):565-575
    [107]肖璐,王凡,刘颖等.用于薄壁件加工的磁流变夹具[J].新技术新工艺.机械加工工艺与装备,2007(1):26-27.
    [108] Jacobs S D, Arrasmith S D, Kozhinova I A. MRF: Computer-controlledopticsmanufacturing[J]. American Ceramic Society Bulletin,1999,78(12):42-48.
    [109]张建波.非球面数字化柔顺精密研抛技术研究[D].硕士学位论文.宁波:宁波大学,2010.
    [110]崔治.磁流变装置研究及其在非球面研抛中的应用[D].博士学位论文.长春:吉林大学,2009.
    [111]史永杰.基于磁流变力矩伺服的非球面数控研抛力-位-姿解耦技术研究[D].吉林大学,2012.
    [112]计时鸣,张利,金明生等.气囊抛光技术及其研究现状[J].机电工程,2010(5):4-6.
    [113]李中会.磁流变抛光工艺优化及关键技术研究与应用[D].东华大学,2010.
    [114]彭小强.确定性磁流变抛光的关键技术研究[D].国防科技大学,2004.
    [115]戴一帆,石峰,彭小强,宋辞.光学镜面磁流变确定性修形的实现[J].光学学报,2010(1):198-205.
    [116]陈越.光学玻璃磁流变抛光工艺试验研究[D].硕士学位论文.长沙:湖南大学,2010.
    [117]唐恒宁.微小光学元件磁流变斜轴研抛装置开发及其加工特性研[D].湖南大学,2010.
    [118]李耀明.非球面光学零件的磁流变抛光技术研究[D].中北大学,2011.
    [119]张峰.磁流变抛光技术的研究[D].中科院长春光学精密机械与物理研究所,2000.
    [120]鲁卫,潘胜,乔皓洁.电流变液研究进展及最新动态[J]..力学进展,Vol.26(2),1996,230-236.
    [121] Liu J, Flores G A, Sheng R. In-vitro investigation of blood embolization in cancertreatmentusing magnetorheological fluids[J]. Journal of Magnetism and MagneticMaterials.2001,225(1-2):209-217.
    [122] X.P.Zhao,C.R.Luo,Z.D.Zhang,“Optical characteristics of electrorheological andelectro magetorheological fluids”,Opt.Eng.37(5),1589-2592,1998.
    [123] Y.Nahmad一Molinari,C.A.Arancibia一Bulnes,J.C.Ruiz一Suarez,“Sound in aMagnetorheological Slurry,Physical Review Letters,Vol.82,No.4,727一730,1999.
    [124] R,G. Bingham, D.D. Wa1ker, D-H. Kim, D. Brooks, R. Freeman, D.Riley. A novelautomated process for aspheric surfaces. Proceedings of SPIE Vol.4093(2000)2000SPIE.
    [125] D.D. Walker, A.T.H. Beaucamp, D. Brooks et al. New Results from the PrecessionsPolishing Process Scaled to Larger Sizes. Proceedings of SPIE Vol.5494(SPIE,Bellingham, WA,2004)
    [126] D.D.Walker, A.Baldwin, R.Evans.Surface finishing of hardened and tempered stainlesstool steel using sequential ball grinding, ball burnishing and ball polishing processes ona machining centre. Journal of materials processing technology.2008,(205):249~258
    [127] Dae Wook Kim, Sug-Whan Kim.Novel simulation technique for efficient fabrication of2m class hexagonal segments for extremely large telescope primary mirrors. Proc. ofSPIE Vol.5638(SPIE, Bellingham, WA,2005)
    [128] Dae Wook Kim, Won Hyun Park, Sug-Whan Kim, et al. Edge tool influencefunction library using the parametric edge model for computer controlled opticalsurfacing. Proc. of SPIE Vol.7426,2009SPIE.
    [129]高波.气囊抛光实验样机的研制及其关键技术的研究[D].哈尔滨工业大学,2005.
