用户名: 密码: 验证码:
Mg-Al系镁合金及稀土元素(Ce,La)合金化后微观结构和腐蚀行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金的比强度大、相对机械性能高、阻尼性和切削性好、导热性及减振性好、而且易于回收,具有广阔的应用前景,成为21世纪最重要最有发展潜力的商用轻质材料,被誉为绿色工程材料。然而作为结构材料的镁合金其主要不足之一是成本高,且镁合金的耐蚀性差成为制约其发展的重要因素。稀土元素合金化是提高镁合金耐蚀性的有效途径之一,改善了镁合金的微观结构和腐蚀产物,进而影响了镁合金的腐蚀行为。作为工业常用的Mg-Al系合金,其腐蚀行为和腐蚀防护的研究也日益受到电化学工作者的重视。本文以Mg-Al系镁合金(AM60,AZ91)为研究对象,采用多种电化学测试方法和物理表征相结合,详细研究了添加稀土元素对Mg-Al系镁合金在本体和薄液膜条件下微观结构和腐蚀行为的影响,并考察了稀土相γ在镁合金腐蚀过程中的作用。本文的研究内容如下:
     采用析氢测试和电化学手段相结合,如开路电位测试、极化曲线、电化学阻抗谱等,研究了Cl-浓度对AM60镁合金在本体溶液中腐蚀行为的影响,结果表明随Cl-浓度的增加,镁合金的耐蚀性下降。腐蚀形貌和产物研究结果表明Cl-浓度升高促进镁合金局部腐蚀的发生和表面膜的破裂,验证了电化学阻抗谱中低频区扩散弧随Cl-浓度升高向感抗弧转变的过程。结合电化学和物理表征结果,我们建立了Cl-浓度对镁合金在本体溶液中腐蚀行为影响机制的模型,NaCl浓度升高时,更多的Cl-吸附在镁合金表面,与腐蚀产物中的Mg(OH)2发生反应生成可溶性MgCl2,加速镁基体的溶解和表面膜的快速水化,同时由于CO2扩散到电解液中受限,形成的不溶性碳酸镁化合物相对较少,因而镁合金腐蚀越来越严重。
     在SF6和CO2混合气体保护下,采用已知配比金属原料并加入稀土元素Ce和La,我们成功制备了不同含量的稀土镁合金。稀土元素改变了镁合金的微观结构,形成了富含稀土和Al元素的针状稀土相γ,β相的数量减少。SKPFM的结果表明,γ相的伏特电势相对较正,作为腐蚀阴极相存在,γ相与α相的电势差相对于p相与α相的要小,电势分布更加均匀,因而减小了镁合金的微电偶腐蚀趋势。稀土镁合金的腐蚀产物膜比较致密,含有稀土和Al的氧化物和/或氢氧化物,抑制了镁合金的进一步腐蚀。稀土元素合金化提高了AM60镁合金的耐蚀性。然而由于大量的稀土相的生成,会与α相形成了更多的腐蚀微电偶对,因而稀土元素的过量添加导致镁合金腐蚀性能的再次恶化。
     大气腐蚀的本质是发生在薄液膜下的电化学反应,因而研究镁合金在薄液膜下的腐蚀行为对于深入了解其大气腐蚀机制具有重要意义。镁合金在薄液膜下的腐蚀行为和其在本体溶液下的不同。阴极极化曲线结果表明随液膜厚度降低,镁合金的阴极电流密度减小,阴极反应受到抑制。电化学阻抗谱的结果表明,随液膜厚度降低,镁合金的耐蚀性增加,当液膜厚度为100μm左右时,镁合金的腐蚀速率和其在本体溶液中的相差不大。对于稀土镁合金而言,阴极极化曲线在阴极电势远离开路电位300mV左右时出现第二段阴极斜率,表明此时存在与AM60合金不同的动力学区域(II);当液膜厚度为200-300μm时,EIS低频区容抗弧和感抗弧交替出现,这是一价镁离子的阳极反应和稀土相γ上阴极反应相互竞争的结果。而对AM60合金而言,在所有情况下,低频区仅仅出现感抗行为。
     腐蚀产物的成分和结构是影响镁合金腐蚀行为的重要因素之一。镁合金在薄液膜下的腐蚀产物和腐蚀形貌和其在本体溶液中不同。我们采用多种物理表征手段(如XRD、FTIR、SEM等)详细研究了稀土镁合金AMRE1和AM60在薄液膜条件下的腐蚀产物组成和腐蚀形貌特征。结果表明液膜厚度对同种镁合金腐蚀产物的成分影响不大。在薄液膜下镁合金的腐蚀形貌有两个特征区域:腐蚀严重区,其腐蚀产物主要是Mg(OH)2和镁的碳酸盐化合物;腐蚀轻微区,其腐蚀产物主要是后者。在薄液膜条件下,稀土镁合金的腐蚀产物富含稀土和Al元素,形成网状结构,对镁基体提供了一定的保护性。此外,AM60和稀土镁合金AMRE1腐蚀形貌最明显的区别是:在本体溶液,AM60合金是均匀腐蚀,AMRE1合金是局部腐蚀。随着液膜厚度的降低,镁合金的点蚀孕育受到抑制,但点蚀生长加速。
     镁合金的腐蚀与表面膜(或腐蚀产物层)的破坏和修复作用息息相关。镁合金腐蚀起源于无膜区,无膜区内发生的点蚀是镁合金的主要腐蚀形式。镁合金无膜区活性点的孕育、产生和发展受到C1-浓度和表面膜成分的影响。扫描电化学显微镜(SECM)可以原位检测到这些具有活性的微小区域及其变化。在浸泡初期,AM60和AZ91D镁合金的活性点随Cl-浓度的升高而逐渐增多,蚀点的活性也不断增强。对于稀土镁合金而言,由于致密表面膜的存在,高活性点在浸泡过程中再次钝化,且蚀点的活性受Cl-浓度影响相对较弱,在浸泡初期主要表现为微观形貌的变化。据AM60镁合金划痕上线性扫描结果和腐蚀形貌可知, Cl-浓度升高加速了表面膜的溶解,促进了镁合金腐蚀。与AM60相比,稀土镁合金划痕上线性扫描曲线随时间的变化不大,划痕上电流峰值和宽度受Cl-的影响相对较小。结合划痕上腐蚀形貌的结果可知,稀土镁合金表面膜更加致密,对镁合金的保护性相对较强,因而划痕上电流峰值其随Cl-浓度的影响不大。
Called as green engineering material, magnesium and magnesium alloy has been used in many applications and become the most important and potential lightweight material in21Century due to its special properties, such as high specific strength, good relative mechanical properties, good damping property and castability, perfect thermal conductivity and vibration reduction, easy to recycle. However, as construction material, one of its main drawbacks is high cost. Moreover, their poor corrosion resistance in comparison with other metals has greatly limited their further utilizing. It is well known that that addition of rare earth (RE) elements is an effective way to improve the corrosion resistance of magnesium alloy. The microstructure and corrosion product of magnesium alloy is improved after rare earth addition, then the physical changes has an influence on the corrosion behavior of magnesium alloy. As most used inducstrical Mg-Al alloy, its corrosion behavior and corrosion protect has attracted more and more attentions. In this dissertation, the corrosion behavior of Mg-Al magnesium alloy (AM60and AZ91) in bulk solution and under thin electrolyte layer (TEL) successfully monitored via electrochemical methods with the aid of home-made equipment. The main contents are listed as follows:
     The influence of chloride ion concentration on the corrosion behavior of AM60magnesium alloy in bulk solution has been investigated by hydrogen evolution and electrochemical test, such as open circuit potential (OCP) curves, polarization curves, electrochemical impedence spectroscopy (EIS) and so on. The results indicate that corrosion resistance decreases with increasing Cl-concentration. The more concentrated NaCl solution promotes initiation of localized corrosion and the breakdown of surface film as shown in corrosion morphology and corrosion product, proving that diffusion tail at low frequencies in EIS plots was transforned to inductive arc with Cl-concentration increasing. A corrosion model is proposed to explain the influence of chloride ion concentration on the corrosion behavior of magnesium alloy, implying that more and more chloride ions adsorb on the surface of magnesium alloy in high concentrated NaCl solution and react with Mg(OH)2to form soluble MgCl2, corrosion is promoted in the corrosion zone resulting in higher hydration of the surface components. Meanwhile, the diffusion of CO2to the electrolyte is limited and the amount of insoluble corrosion product containning CO32-is relativly low and corrosion of magneisum becomes more and more serious.
     New magneiusm alloys AMRE were prepared in a crucible furnace under the shelter of CO2and SF6with cerium (Ce) and lanthanum (La) in a water cooled metallic model. Their corrosion behavior was evaluated by hydrogen evolution and electrochemical methods. The microstructure of magnesium alloy is optimized after rare earth element addition with new intermetallic compounds y forms and the fraction of (3phase decreases. The results of SKPFM indicate that y phase has more active potential as cathodic phase in the microgavanic couple. The potential difference between y phase and a phase is less than that between β phase and a phase. Moreover, the potential distribution of AMRE1is more even compared with AM60, indicating less micro-galvanic corrosion. Corrosion product film which is enriched in RE and Al element and more compact and thin, on the RE-containning alloy surface is another key factor to the inhibition of further corrosion. The corrosion resistance of AM60was improved by RE addition. However, the content of rare earth element has a significant effect on the corrosion behavior of magnesium alloy, the excess addition of RE deteriorates corrosion resistance due to more y phases formed and the number of microgavanic couple between y and a phases was increased.
     The nature of atmospheric corrosion, which occurs under thin electrolyte film or even adsorbed layers, is electrochemical reaction between micro-anodes and micro-cathodes. Thus, investigation on corrosion behavior under thin electrolyte layers (TEL) plays an improtant role in understanding atmospheric corrosion of magnesium alloy. The corrosion behavior of magnesium alloy under thin electrolyte layers is different with that in the bulk solution.The results of cathodic polarizaiton curves indicate cathodic current density is depressed and cathodic reaction is inhibited with TEL decreasing. The EIS measurement domenstrates that corrosion resistance is enhanced by TEL thinning. Whereas, the corrosion resistance in the vicinity of100μm is closed to or even lower than that in bulk solution. As RE addition as concerned, there is the second kinetic region in the cathodic polarization curves of AMRE1alloy when cathodic potential shifed300mV with respect to open circuit potential (OCP); and there are capactive loops and inductive arcs altnatively appeared at LFs under200-300μm thickness, which results from the competition between reaction of Mg+on the local anodic area located where film broke down and reaction of H+on the cathodic surface of intermetallic compound (y phase). However, an inductive loop always showes up at LFs for AM60no matter how thick the electrolyte layer is.
     The composition and structure of corrosion product is very improtant in corrosion behavior of magnesium alloys. The corrosion product and corrosion morphology was respectively investigated by XRD, EDS. FTIR and SEM as complement to the corrosion behavior of AMRE1under TEL compared with AM60. The results indicate that the composition of corrosion products is not affected by TEL for the same type of magnesium alloy. The corrosion morphology of AMRE1magnesium alloy under TEL has two characteristics excpect at the vicinity of100μm: one is the severely localized corroded section, the other one is " unaffected area". The corrosion product are Mg(OH)2and compounds containing CO32-in seriously corroded section and only latter one is present in "unaffected area". In the condition of TEL, the corrosion product of AMRE1is enriched in RE and Al element, forms a skeleton structure to inhibit the corrison progress. Moreover, the corrosion morphology of AMRE1discloses the localized corrosion under bulk solution, different with AM60in uniform corrosion form. The pit initiation is inhibited under TEL and the pit growth is accelerated.
     Corrosion of magnesium is related to the destruction and repassivation of its surface film (or corrosion production film). Corrosion of magnesium is initiated from free-film region where the pit corrosion is the main corrosion form. The pregnance and growth of acitive points in free-film region is affected by the concentration of Cl-and the composition of surface film. These small active regions or points can be detected by Scanning Electrochemistry Microscopy (SECM). In the initial of immersion, the number and electrochemical activity of active points on AZ91and AM60magnesium alloy increase with Cl-concentration. While, high acitve points on magnesium alloy AMCel disappear in the immersion due to its dense surface film. Moreover, the Cl-concentration has a weak impact on the electrochemical activity of active points on AMCel magnesium alloy. The SECM images mainly reflect the surface morphology of magnesium alloy. According to the result of line scan across the scratch on AM60magnesium and corrosion morphology, dissolution of surface film is accelerated with Cl-concentration increasing. Compared with AM60, the line scan curves of scratch on AMCel magnesium slightly change with immersion time. Meanwhile, the strength and width of current peak across the scratch is slightly influenced by Cl-concentration. The result of corrosion morphology of scracth on AMCel magnesium alloy indicate that surface film of AMCel is more dense and provides strong protection for substrate and weakly affected by Cl-concentration.
引文
[1]F.H. Froes, D. Eliezer, E.L. Aghion, The science, technology, and applications of magnesium [J], Jom-Journal of the Minerals Metals & Materials Society,1998,50(9): 30-34.
    [2]D. Eliezer, E. Aghion, F.H. Froes, Magnesium science, technology and applications [J], Advanced Performance Materials,1998,5(3):201-212.
    [3]M. Hakamada, T. Furuta, Y. Chino, Y. Chen, H. Kusuda, M. Mabuchi, Life cycle inventory study on magnesium alloy substitution in vehicles [J], Energy,2007,32(8): 1352-1360.
    [4]H.E. Friedrich, B. L.Mordike, Magnesium Technology-Metallurgy, Design Data, Applications [M], Berlin, Springer,2006.
    [5]刘正,张奎,曾小勤,镁基轻质合金的理论基础及其应用[M],北京,机械工业出版社,2002.
    [6]阎峰云,张玉海,镁合金的发展及其应用[J],现代制造技术与装备,2007,(04):13-15.
    [7]郑晶,马光,贾志华,王轶,李银娥,刘啸风,党红云,王虹,变形镁合金的研究进展[J],中国材料科技与设备,2007,6:11-19.
    [8]张津,章宗和,镁合金及应用[M],北京,化学工业出版社,2004.
    [9]张丁非,彭建,丁培道,潘复生,镁及镁合金的资源、应用及其发展现状[J],材料导报,2004,04:72-76.
    [10]刘倩,单忠德,镁合金在汽车工业中的应用现状与发展趋势[J],铸造技术,2007,12:1668-1671.
    [11]郭洪河,刘生发,黄尚宇,杨军,徐萍,镁合金在汽车中的应用与发展[J],汽车工艺与材料,2003,10:34-36.
    [12]刘静安,盛春磊,镁及镁合金的应用及市场发展前景[J],有色金属加工2007,02:1-6.
    [13]唐春龙,于宝义,镁合金汽车发动机罩盖的结构设计与工艺优化[J],机械 制造,2006,09:70-72.
    [14]裴暖暖,杨永顺,尹甜甜,张亚,镁合金汽车轮毂挤压成形工艺研究[J],热加工工艺,2011,17:89-91.
    [15]刘正,王中光,王越,李峰,韩行林,Friendrichklein,压铸镁合金在汽车工业中的应用和发展趋势[J],特种铸造及有色合金,1999,05:55-58.
    [16]龙思远,徐绍勇,查吉利,曹韩学,刘波,蔡军,马季,镁合金应用与汽车节能减排[J],资源再生,2011,03:48-50.
    [17]丁文江,镁合金科学与技术[M],北京,科学出版社,2007.
    [18]徐建辉,张学群,龙文元,镁合金电脑散热器压铸工艺研究[J],新世纪新机遇新挑战—知识创新和高新技术产业发展(上册),2001:421.
    [19]张国光,镁合金在3C产品中的应用,中国有色金属报,p.005.
    [20]余琨,宋觉敏,蔡志勇,杨军,薛新颖,雷路,镁及镁合金电池阳极材料的研究、开发及应用[J],金属功能材料,2010,04:66-71.
    [21]K.U. Kainer, Magnesium-Alloys And Technologies [M], Weinheim, WILEY-VCH Verlag GmbH & Co. KG aA,2003.
    [22]薛俊峰,镁合金防腐蚀技术[M],北京,化学工业出版社,2010.
    [23]S. Bender, J. Goellner, A. Heyn, E. Boese, Corrosion and corrosion testing of magnesium alloys [J], Materials and Corrosion-Werkstoffe Und Korrosion,2007, 58(12):977-982.
    [24]G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys [J], Advanced Engineering Materials,1999,1(1):11-33.
    [25]宋光铃,镁合金腐蚀与防护[M],北京,化学工业出版社,2006.
    [26]A.L. Olsen, Corrosion protection and finishing of magnesium alloy. In B. L. Mordike and F. Hehmann eds. Magnesium alloys and their applications [M],1992.
    [27]R.C. Zeng, J. Zhang, W.J. Huang, W. Dietzel, K.U. Kainer, C. Blawert, W. Ke, Review of studies on corrosion of magnesium alloys [J], Transactions of Nonferrous Metals Society of China,2006,16:S763-S771.
    [28]W.A. Ferrando, Review of Corrosion and Corrosion Control of Magnesium Alloys and Composites [J], Journal of Materials Engineering,1989,11(4):299-313.
    [29]王福会,杜克勤,张伟,镁合金的腐蚀与防护研究进展[J],中国材料进展,2011,02:29-34.
    [30]G.L. Song, A. Atrens, M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D [J], Corrosion Science,1999,41(2):249-273.
    [31]Y. Kojima, T. Aizawa, K. Higashi, S. Kamado, Effect of Mg17All2 precipitate on corrosion behavior of AZ91D magnesium Alloy [J], Materials Science Forum,2003, 419-422:851-856.
    [32]T. Zhang, Y. Li, F. Wang, Roles of β phase in the corrosion process of AZ91D magnesium alloy [J], Corrosion Science,2006,48(5):1249-1264.
    [33]C. Op't Hoog, N. Birbilis, Y. Estrin, Corrosion of Pure Mg as a Function of Grain Size and Processing Route [J], Advanced Engineering Materials,2008,10(6): 579-582.
    [34]G.R. Argade, S.K. Panigrahi, R.S. Mishra, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium [J], Corrosion Science,58:145-151.
    [35]N.N. Aung, W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy [J], Corrosion Science,2010,52(2):589-594.
    [36]N. Hort, Y.D. Huang, K.U. Kainer, Intermetallics in magnesium alloys [J], Advanced Engineering Materials,2006,8(4):235-240.
    [37]R. Arrabal, A. Pardo, M.C. Merino, S. Merino, M. Mohedano, P. Casajus, Corrosion behaviour of Mg/Al alloys in high humidity atmospheres [J], Materials and Corrosion,2011,62(4):326-334.
    [38]G.L. Song, A. Atrens, Understanding magnesium corrosion-A framework for improved alloy performance [J], Advanced Engineering Materials,2003,5(12): 837-858.
    [39]M. Liu, S. Zanna, H. Ardelean, I. Frateur, P. Schmutz, G. Song, A. Atrens, P. Marcus, A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg-Al intermetallics:Al3Mg2 and Mg17Al12 [J], Corrosion Science,2009,51(5):1115-1127.
    [40]M. Santamaria, F. Di Quarto, S. Zanna, P. Marcus, Initial surface film on magnesium metal:A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS) [J], Electrochimica Acta,2007,53(3):1314-1324.
    [41]J.H. Nordlien, K. Nisancioglu, S. Ono, N. Masuko, Morphology and structure of oxide films formed on MgAl alloys by exposure to air and water [J], Journal of the Electrochemical Society,1996,143(8):2564-2572.
    [42]S. Feliu, A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys [J], Applied Surface Science,2009,255(7):4102-4108.
    [43]M.M. Avedesian, H. Baker, Magnesium and magnesium alloys [M], USA, ASM international,1999.
    [44]M. Jonsson, D. Persson, C. Leygraf, Atmospheric corrosion of field-exposed magnesium alloy AZ91D [J], Corrosion Science,2008,50(5):1406-1413.
    [45]L.J. Yang, Y.F. Li, Y.H. Wei, L.F. Hou, Y.G. Li, Yun Tian, Atmospheric corrosion of field-exposed AZ91D Mg alloys in a polluted environment [J], Corrosion Science, 2010,52(6):2188-2196.
    [46]S. Hiromoto, A. Yamamoto, N. Maruyama, H. Somekawa, T. Mukai, Influence of pH and flow on the polarisation behaviour of pure magnesium in borate buffer solutions [J], Corrosion Science,2008,50(12):3561-3568.
    [47]F.E.T. Heakal, A.M. Fekry, M.Z. Fatayerji, Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions [J], Electrochimica Acta,2009,54(5):1545-1557.