    [130]龚小玲.气囊抛光机床数控代码生成与检验技术的研究[D].哈尔滨工业大学,2006.
    [131]邓伟平.气囊式抛光机床电主轴的研制[D].哈尔滨工业大学,2006.
    [132]龚金成.曲面光学零件气囊抛光工艺实验研究.哈尔滨工业大学硕士学位论文.2008.
    [133]宋剑锋.曲面光学零件气囊抛光工艺参数优化及其相关技术研究[D].哈尔滨工业大学,2009.
    [134]张伟,李洪玉,于国彧.光学元件超精密气囊抛光关键技术研究现状[J].光学学报.Vol.29,No.1,2008.
    [135]高波,谢大纲,姚英学,袁哲俊.气囊式工具抛光新技术[J].光学技术. Vol.30No.3,2004.
    [136]张银东.机器人辅助模具气囊抛光运动控制和轨迹规划研究[D].浙江工业大学,2009.
    [137]沈亚琦.气囊抛光磨粒场形态与温度特性研究[D].浙江工业大学,2009.
    [138]金明生.模具自由曲面气囊抛光机理及工艺研究[D].浙江工业大学,2009.12.
    [139]计时鸣,杜学山,陈国达,金明生.确定性抛光综述[J].航空精密制造技术. Vol.46No.6,2010.12.
    [140]计时鸣,金明生,张宪,张利,张银东,袁巨龙.应用于模具自由曲面的新型气囊抛光技术[J].机械工程学报. Vol.43No.8,2007.8.
    [141]陈智利,杭凌侠,张峰.一种新的气囊式抛光方法的研究[J].光电工程. Vol.33No.10,2006.10.
    [142]朱学亮,杭凌侠,金桂英.光学元件柔性抛光材料对表面质量的影响[C].激光与光电子进展.2011.
    [143] Yongjie Shi.Study on NC Compliant Bonnet Tool Abrasive Polishing Based onMagnetorheological Torque Servo[J]. Key Engineering Materials,1662-9795,2010-05,443(2010)
    [144] D.D.Walker, A.T.H.Beaucamp, V.Doubrovski,C.Dunn, R.Evans, R.Freeman. ucampAutomated optical fabrication: first results from the new “Precessions”1.2m CNCpolishing machine. Proc. of SPIE Vol.6273,627309,(2006).
    [145] Kim S W,Walker D,Brooks D. Active profiling and polishing for efficient control ofmaterial removal from large precision surfaces with moderate asphericity[J].Mechatronics.2003.13(4):295~312.
    [146] D.D. Walker, A.T.H. Beaucamp. New results extending the Precessions process tosmoothing ground aspheres and producing freeform parts. Proc. of SPIE Vol.5869,2005.
    [147] D.D.Walker, A.Beaucamp, C.Dunn, R.Evans, R.Freeman.Active Control of Edges andGlobal Microstructure on Segmented Mirrors.Proc.of SPIE Vol.7018,701812,(2008).
    [148] D.D.Walker, A.T.H.Beaucamp, V.Doubrovski,C.Dunn, R.Evans, R.Freeman. Firstresults from the new“Precessions”1.2m CNC polishing machine Proc. of SPIE.2006,(6273).
    [149]袁哲俊,王先奎.精密和超精密加工技术(第二版)[M].北京:机械工业出版社,2007.
    [150]舒朝濂.现代光学制造技术[M].北京:国防工业出版社,2008.8.
    [151]蔡立,田守信.光学零件加工技术[M].武汉:华中工学院出版社,1981:72~77.
    [152]查立豫,林鸿海.光学零件工艺学[M].北京:兵器工业出版社,1987:173~175.
    [153]李全胜等.计算机控制光学表面成形驻留时间算法研究[J].光学技术,1999(3)
    [154] Robert A Jones.Computer-controlled surfacing with orbital tool motion[J]. OpticalEngineering,1986,25(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700