    [48]R. Ambat, N.N. Aung, W. Zhou, Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy [J], Journal of Applied Electrochemistry,2000,30(7):865-874.
    [49]M.C. Zhao, M. Liu, G.L. Song, A. Atrens, Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41 [J], Corrosion Science,2008,50(11): 3168-3178.
    [50]L.J. Yang, Y.-H. Wei, L.F. Hou, D. Zhang, Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions [J], Corrosion Science,2010, 52(2):345-351.
    [51]L. Wang, T. Shinohara, B.P. Zhang, Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy [J], Journal of Alloys and Compounds,2010,496(1-2):500-507.
    [52]E.N. El Sawy, H.A. El-Sayed, H.A. El Shayeb, Corrosion of Mg, AS31 and AZ91 alloys in nitrate solutions [J], Journal of Alloys and Compounds,2010,492(1-2): 69-76.
    [53]M. Anik, G Celikten, Analysis of the electrochemical reaction behavior of alloy AZ91 by EIS technique in H3PO4/KOH buffered K2SO4 solutions [J], Corrosion Science,2007,49(4):1878-1894.
    [54]N.T. Kirkland, J. Lespagnol, N. Birbilis, M.P. Staiger, A survey of bio-corrosion rates of magnesium alloys [J], Corrosion Science,2010,52(2):287-291.
    [55]A. Eliezer, O. Medlinsky, J. Haddad, G. Ben-Hamu, Corrosion fatigue behavior of magnesium alloys under oil environments [J], Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,477(1-2): 129-136.
    [56]刘楚名,朱秀英,周海涛,镁合金相图集[M],长沙,中南大学出版社,2006.
    [57]H. Westengen, P. Bakke, D. Albright, Advances in magnesium alloy development [J], Die Casting Engineer,2005,49(6):26-32.
    [58]陈振华,镁合金[M],北京,化学工业出版社,2004.
    [59]R. Arrabal, E. Matykina, A. Pardo, M.C. Merino, K. Paucar, M. Mohedano, P. Casajus, Corrosion behaviour of AZ91D and AM50 magnesium alloys with Nd and Gd additions in humid environments [J], Corrosion Science,2012,55(0):351-362.
    [60]A.A. Luo, Recent magnesium alloy development for elevated temperature applications [J], International Materials Reviews,2004,49(1):13-30.
    [61]夏鹏举,蒋百灵,张继源,张菊梅,Mg-Al系镁合金的强韧化研究进展[J],铸造技术,2007,05:665-668.
    [62]I.J. Polmear, Magnesium alloys and applications [J], Materials Science and Technology,1994,10:1-16.
    [63]J.A. Gann, A.W. Winston, Magnesium and Its Alloys [J], Industrial & Engineering Chemistry,2002,19(10):1193-1201.
    [64]田政,宋波,刘勇兵,AM系镁合金在汽车工业中的应用与发展[J],汽车工艺与材料,2004,(07):21-23.
    [65]麻彦龙,陈清建,王勇,邢东兴,AM系铸造镁合金的研究进展[J],材料导报,2007,21(8):84-87.
    [66]L. Wang, B.P. Zhang, T. Shinohara, Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions [J], Materials & Design,2010,31(2):857-863.
    [67]L. Wang, T. Shinohara, B.P. Zhang, XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution [J], Applied Surface Science, 2010,256(20):5807-5812.
    [68]M. Anik, I.M. Gunesdogdu, Corrosion characteristics of Alloy AZ63 in buffered neutral solutions [J], Materials & Design,2010,31(6):3100-3105.
    [69]W. Zhang, S. Jin, E. Ghali, R. Tremblay, M. Shehata, E. Es-Sadiqi, Corrosion Behavior of AZ91D and AJ62x Magnesium Alloys in Chloride Media [J], Advanced Engineering Materials,2006,8(10):973-980.
    [70]G.L. Song, A. Atrens, X.L. Wu, B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride [J], Corrosion Science,1998,40(10):1769-1791.
    [71]C. Lin, X.G. Li, Role of CO2 in the initial stage of atmospheric corrosion of AZ91 magnesium alloy in the presence of NaCl [J], Rare Metals,2006,25(2): 190-196.
    [72]L.J. Zhang, X.-B. Zhu, Z. Zhang, J.Q. Zhang, Electrochemical noise characteristics in corrosion process of AZ91D magnesium alloy in neutral chloride solution [J], Transactions of Nonferrous Metals Society of China,2009,19(2): 496-503.
    [73]Y. Zhu, G Wu, Y.H. Zhang, Q. Zhao, Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31 [J], Applied Surface Science,2011,257(14): 6129-6137.
    [74]S. Zhang, Q. Li, B. Chen, X. Yang, Preparation and corrosion resistance studies of nanometric sol-gel-based CeO2 film with a chromium-free pretreatment on AZ91D magnesium alloy [J], Electrochimica Acta,2010,55(3):870-877.
    [75]L. Zeng, S. Yang, W. Zhang, Y. Guo, C. Yan, Preparation and characterization of a double-layer coating on magnesium alloy AZ91D [J], Electrochimica Acta,2010, 55(9):3376-3383.
    [76]G. Wu, X. Wang, K. Ding, Y. Zhou, X. Zeng, Corrosion behavior of Ti-Al-N/Ti-Al duplex coating on AZ31 magnesium alloy in NaCl aqueous solution [J], Materials Characterization,2009,60(8):803-807.
    [77]L. Wang, L. Chen, Z. Yan, H. Wang, J. Peng, Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy [J], Journal of Alloys and Compounds,2009,480(2): 469-474.
    [78]N. Scharnagl, C. Blawert, W. Dietzel, Corrosion protection of magnesium alloy AZ31 by coating with poly(ether imides) (PEI) [J], Surface & Coatings Technology, 2009,203(10-11):1423-1428.
    [79]A. Pardo, S. Merino, M.C. Merino, I. Barroso, M. Mohedano, R. Arrabal, F. Viejo, Corrosion behaviour of silicon-carbide-particle reinforced AZ92 magnesium alloy [J], Corrosion Science,2009,51(4):841-849.
    [80]A. Bai, Z.J. Chen, Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D [J], Surface and Coatings Technology,2009,203(14):1956-1963.
    [81]W.X. Zhang, Z.H. Jiang, G.Y. Li, Q. Jiang, J.S. Lian, Electroless Ni-Sn-P coating on AZ91D magnesium alloy and its corrosion resistance [J], Surface & Coatings Technology,2008,202(12):2570-2576.
    [82]M.F. Montemor, A.M. Simoes, M.G.S. Ferreira, M.J. Carmezim, Composition and corrosion resistance of cerium conversion films on the AZ31 magnesium alloy and its relation to the salt anion [J], Applied Surface Science,2008,254(6): 1806-1814.
    [83]张勇,许越,周德瑞,陈湘,吴正勇,崔国峰,稀土铈对AZ91镁合金表面腐蚀性能的影响[J],哈尔滨工业大学学报,2002,(03):376-378.
    [84]G.H. Wu, Y. Fan, H.T. Gao, C.Q. Zhai, Y.P. Zhu, The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D [J], Materials Science and Engineering A,2005,408(1-2):255-263.
    [85]樊昱,吴国华,高洪涛,李冠群,翟春泉,La对AZ91D镁合金力学性能和腐蚀性能的影响[J],金属学报,2006,01:35-40.
    [86]Y.L. Song, Y.H. Liu, S.H. Wang, S.R. Yu, X.Y. Zhu, Effect of cerium addition on microstructure and corrosion resistance of die cast AZ91 magnesium alloy [J], Materials and Corrosion-Werkstoffe Und Korrosion,2007,58(3):189-192.
    [87]A. Srinivasan, S. Ningshen, U.K. Mudali, U.T.S. Pillai, B.C. Pai, Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy [J], Intermetallics,2007,15(12):1511-1517.
    [88]余琨,黎文献,王日初,巢国辉,稀土Ce和Nd对AZ31镁合金耐蚀性能的影响[J],材料保护,2007,11:69-84.
    [89]J.X. Niu, Q.R. Chen, N.X. Xu, Z.L. Wei, Effect of combinative addition of strontium and rare earth elements on corrosion resistance of AZ91D magnesium alloy [J], Transactions of Nonferrous Metals Society of China,2008,18(5):1058-1064.
    [90]T.J. Luo, Y.S. Yang, Y.J. Li, X.G. Dong, Influence of rare earth Y on the corrosion behavior of as-cast AZ91 alloy [J], Electrochimica Acta,2009,54(26):6433-6437.
    [91]W. Liu, F. Cao, L. Zhong, L. Zheng, B. Jia, Z. Zhang, J. Zhang, Influence of rare earth element Ce and La addition on corrosion behavior of AZ91 magnesium alloy [J], Materials and Corrosion,2009,60(10):795-803.
    [92]H. Altun, S. Sen, Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy [J], Materials and Design,2004,25(7):637-643.
    [93]F. Andreatta, I. Apachitei, A.A. Kodentsov, J. Dzwonczyk, J. Duszczyk, Volta potential of second phase particles in extruded AZ80 magnesium alloy [J], Electrochimica Acta,2006,51(17):3551-3557.
    [94]C.S. Lin, H.C. Lin, K.M. Lin, W.C. Lai, Formation and properties of stannate conversion coatings on AZ61 magnesium alloys [J], Corrosion Science,2006,48(1): 93-109.
    [95]L. Choong Do, Dependence of tensile properties of AM60 magnesium alloy on microporosity and grain size [J], Materials Science and Engineering:A,2007, 454-455:575-580.
    [96]J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel, G. Wang, Variability of skin thickness in an AM60B magnesium alloy die-casting [J], Materials Science and Engineering:A,2006,419(1-2):297-305.
    [97]R. Zeng, E. Han, W. Ke, W. Dietzel, K.U. Kainer, A. Atrens, Influence of microstructure on tensile properties and fatigue crack growth in extruded magnesium alloy AM60 [J], International Journal of Fatigue,2010,32(2):411-419.
    [98]H.E. Kadiri, Y. Xue, M.F. Horstemeyer, J.B. Jordon, P.T. Wang, Identification and modeling of fatigue crack growth mechanisms in a die-cast AM50 magnesium alloy [J], Acta Materialia,2006,54(19):5061-5076.
    [99]P. Zhao, Q. Wang, C. Zhai, Y. Zhu, Effects of strontium and titanium on the microstructure, tensile properties and creep behavior of AM50 alloys [J], Materials Science and Engineering:A,2007,444(1-2):318-326.
    [100]J. Liang, L.T. Hu, J.C. Hao, Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes [J], Applied Surface Science,2007,253(10):4490-4496.
    [101]A. Ghasemi, V.S. Raja, C. Blawert, W. Dietzel, K.U. Kainer, Study of the structure and corrosion behavior of PEO coatings on AM50 magnesium alloy by electrochemical impedance spectroscopy [J], Surface and Coatings Technology,2008, 202(15):3513-3518.
    [102]P.B. Srinivasan, C. Blawert, W. Dietzel, Effect of plasma electrolytic oxidation treatment on the corrosion and stress corrosion cracking behaviour of AM50 magnesium alloy [J], Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,494(1-2):401-406.
    [103]J. Liang, P.B. Srinivasan, C. Blawert, M. Stomer, W. Dietzel, Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes [J], Electrochimica Acta, 2009,54(14):3842-3850.
    [104]P.B. Srinivasan, J. Liang, C. Blawert, M. Stormer, W. Dietzel, Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy [J], Applied Surface Science,2009,255(7): 4212-4218.
    [105]R.C. Zeng, J. Chen, W. Dietzel, R. Zettler, J.F. Dos Santos, M. Lucia Nascimento, K.U. Kainer, Corrosion of friction stir welded magnesium alloy AM50 [J], Corrosion Science,2009,51(8):1738-1746.
    [106]S. Lu, X.Y. Zhou, J. Chen, Z.D. Hou, Corrosion and high-temperature oxidation of AM60 magnesium alloy [J], Transactions of Nonferrous Metals Society of China, 2007,17:S156-S160.
    [107]Y.L. Cheng, T.W. Qin, H.M. Wang, Z. Zhang, Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys [J], Transactions of Nonferrous Metals Society of China,2009,19(3):517-524.
    [108]W. He, E. Zhang, K. Yang, Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank's solution [J], Materials Science and Engineering: C,2010,30(1):167-174.
    [109]J. Yan, Y.S. Sun, F. Xue, S. Xue, W.J. Tao, Microstructure and mechanical properties in cast magnesium-neodymium binary alloys [J], Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008, 476(1-2):366-371.
    [110]V. Neubert, I. Stulikova, B. Smola, B.L. Mordike, M. Vlach, A. Bakkar, J. Pelcova, Thermal stability and corrosion behaviour of Mg-Y-Nd and Mg-Tb-Nd alloys [J], Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,462(1-2):329-333.
    [111]B. Smola, I. Stulikova, J. Pelcova, B.L. Mordike, Significance of stable and metastable phases in high temperature creep resistant magnesium-rare earth base alloys [J], Journal of Alloys and Compounds,2004,378(1-2):196-201.
    [112]X.Q. Zeng, Q.D. Wang, Y.Z. Lu, W.J. Ding, C. Lu, Y.P. Zhu, C.Q. Zhai, X.P. Xu, Study on ignition proof magnesium alloy with beryllium and rare earth additions [J], Scripta Materialia,2000,43(5):403-409.
    [113]P.Y. Lin, H. Zhou, W.P. Li, W. Li, S.-Z. Zhao, J.G. Su, Effect of yttrium addition on the oxide scale of AM50 magnesium alloy [J], Corrosion Science,2009,51(5): 1128-1133.
    [114]罗治平,张少卿,稀土镁合金的研究[J],材料科学与工程,1993,04:38-42.
    [115]马刚,郭胜利,稀土在镁合金中的应用[J],宁夏工程技术,2005,03:268-272.
    [116]L.Y. Zhong, F.H. Cao, Y.Y. Shi, Q. Wen, Z. Zhang, J.Q. Zhang, Preparation and corrosion electrochemistry behavior of cerium-based chemical conversion coating on AZ91 magnesium alloy [J], Acta Metallurgica Sinica,2008,44(8):979-985.
    [117]L.H. Yang, J.Q. Li, X. Yu, M.L. Zhang, X.M. Huang, Lanthanum-based conversion coating on Mg-8Li alloy [J], Applied Surface Science,2008,255(5): 2338-2341.
    [118]S.X. Yu, Z.W. Zhang, L. Chen, J. Han, Influence of solution composition on formation of golden yellow rare earth conversion film on magnesium alloy [J], Journal of Rare Earths,2005,23:255-258.
    [119]X.M. Wang, X.Q. Zeng, G.S. Wu, S.S. Yao, Yttrium ion implantation on the surface properties of magnesium [J], Applied Surface Science,2006,253(5): 2437-2442.
    [120]J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys - a critical review [J], Journal of Alloys and Compounds,2002,336(1-2):88-113.
    [121]C.Y. Wu, J. Zhang, State-of-art on corrosion and protection of magnesium alloys based on patent literatures [J], Transactions of Nonferrous Metals Society of China,2011,21(4):892-902.
    [122]M. Zhao, S.S. Wu, P. An, J.R. Luo, Study on the deterioration process of a chromium-free conversion coating on AZ91D magnesium alloy in NaCl solution [J], Applied Surface Science,2006,253(2):468-475.
    [123]H.H. Elsentriecy, K. Azumi, H. Konno, Improvement in stannate chemical conversion coatings on AZ91 D magnesium alloy using the potentiostatic technique [J], Electrochimica Acta,2007,53(2):1006-1012.
    [124]F. Zucchi, A. Frignani, V. Grassi, G. Trabanelli, C. Monticelli, Stannate and permanganate conversion coatings on AZ31 magnesium alloy [J], Corrosion Science, 2007,49(12):4542-4552.
    [125]H. Zhang, G.C. Yao, S.L. Wang, Y.H. Liu, H.J. Luo, A chrome-free conversion coating for magnesium-lithium alloy by a phosphate-permanganate solution [J], Surface & Coatings Technology,2008,202(9):1825-1830.
    [126]Y.L. Cheng, H.L. Wu, Z.H. Chen, H.M. Wang, Z. Zhang, Y.W. Wu, Corrosion properties of AZ31 magnesium alloy and protective effects of chemical conversion layers and anodized coatings [J], Transactions of Nonferrous Metals Society of China, 2007,17(3):502-508.
    [127]S.A. Salman, R. Ichino, M. Okido, Development of cerium-based conversion coating on AZ31 magnesium alloy [J], Chemistry Letters,2007,36(8):1024-1025.
    [128]H. Ardelean, I. Frateur, P. Marcus, Corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings [J], Corrosion Science, 2008,50(7):1907-1918.
    [129]S.X. Yu, J.Y. Cao, L. Chen, J. Han, R.J. Zhang, Corrosion resistance, composition and structure of RE chemical conversion coating on magnesium alloy [J], Transactions of Nonferrous Metals Society of China,2008,18:S349-S353.
    [130]Y. Xu, X. Chen, Z.S. Lu, Y.J. Li, Preparation and corrosion resistance of rare earth conversion coatings on AZ91 magnesium alloy [J], Journal of Rare Earths,2005, 23(5):555-558.
    [131]A. Aballe, M. Bethencourt, F.J. Botana, M.J. Cano, M. Marcos, On the mixed nature of cerium conversion coatings [J], Materials and Corrosion-Werkstoffe Und Korrosion,2002,53(3):176-184.
    [132]M.F. Montemor, A.M. Simoes, M.J. Carmezim, Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection [J], Applied Surface Science,2007,253(16):6922-6931.
    [133]A.L. Rudd, C.B. Breslin, F. Mansfeld, The corrosion protection afforded by rare earth conversion coatings applied to magnesium [J], Corrosion Science,2000,42(2): 275-288.
    [134]J. Piekoszewski, W. Kempinski, B. Andrzejewski, Z. Trybula, L. Piekara-Sady, J. Kaszynski, J. Stankowski, Z. Werner, E. Richter, F. Prokert, J. Stanislawski, M. Barlak, Superconductivity of MgB2 thin films prepared by ion implantation and pulsed plasma treatment [J], Vacuum,2005,78(2-4):123-129.
    [135]X.M. Zhu, H.G. Yang, M.K. Lei, Corrosion resistance of Al ion implanted AZ31 magnesium alloy at elevated temperature [J], Surface and Coatings Technology,2007, 201(15):6663-6666.
    [136]X. Wang, X. Zeng, G. Wu, S. Yao, Y. Lai, Effects of tantalum ion implantation on the corrosion behavior of AZ31 magnesium alloys [J], Journal of Alloys and Compounds,2007,437(1-2):87-92.
    [137]M.K. Lei, P. Li, H.G. Yang, X.M. Zhu, Wear and corrosion resistance of Al ion implanted AZ31 magnesium alloy [J], Surface and Coatings Technology,2007, 201(9-11):5182-5185.
    [138]X.B. Tian, C.B. Wei, S.Q. Yang, R.K.Y. Fu, P.K. Chu, Water plasma implantation/oxidation of magnesium alloys for corrosion resistance [J], Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2006,242(1-2):300-302.
    [139]A. Bakkar, V. Neubert, Improving corrosion resistance of magnesium-based alloys by surface modification with hydrogen by electrochemical ion reduction (EIR) and by plasma immersion ion implantation (PⅢ) [J], Corrosion Science,2005,47(5): 1211-1225.
    [140]X.M. Wang, X.Q. Zeng, S.S. Yao, G.S. Wu, Y.J. Lai, The corrosion behavior of Ce-implanted magnesium alloys [J], Materials Characterization,2008,59(5): 618-623.
    [141]李德辉,董杰,曾小勤,卢晨,丁文江,高性能稀土镁合金研究进展[J],材料导报,2005,08:51-54.
    [142]I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, T.M. Pollock, Microstructural stability and creep of rare-earth containing magnesium alloys [J], Scripta Materialia, 2003,48(8):1029-1034.
    [143]J.G. Wang, L.M. Hsiung, T.G. Nieh, M. Mabuchi, Creep of a heat treated Mg-4Y-3RE alloy [J], Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2001,315(1-2):81-88.
    [144]A.R. Wu, C.Q. Xia, Study of the microstructure and mechanical properties of Mg-rare earth alloys [J], Materials & Design,2007,28(6):1963-1967.
    [145]赵志远,铸造稀土镁合金在我国航空工业中的应用[J],材料工程,1993,07:8-10.
    [146]A. Nayeb-Hasemi, J. Clark, Phase Diagrams of Binary Magnesium Alloys [M], OH, USA, ASM International,1988.
    [147]N. Birbilis, M.A. Easton, A.D. Sudholz, S.M. Zhu, M.A. Gibson, On the corrosion of binary magnesium-rare earth alloys [J], Corrosion Science,2009,51(3): 683-689.
    [148]A.D. Sudholz, K. Gusieva, X.B. Chen, B.C. Muddle, M.A. Gibson, N. Birbilis, Electrochemical behaviour and corrosion of Mg-Y alloys [J], Corrosion Science,2011, 53(6):2277-2282.
    [149]G. Ben-Hamu, D. Eliezer, K.S. Shin, S. Cohen, The relation between microstructure and corrosion behavior of Mg-Y-RE-Zr alloys [J], Journal of Alloys and Compounds,2007,431(1-2):269-276.
    [150]X.W. Guo, J.W. Chang, S.M. He, W.J. Ding, X.S. Wang, Investigation of corrosion behaviors of Mg-6Gd-3Y-0.4Zr alloy in NaCl aqueous solutions [J], Electrochimica Acta,2007,52(7):2570-2579.
    [151]T. Takenaka, T. Ono, Y. Narazaki, Y. Naka, M. Kawakami, Improvement of corrosion resistance of magnesium metal by rare earth elements [J], Electrochimica Acta,2007,53(1):117-121.
    [152]L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals [M], London, UK, Taylor & Francis,2003.
    [153]T. Valente, Grain boundary effects on the behavior of WE43 magnesium castings in simulated marine environment [J], Journal of Materials Science Letters, 2001,20(1):67-69.
    [154]P.L. Miller, B.A. Shaw, R.G. Wendt, W.C. Moshier, Assessing the corrosion resistance of nonequilibrium magnesium-Yttrium alloys [J], Corrosion,1995,52(12): 922-931.
    [155]H.B. Yao, Y. Li, A.T.S. Wee, Passivity behavior of melt-spun Mg-Y Alloys [J], Electrochimica Acta,2003,48(28):4197-4204.
    [156]N.D. Nam, J.G. Kim, K.S. Shin, H.C. Jung, The effect of rare earth additions on the electrochemical properties of Mg-5Al-based alloys [J], Scripta Materialia,2010, 63(6):625-628.
    [157]J. Zhang, K. Liu, D. Fang, X. Qiu, P. Yu, D. Tang, J. Meng, Microstructures, mechanical properties and corrosion behavior of high-pressure die-cast Mg-4Al-0.4Mn-xPr (x=0,2,4,6) alloys [J], Journal of Alloys and Compounds,2009, 480(2):810-819.
    [158]N.D. Nam, W.C. Kim, J.G. Kim, K.S. Shin, H.C. Jung, Effect of mischmetal on the corrosion properties of Mg-5A1 alloy [J], Corrosion Science,2009,51(12): 2942-2949.
    [159]N. Liu, J. Wang, L. Wang, Y. Wu, L. Wang, Electrochemical corrosion behavior of Mg-5Al-0.4Mn-xNd in NaCl solution [J], Corrosion Science,2009,51(6): 1328-1333.
    [160]J. Wang, J. Yang, Y. Wu, H. Zhang, L. Wang, Microstructures and mechanical properties of as-cast Mg-5Al-0.4Mn-xNd (x= 0,1,2 and 4) alloys [J], Materials Science and Engineering:A,2008,472(1-2):332-337.
    [161]X. Tian, L.M. Wang, J.L. Wang, YB. Liu, J. An, Z.Y. Cao, The microstructure and mechanical properties of Mg-3A1-3RE alloys [J], Journal of Alloys and Compounds,2008,465(1-2):412-416.
    [162]X.H. Zhou, Y.W. Huang, Z.L. Wei, Q.R. Chen, F.X. Gan, Improvement of corrosion resistance of AZ91D magnesium alloy by holmium addition [J], Corrosion Science,2006,48(12):4223-4233.
    [163]F. Rosalbino, E. Angelini, S. De Negri, A. Saccone, S. Delfino, Electrochemical behaviour assessment of novel Mg-rich Mg-Al-RE alloys (RE=Ce, Er) [J], Intermetallics,2006,14(12):1487-1492.
    [164]W.W. Du, Y.S. Sun, X.G. Min, F. Xue, M. Zhu, D.Y. Wu, Microstructure and mechanical properties of Mg-Al based alloy with calcium and rare earth additions [J], Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2003,356(1-2):1-7.
    [165]K.K. Wang, Y.L. Kang, K. Zhang, Effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D [J], Journal of University of Science and Technology Beijing,2002,9(5):363-366.
    [166]Q.D. Wang, Y.Z. Lu, X. Zeng, W.J. Ding, Y.P. Zhu, Q.H. Li, J. Lan, Study on the fluidity of AZ91+xRE magnesium alloy [J], Materials Science and Engineering A, 1999,271(1-2):109-115.
    [167]G. Pettersen, H. Westengen, R. Hoier, O. Lohne, Microstructure of a pressure die cast magnesium-4wt.% aluminium alloy modified with rare earth additions [J], Materials Science and Engineering A,1996,207(1):115-120.
    [168]S. Izumi, M. Yamasaki, Y. Kawamura, Relation between corrosion behavior and microstructure of Mg-Zn-Y alloys prepared by rapid solidification at various cooling rates [J], Corrosion Science,2009,51(2):395-402.
    [169]J.H. Zhang, J. Wang, X. Qiu, D.P. Zhang, Z. Tian, X.D. Niu, D.X. Tang, J. Meng, Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg-4Al-based alloy [J], Journal of Alloys and Compounds,2008, 464(1-2):556-564.
    [170]E. Zhang, W.W. He, H. Du, K. Yang, Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content [J], Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008,488(1-2):102-111.
    [171]M. Yamasaki, N. Hayashi, S. Izumi, Y. Kawamura, Corrosion behavior of rapidly solidified Mg-Zn-rare earth element alloys in NaCl solution [J], Corrosion Science,2007,49(1):255-262.
    [172]Y.X. Wang, S.K. Guan, X.Q. Zeng, W.J. Dine, Effects of RE on the microstructure and mechanical properties of Mg-8Zn-4Al magnesium alloy [J], Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2006,416(1-2):109-118.
    [173]LA. Anyanwu, Y. Gokan, A. Suzuki, S. Kamado, Y. Kojima, S. Takeda, T. Ishida, Effect of substituting cerium-rich mischmetal with lanthanum on high temperature properties of die-cast Mg-Zn-Al-Ca-RE alloys [J], Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2004,380(1-2): 93-99.
    [174]H.-M. Liao, S.-Y. Long, C.-B. Guo, Z.-B. Zhu, Effect of Ce-rich misch metal addition on squeeze cast microstructure and mechanical properties of AZ81 alloy [J], Transactions of Nonferrous Metals Society of China,2008,18, Supplement 1(0): s44-s49.
    [175]J.H. Zhang, X.D. Niu, X. Qiu, K. Liu, C.M. Nan, D.X. Tang, J. Meng, Effect of yttrium-rich misch metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy [J], Journal of Alloys and Compounds,2009,471(1-2): 322-330.
    [176]黎业生,董定乾,吴子平,稀土镁合金的研究现状及应用前景[J],轻合金加工技术,2006,04:1-6.
    [177]F.I. Mansfeld, J.V. Kenkel, Electrochemical measurements of time-of-wetness and atmospheric corrosion rates [J], Corrosion 1977,33(1):13-16.
    [178]B.S. Skerry, J.C. Wood, J.B. Johnson, G.C. Wood, Corrosion in smoke, hydrocarbon and SO2 polluted atmospheres—Ⅱ. Mechanistic implications for iron from surface analytical and allied techniques [J], Corrosion Science,1988,28(7): 697-719.
    [179]B.S. Skerry, J.B. Johnson, G.C. Wood, Corrosion in smoke, hydrocarbon and SO2 polluted atmospheres—Ⅰ. General behaviour of iron [J], Corrosion Science,1988, 28(7):657-695.
    [180]B.S. Skerry, J.B. Johnson, GC. Wood, Corrosion in smoke, hydrocarbon and SO2 polluted atmospheres—Ⅲ. The general behaviour of zinc [J], Corrosion Science, 1988,28(7):721-740.
    [181]M. Stratmann, K. Bohnenkamp, T. Ramchandran, The influence of copper upon the atmospheric corrosion of iron [J], Corrosion Science,1987,27(9):905-926.
    [182]N.D.Tomashov, Development of the electrochemical theory of metallic corrosion [J], Corrosion,1964,20:7t-14t.
    [183]程英亮,铝合金在本体溶液以及薄层液膜下的腐蚀电化学研究[D],杭州,浙江大学化学系,2003.
    [184]T. Zhang, C.M. Chen, Y.W. Shao, G.Z. Meng, F.H. Wang, X.G. Li, C.F. Dong, Corrosion of pure magnesium under thin electrolyte layers [J], Electrochimica Acta, 2008,53(27):7921-7931.
    [185]G.L. Song, S. Hapugoda, D. St John, Degradation of the surface appearance of magnesium and its alloys in simulated atmospheric environments [J], Corrosion Science,2007,49(3):1245-1265.
    [186]R. Lindstrom, L.G. Johansson, GE. Thompson, P. Skeldon, J.E. Svensson, Corrosion of magnesium in humid air [J], Corrosion Science,2004,46(5):1141-1158.
    [187]R. Lindstrom, L.G. Johansson, J.E. Svensson, The influence of NaCl and CO2 on the atmospheric corrosion of magnesium alloy AZ91 [J], Materials and Corrosion, 2003,54(8):587-594.
    [188]M. Jonsson, D. Persson, D. Thierry, Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D [J], Corrosion Science, 2007,49(3):1540-1558.
    [189]M. Jonsson, D. Persson, The influence of the microstructure on the atmospheric corrosion behaviour of magnesium alloys AZ91D and AM50 [J], Corrosion Science, 2010,52(3):1077-1085.
    [190]J. Chen, J.Q. Wang, E.H. Han, W. Ke, In situ observation of pit initiation of passivated AZ91 magnesium alloy [J], Corrosion Science,2009,51(3):477-484.
    [191]S. Feliu, M.C. Merino, R. Arrabal, A.E. Coy, E. Matykina, XPS study of the effect of aluminium on the atmospheric corrosion of the AZ31 magnesium alloy [J], Surface and Interface Analysis,2009,41(3):143-150.
    [192]W.H. Ailor, Atmosphere corrosion [M], New York, John Wiley and Sons,1982.
    [193]K.A. Chandler, M.B. Kilculen, Atmospheric corrosion of carbon steel [J], Corrosion 1974,5:24-28.
    [194]W. Hou, C. Liang, Atmospheric Corrosion Exposure of Steels in China [J], Corrosion,1999,55(1):65-73.
    [195]S. Pintos, N.V. Queipo, O. Troconis De Rincon, A. Rincon, M. Morcillo, Artificial neural network modeling of atmospheric corrosion in the MICAT project [J], Corrosion Science,2000,42(1):35-52.
    [196]J.E. Svensson, L.G. Johansson, The synergistic effect of hydrogen sulfide and nitrogen dioxide on the atmospheric corrosion of zinc [J], Journal of the Electrochemical Society,1996,143(1):51-57.
    [197]T. Falk, J.E. Svensson, I.G. Johansson, The Influence of CO2 and NaCl on the Atmospheric Corrosion of Zinc [J], Journal of the Electrochemical Society,1998, 145(9):2993-2999.
    [198]M. Stern, A.L. Geary, Structure of chemically deposited nickel [J], Journal of the Electrochemical Society,1957,104(2):104-110.
    [199]S. M, The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers-A new experimental technique [J], Corrosion Science, 1987,27(8):869-872.
    [200]S.C. Chung, A.S. Lin, J.R. Chang, H.C. Shih, EXAFS study of atmospheric corrosion products on zinc at the initial stage [J], Corrosion Science,2000,42(9): 1599-1610.
    [201]M. Stratmann, H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers-I. Verification of the experimental technique [J], Corrosion Science,1990,30(6-7):681-696.
    [202]I.L. Rozenfeld, Proc.1st Int. Cong, on Metallic Corrosion, London: Butterworths,1961.
    [203]M. Stratmann, H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers-Ⅱ. Experimental results [J], Corrosion Science, 1990,30(6-7):697-714.
    [204]M. Stratmann, H. Streckel, K.T. Kim, S. Crockett, On the atmospheric corrosion of metals which are covered with thin electrolyte layers-iii. the measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers [J], Corrosion Science,1990,30(6-7):715-734.
    [205]A. Nishikata, Y. Ichihara, T. Tsuru, An Application of Electrochemical Impedance Spectroscopy to Atmospheric Corrosion Study [J], Corrosion Science, 1995,37(6):897-911.
    [206]Y.L. Cheng, Z. Zhang, F.H. Cao, J.F. Li, J.Q. Zhang, J.M. Wang, C.N. Cao, A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers [J], Corrosion Science,2004,46(7):1649-1667.
    [207]K. Micka, K. Kratochvilova, J. Klima, Electrolysis at a disc electrode in a thin electrolyte layer [J], Electrochimica Acta,1997,42(6):1005-1010.
    [208]E. Dubuisson, P. Lavie, F. Dalard, J.P. Caire, S. Szunerits, Study of the atmospheric corrosion of galvanised steel in a micrometric electrolytic droplet [J], Electrochemistry Communications,2006,8(6):911-915.
    [209]E. Remita, E. Sutter, B. Tribollet, F. Ropital, X. Longaygue, C. Taravel-Condat, N. Desamais, A thin layer cell adapted for corrosion studies in confined aqueous environments [J], Electrochimica Acta,2007,52(27):7715-7723.
    [210]H. Katayama, K. Noda, H. Masuda, M. Nagasawa, M. Itagaki, K. Watanabe, Corrosion simulation of carbon steels in atmospheric environment [J], Corrosion Science,2005,47(10):2599-2606.
    [211]E. Dubuisson, P. Lavie, F. Dalard, J.P. Caire, S. Szunerits, Corrosion of galvanised steel under an electrolytic drop [J], Corrosion Science,2007,49(2): 910-919.
    [212]I.L.Rozenfeld, Atmospheric corrosion of metals, Houston, TX,1972.
    [213]S.H. Zhang, S.B. Lyon, The electrochemistry of iron, zinc and copper in thin layer electrolytes [J], Corrosion Science,1993,35(1-4):713-718.
    [214]A. Nishikata, Y. Ichihara, T. Tsuru, Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer [J], Electrochimica Acta,1996,41(7-8): 1057-1062.
    [215]邹锋,韩薇,利用Kelvin探针进行金属薄液层下电化学测量[J],腐蚀科学与防护技术,1995,7(3):192-195.
    [216]王佳,水流彻,使用Kelvin探头参比电极技术进行薄液层下电化学测量[J],中国腐蚀与防护学报,1995,15(3):173-179.
    [217]王佳,水流彻,使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响[J],中国腐蚀与防护学报,1995,15(3):180-188.
    [218]G.S. Frankel, M. Stratmann, M. Rohwerder, A. Michalik, B. Maier, J. Dora, M. Wicinski, Potential control under thin aqueous layers using a Kelvin Probe [J], Corrosion Science,2007,49(4):2021-2036.
    [219]A.Q. Fu, X. Tang, Y.F. Cheng, Characterization of corrosion of X70 pipeline steel in thin electrolyte layer under disbonded coating by scanning Kelvin probe [J], Corrosion Science,2009,51(1):186-190.
    [220]A.K. Neufeld, I.S. Cole, A.M. Bond, S.A. Furman, The initiation mechanism of corrosion of zinc by sodium chloride particle deposition [J], Corrosion Science,2002, 44(3):555-572.
    [221]G.A. El-Mahdy, Advanced laboratory study on the atmospheric corrosion of zinc under thin electrolyte layers [J], Corrosion,2003,59(6):505-510.
    [222]G.A. El-Mahdy, A. Nishikata, T. Tsuru, AC impedance study on corrosion of 55%Al-Zn alloy-coated steel under thin electrolyte layers [J], Corrosion Science, 2000,42(9):1509-1521.
    [223]A.P. Yadav, H. Katayama, K. Noda, H. Masuda, A. Nishikata, T. Tsuru, Effect of Al on the galvanic ability of Zn-Al coating under thin layer of electrolyte [J], Electrochimica Acta,2007,52(7):2411-2422.
    [224]H.R. Zhou, X.G. Li, J. Ma, C.F. Dong, Y.Z. Huang, Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers [J], Materials Science and Engineering:B,2009,162(1):1-8.
    [225]Y. Tsutsumi, A. Nishikata, T. Tsuru, Initial stage of pitting corrosion of type 304 stainless steel under thin electrolyte layers containing chloride ions [J], Journal of the Electrochemical Society,2005,152(9):B358-B363.
    [226]A.Q. Fu, Y.F. Cheng, Electrochemical polarization behavior of X70 steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating and its implication on pipeline SCC [J], Corrosion Science,2010,52(7):2511-2518.
    [227]X. Liao, F. Cao, L. Zheng, W. Liu, A. Chen, J. Zhang, C. Cao, Corrosion behaviour of copper under chloride-containing thin electrolyte layer [J], Corrosion Science,2011,53(10):3289-3298.
    [228]A.J. Bard, F.R.F. Fan, J. Kwak, O. Lev, Scanning electrochemical microscopy. Introduction and principles [J], Analytical Chemistry,1989,61(2):132-138.
    [229]J. Kwak, A.J. Bard, Scanning electrochemical microscopy. Apparatus and two-dimensional scans of conductive and insulating substrates [J], Analytical Chemistry,1989,61(17):1794-1799.
    [230]J. Kwak, A.J. Bard, Scanning electrochemical microscopy. Theory of the feedback mode [J], Analytical Chemistry,1989,61(11):1221-1227.
    [231]D. Mandler, A.J. Bard, High-Resolution Etching of Semiconductors by the Feedback Mode of the Scanning Electrochemical Microscope [J], Journal of the Electrochemical Society,1990,137(8):2468-2472.
    [232]D.O. Wipf, A.J. Bard, Scanning Electrochemical Microscopy.10. High-Resolution Imaging of Active-Sites on an Electrode Surface [J], Journal of the Electrochemical Society,1991,138(5):L4-L6.
    [233]S. Szunerits, S.E. Pust, G. Wittstock, Multidimensional electrochemical imaging in materials science [J], Analytical and Bioanalytical Chemistry,2007,389(4): 1103-1120.
    [234]M.V. Mirkin, B.R. Horrocks, Electroanalytical measurements using the scanning electrochemical microscope [J], Analytica Chimica Acta,2000,406(2): 119-146.
    [235]X. Lu, Q. Wang, X. Liu, Review:Recent applications of scanning electrochemical microscopy to the study of charge transfer kinetics [J], Analytica Chimica Acta,2007,601(1):10-25.
    [236]M.V. Mirkin, High resolution studies of heterogeneous processes with the scanning electrochemical microscope [J], Mikrochimica Acta,1999,130(3):127-153.
    [237]A.J. Bard, G. Denuault, C. Lee, D. Mandler, D.O. Wipf, Scanning Electrochemical Microscopy - a New Technique for the Characterization and Modification of Surfaces [J], Accounts of Chemical Research,1990,23(11):357-363.
    [238]N. Casillas, S. Charlebois, W.H. Smyrl, H.S. White, Pitting Corrosion of Titanium [J], Journal of the Electrochemical Society,1994,141(3):636-642.
    [239]N. Casillas, S.J. Charlebois, W.H. Smyrl, H.S. White, Scanning Electrochemical Microscopy of Precursor Sites for Pitting Corrosion on Titanium [J], Journal of the Electrochemical Society,1993,140(9):L142-L145.
    [240]Y. Zhu, D.E. Williams, Scanning Electrochemical Microscopic Observation of a Precursor State to Pitting Corrosion of Stainless Steel [J], Journal of the Electrochemical Society,1997,144(3):L43-L45.
    [241]R.M. Souto, Y. Gonzalez-Garcia, S. Gonzalez, G.T. Burstein, Damage to paint coatings caused by electrolyte immersion as observed in situ by scanning electrochemical microscopy [J], Corrosion Science,2004,46(11):2621-2628.
    [242]R.M. Souto, Y. Gonalez-Garcia, S. Gonzalez, In situ monitoring of electroactive species by using the scanning electrochemical microscope. Application to the investigation of degradation processes at defective coated metals [J], Corrosion Science,2005,47(12):3312-3323.
    [1]钟丽应,稀土元素对AZ91镁合金组织结构和腐蚀行为的影响[D],杭州,浙江大学化学系,2008.
    [1]M.M. Avedesian, Magnesium and magnesium alloys [M], Ohio,USA, ASM International,1999.
    [2]D. Eliezer, E. Aghion, F.H. Froes, Magnesium science, technology and applications [J], Advanced Performance Materials,1998,5(3):201-212.
    [3]R.C. Zeng, J. Chen, W. Dietzel, R. Zettler, J.F. Dos Santos, M. Lucia Nascimento, K.U. Kainer, Corrosion of friction stir welded magnesium alloy AM50 [J], Corrosion Science,2009,51(8):1738-1746.
    [4]M. Jonsson, D. Persson, The influence of the microstructure on the atmospheric corrosion behaviour of magnesium alloys AZ91D and AM50 [J], Corrosion Science, 2010,52(3):1077-1085.
    [5]G. Baril, C. Blanc, N. Pebere, AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys-Characterization with respect to their microstructures [J], Journal of the Electrochemical Society,2001, 148(12):B489-B496.
    [6]Y.L. Ma, J. Zhang, M.B. Yang, Research on microstructure and alloy phases of AM50 magnesium alloy [J], Journal of Alloys and Compounds,2009,470(1-2): 515-521.
    [7]G.L. Song, A. Atrens, X.L. Wu, B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride [J], Corrosion Science,1998,40(10):1769-1791.
    [8]A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl [J], Corrosion Science, 2008,50(3):823-834.
    [9]A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, S. Feliu, Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media [J], Electrochimica Acta,2008,53(27):7890-7902.
    [10]M.C. Zhao, M. Liu, G. Song, A. Atrens, Influence of the [beta]-phase morphology on the corrosion of the Mg alloy AZ91 [J], Corrosion Science,2008, 50(7):1939-1953.
    [11]W.J. Liu, F.H. Cao, L.R. Chang, Z. Zhang, J.Q. Zhang, Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy [J], Corrosion Science,2009,51(6):1334-1343.
    [12]W. Liu, F. Cao, L. Zhong, L. Zheng, B. Jia, Z. Zhang, J. Zhang, Influence of rare earth element Ce and La addition on corrosion behavior of AZ91 magnesium alloy [J], Materials and Corrosion,2009,60(10):795-803.
    [13]C. Op't Hoog, N. Birbilis, Y. Estrin, Corrosion of Pure Mg as a Function of Grain Size and Processing Route [J], Advanced Engineering Materials,2008,10(6): 579-582.
    [14]N.N. Aung, W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy [J], Corrosion Science,2010,52(2):589-594.
    [15]G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys [J], Advanced Engineering Materials,1999,1(1):11-33.
    [16]J.H. Nordlien, K. Nisancioglu, S. Ono, N. Masuko, Morphology and structure of oxide films formed on MgAl alloys by exposure to air and water [J], Journal of the Electrochemical Society,1996,143(8):2564-2572.
    [17]L. Wang, T. Shinohara, B.-P. Zhang, XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution [J], Applied Surface Science, 2010,256(20):5807-5812.
    [18]L. Wang, B.-P. Zhang, T. Shinohara, Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions [J], Materials & Design,2010,31(2):857-863.
    [19]M.C. Merino, A. Pardo, R. Arrabal, S. Merino, P. Casajus, M. Mohedano, Influence of chloride ion concentration and temperature on the corrosion of Mg-Al alloys in salt fog [J], Corrosion Science,2010,52(5):1696-1704.
    [20]F.E.T. Heakal, A.M. Fekry, M.Z. Fatayerji, Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions [J], Electrochimica Acta,2009,54(5):1545-1557.
    [21]R. Ambat,N.N. Aung, W. Zhou, Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy [J], Journal of Applied Electrochemistry,2000,30(7):865-874.
    [22]Q. Qu, J. Ma, L. Wang, L. Li, W. Bai, Z. Ding, Corrosion behaviour of AZ31B magnesium alloy in NaCl solutions saturated with CO2 [J], Corrosion Science,2011, 53(4):1186-1193.
    [23]N. Birbilis, K. Meyer, B.C. Muddle, S.P. Lynch, In situ measurement of corrosion on the nanoscale [J], Corrosion Science,2009,51(8):1569-1572.
    [24]L. Wang, T. Shinohara, B.-P. Zhang, Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy [J], Journal of Alloys and Compounds,2010,496(1-2):500-507.
    [25]L. Wang, L. Chen, Z. Yan, H. Wang, J. Peng, Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy [J], Journal of Alloys and Compounds,2009, In Press, Corrected Proof.
    [26]刘楚名,朱秀英,周海涛,镁合金相图集[M],长沙,中南大学出版社,2006.
    [27]W.J. Liu, F.H. Cao, A.N. Chen, L.R. Chang, J.Q. Zhang, C.A. Cao, Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1:Microstructural characterization and electrochemical behaviour [J], Corrosion Science,2010,52(2):627-638.
    [28]G. Galicia, N. Pebere, B. Tribollet, V. Vivier, Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy [J], Corrosion Science,2009,51(8):1789-1794.
    [29]R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G.E. Thompson, Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings [J], Corrosion Science,2008,50(6):1744-1752.
    [30]F. Andreatta, I. Apachitei, A.A. Kodentsov, J. Dzwonczyk, J. Duszczyk, Volta potential of second phase particles in extruded AZ80 magnesium alloy [J], Electrochimica Acta,2006,51(17):3551-3557.
    [31]A.D. Sudholz, N.T. Kirkland, R.G Buchheit, N. Birbilis, Electrochemical Properties of Intermetallic Phases and Common Impurity Elements in Magnesium Alloys [J], Electrochemical and Solid State Letters,2011,14(2):C5-C7.
    [32]R. Arrabal, A. Pardo, M.C. Merino, S. Merino, M. Mohedano, P. Casajus, Corrosion behaviour of Mg/Al alloys in high humidity atmospheres [J], Materials and Corrosion,2011,62(4):326-334.
    [33]M.C. Zhao, M. Liu, G.L. Song, A. Atrens, Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41 [J], Corrosion Science,2008,50(11): 3168-3178.
    [34]W. Zhou, N.N. Aung, Y.S. Sun, Effect of antimony, bismuth and calcium addition on corrosion and electrochemical behaviour of AZ91 magnesium alloy [J], Corrosion Science,2009,51(2):403-408.
    [35]D. Sachdeva, R. Balasubramaniam, Corrosion behaviour of Terfenol-D [J], Corrosion Science,2008,50(5):1340-1352.
    [36]M.C. Zhao, P. Schmutz, S. Brunner, M. Liu, G.-L. Song, A. Atrens, An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing [J], Corrosion Science,2009,51(6):1277-1292.
    [37]S. Feliu Jr, C. Maffiotte, A. Samaniego, J.C. Galvan, V. Barranco, Effect of naturally formed oxide films and other variables in the early stages of Mg-alloy corrosion in NaCl solution [J], Electrochimica Acta,2011,56(12):4554-4565.
    [38]C.N. Cao, J.Q. Zhang, An introduction of electrochemical impedance spectroscopy [M], Beijing, Science press,2002.
    [39]J. Liang, P.B. Srinivasan, C. Blawert, W. Dietzel, Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy [J], Electrochimica Acta,2010,55(22): 6802-6811.
    [40]P.L. Bonora, M. Andrei, A. Eliezer, E.M. Gutman, Corrosion behaviour of stressed magnesium alloys [J], Corrosion Science,2002,44(4):729-749.
    [41]J. Chen, J.Q. Wang, E.H. Han, J.H. Dong, W. Ke, AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution [J], Electrochimica Acta,2007,52(9):3299-3309.
    [42]T.J. Luo, Y.S. Yang, Y.J. Li, X.G Dong, Influence of rare earth Y on the corrosion behavior of as-cast AZ91 alloy [J], Electrochimica Acta,2009,54(26):6433-6437.
    [43]G.L. Song, Z. Xu, The surface, microstructure and corrosion of magnesium alloy AZ31 sheet [J], Electrochimica Acta,2010,55(13):4148-4161.
    [44]T. Zhang, C.M. Chen, Y.W. Shao, G.Z. Meng, F.H. Wang, X.G. Li, C.F. Dong, Corrosion of pure magnesium under thin electrolyte layers [J], Electrochimica Acta, 2008,53(27):7921-7931.
    [45]G. Song, A. Atrens, D.S. John, X..Wu, J. Nairn, The anodic dissolution of magnesium in chloride and sulphate solutions [J], Corrosion Science,1997,39(10-11): 1981-2004.
    [46]G.L. Song, Effect of tin modification on corrosion of AM70 magnesium alloy [J], Corrosion Science,2009,51(9):2063-2070.
    [47]G. Baril, G. Galicia, C. Deslouis, N. Pebere, B. Tribollet, V. Vivier, An Impedance Investigation of the Mechanism of Pure Magnesium Corrosion in Sodium Sulfate Solutions [J], Journal of the Electrochemical Society,2007,154(2):C108-C113.
    [48]M. Jonsson, D. Persson, D. Thierry, Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D [J], Corrosion Science, 2007,49(3):1540-1558.
    [49]M. Jonsson, D. Persson, C. Leygraf, Atmospheric corrosion of field-exposed magnesium alloy AZ91D [J], Corrosion Science,2008,50(5):1406-1413.
    [50]N. Pebere, C. Riera, F. Dabosi, Investigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impedance spectroscopy [J], Electrochimica Acta,1990,35(2):555-561.
    [51]L. Wang, T. Shinohara, B.P. Zhang, H. Iwai, Characterization of surface products on AZ31 magnesium alloy in dilute NaCl solution [J], Journal of Alloys and Compounds,2009,485(1-2):747-752.
    [52]R. Lindstrom, J.E. Svensson, L.G. Johansson, The influence of carbon dioxide on the atmospheric corrosion of some magnesium alloys in the presence of NaCl [J], Journal of the Electrochemical Society,2002,149(4):B103-B107.
    [1]G.Song, Recent Progress in Corrosion and Protection of Magnesium Alloys [J], Advanced Engineering Materials,2005,7(7):563-586.
    [2]M.M. Avedesian, Magnesium and magnesium alloys [M], Ohio.USA, ASM International,1999.
    [3]C.Y. Wu, J. Zhang, State-of-art on corrosion and protection of magnesium alloys based on patent literatures [J], Transactions of Nonferrous Metals Society of China, 2011,21(4):892-902.
    [4]I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, T.M. Pollock, Microstructural stability and creep of rare-earth containing magnesium alloys [J], Scripta Materialia, 2003,48(8):1029-1034.
    [5]J. Yan, Y.S. Sun, F. Xue, S. Xue, W.J. Tao, Microstructure and mechanical properties in cast magnesium-neodymium binary alloys [J], Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008, 476(1-2):366-371.
    [6]J.G. Wang, L.M. Hsiung, T.G. Nieh, M. Mabuchi, Creep of a heat treated Mg-4Y-3RE alloy [J], Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2001,315(1-2):81-88.
    [7]N. Hort, Y.D. Huang, K.U. Kainer, Intermetallics in magnesium alloys [J], Advanced Engineering Materials,2006,8(4):235-240.
    [8]X.H. Zhou, Y.W. Huang, Z.L. Wei, Q.R. Chen, F.X. Gan, Improvement of corrosion resistance of AZ91D magnesium alloy by holmium addition [J], Corrosion Science,2006,48(12):4223-4233.
    [9]F. Rosalbino, E. Angelini, S. De Negri, A. Saccone, S. Delfino, Electrochemical behaviour assessment of novel Mg-rich Mg-Al-RE alloys (RE=Ce, Er) [J], Intermetallics,2006,14(12):1487-1492.
    [10]X.W. Guo, J.W. Chang, S.M. He, W.J. Ding, X.S. Wang, Investigation of corrosion behaviors of Mg-6Gd-3Y-0.4Zr alloy in NaCl aqueous solutions [J], Electrochimica Acta,2007,52(7):2570-2579.
    [11]T. Takenaka, T. Ono, Y. Narazaki, Y. Naka, M. Kawakami, Improvement of corrosion resistance of magnesium metal by rare earth elements [J], Electrochimica Acta,2007,53(1):117-121.
    [12]R. Arrabal, E. Matykina, A. Pardo, M.C. Merino, K. Paucar, M. Mohedano, P. Casajus, Corrosion behaviour of AZ91D and AM50 magnesium alloys with Nd and Gd additions in humid environments [J], Corrosion Science,2012,55(0):351-362.
    [13]刘楚名,朱秀英,周海涛,镁合金相图集[M],长沙,中南大学出版社,2006.
    [14]G.L. Makar, J. Kruger, Corrosion of magnesium [J], International Materials Reviews,1993,38(3):138-153.
    [15]Y.L. Ma, J. Zhang, M.B. Yang, Research on microstructure and alloy phases of AM50 magnesium alloy [J], Journal of Alloys and Compounds,2009,470(1-2): 515-521.
    [16]R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, GE. Thompson, Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings [J], Corrosion Science,2008,50(6):1744-1752.
    [17]F. Andreatta, I. Apachitei, A.A. Kodentsov, J. Dzwonczyk, J. Duszczyk, Volta potential of second phase particles in extruded AZ80 magnesium alloy [J], Electrochimica Acta,2006,51(17):3551-3557.
    [18]J.X. Niu, Q.R. Chen, N.X. Xu, Z.L. Wei, Effect of combinative addition of strontium and rare earth elements on corrosion resistance of AZ91D magnesium alloy [J], Transactions of Nonferrous Metals Society of China,2008,18(5):1058-1064.
    [19]K. Nisancioglu, O. Lunder, T.K. Aune,47th Annual World Magnesium Conference, Corrosion mechanism of AZ91 magnesium alloy, Cannes,1990, p.43.
    [20]GL. Song, A. Atrens, Understanding magnesium corrosion-A framework for improved alloy performance [J], Advanced Engineering Materials,2003,5(12): 837-858.
    [21]W. Zhou, N.N. Aung, Y.S. Sun, Effect of antimony, bismuth and calcium addition on corrosion and electrochemical behaviour of AZ91 magnesium alloy [J], Corrosion Science,2009,51(2):403-408.
    [22]J.U. Chavarin, Electrochemical Investigations of the Activation Mechanism of Aluminum [J], Corrosion,1991,47(6):472-479.
    [23]W.J. Lorenz, F. Mansfeld, Determination of corrosion rates by electrochemical DC and AC methods [J], Corrosion Science,1981,21(9-10):647-672.
    [24]J. Chen, J.Q. Wang, E.H. Han, J.H. Dong, W. Ke, AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution [J], Electrochimica Acta,2007,52(9):3299-3309.
    [25]Y. Lu, Q. Wang, X. Zeng, W. Ding, C. Zhai, Y. Zhu, Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys [J], Materials Science and Engineering:A,2000,278(1-2):66-76.
    [1]W.H. Ailor, Atmosphere corrosion [M], New York, John Wiley and Sons,1982.
    [2]K.A. Chandler, M.B. Kilculen, Atmospheric corrosion of carbon steel [J], Corrosion 1974,5:24-28.
    [3]W. Hou, C. Liang, Atmospheric Corrosion Exposure of Steels in China [J], Corrosion,1999,55(1):65-73.
    [4]S. Pintos, N.V. Queipo, O. Troconis De Rincon, A. Rincon, M. Morcillo, Artificial neural network modeling of atmospheric corrosion in the MICAT project [J], Corrosion Science,2000,42(1):35-52.
    [5]J.E. Svensson, L.G. Johansson, The synergistic effect of hydrogen sulfide and nitrogen dioxide on the atmospheric corrosion of zinc [J], Journal of the Electrochemical Society,1996,143(1):51-57.
    [6]T. Falk, J.E. Svensson, I.G. Johansson, The Influence of CO2 and NaCl on the Atmospheric Corrosion of Zinc [J], Journal of the Electrochemical Society,1998, 145(9):2993-2999.
    [7]M. Stern, A.L. Geary, Structure of chemically deposited nickel [J], Journal of the Electrochemical Society,1957,104(2):104-110.
    [8]S. M, The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers-A new experimental technique [J], Corrosion Science, 1987,27(8):869-872.
    [9]S.C. Chung, A.S. Lin, J.R. Chang, H.C. Shih, EXAFS study of atmospheric corrosion products on zinc at the initial stage [J], Corrosion Science,2000,42(9): 1599-1610.
    [10]M. Stratmann, H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers-I. Verification of the experimental technique [J], Corrosion Science,1990,30(6-7):681-696.
    [11]I.L. Rozenfeld, Proc.1st Int. Cong, on Metallic Corrosion, London:Butterworths, 1961.
    [12]G.S. Frankel, M. Stratmann, M. Rohwerder, A. Michalik, B. Maier, J. Dora, M. Wicinski, Potential control under thin aqueous layers using a Kelvin Probe [J], Corrosion Science,2007,49(4):2021-2036.
    [13]M. Stratmann, H. Streckel, K.T. Kim, S. Crockett, On the atmospheric corrosion of metals which are covered with thin electrolyte layers-iii. the measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers [J], Corrosion Science,1990,30(6-7):715-734.
    [14]K.W. Chung, K.B. Kim, A study of the effect of concentration build-up of electrolyte on the atmospheric corrosion of carbon steel during drying [J], Corrosion Science,2000,42(3):517-531.
    [15]S.H. Zhang, S.B. Lyon, The electrochemistry of iron, zinc and copper in thin layer electrolytes [J], Corrosion Science,1993,35(1-4):713-718.
    [16]T. Zhang, C.M. Chen, Y.W. Shao, G.Z. Meng, F.H. Wang, X.G. Li, C.F. Dong, Corrosion of pure magnesium under thin electrolyte layers [J], Electrochimica Acta, 2008,53(27):7921-7931.
    [17]Y.L. Cheng, Z. Zhang, F.H. Cao, J.F. Li, J.Q. Zhang, J.M. Wang, C.N. Cao, A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers [J], Corrosion Science,2004,46(7):1649-1667.
    [18]A. Nishikata, Y. Ichihara, T. Tsuru, Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer [J], Electrochimica Acta,1996,41(7-8): 1057-1062.
    [19]H.P. Godard, W.B. Jepson, M.R. Bothwell, R.L. Lane, The Corrosion of Light Metals [M], New York, John Wiley and Sons,1967.
    [20]K. Xiao, C.F. Dong, J.Q. Li, X.G Li, D. Wei, Research on atmospheric galvanic corrosion evaluation of magnesium alloy [J], Rare Metal Materials and Engineering, 2007,36(2):201-207.
    [21]R. Arrabal, A. Pardo, M.C. Merino, S. Merino, M. Mohedano, P. Casajus, Corrosion behaviour of Mg/Al alloys in high humidity atmospheres [J], Materials and Corrosion,2011,62(4):326-334.
    [22]M. Jonsson, D. Persson, C. Leygraf, Atmospheric corrosion of field-exposed magnesium alloy AZ91D [J], Corrosion Science,2008,50(5):1406-1413.
    [23]R. Lindstrom, L.G. Johansson, J.E. Svensson, The influence of NaCl and CO2 on the atmospheric corrosion of magnesium alloy AZ91 [J], Materials and Corrosion, 2003,54(8):587-594.
    [24]J. Chen, J.Q. Wang, E. Han, W. Ke, In situ observation of formation and spreading of micro-droplets on magnesium and its alloy under cyclic wet-dry conditions [J], Corrosion Science,2007,49(3):1625-1634.
    [25]G. Song, Recent Progress in Corrosion and Protection of Magnesium Alloys [J], Advanced Engineering Materials,2005,7(7):563-586.
    [26]C.N. Cao, Estimation of Electrochemical Kinetic Parameters of Corrosion Processes by Weak Polarization Curve Fitting [J], Journal of Chinese Society for Corrosion Protection,1985,5:155-164.
    [27]H.T. Guo, Q.X. Tan, Study of the Electrochemistry [M], Tianjin, Tianjin University Press,2005.
    [28]L.J. Liu, M. Schlesinger, Corrosion of magnesium and its alloys [J], Corrosion Science,2009,51(8):1733-1737.
    [29]J.X. Niu, Q.R. Chen, N.X. Xu, Z.L. Wei, Effect of combinative addition of strontium and rare earth elements on corrosion resistance of AZ91D magnesium alloy [J], Transactions of Nonferrous Metals Society of China,2008,18(5):1058-1064.
    [30]K. Nisancioglu, O. Lunder, T.K. Aune,47th Annual World Magnesium Conference, Corrosion mechanism of AZ91 magnesium alloy, Cannes,1985, p.43.
    [31]G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys [J], Advanced Engineering Materials,1999,1(1):11-33.
    [32]S. Bender, J. Goellner, A. Heyn, E. Boese, Corrosion and corrosion testing of magnesium alloys [J], Materials and Corrosion-Werkstoffe Und Korrosion,2007, 58(12):977-982.
    [33]G.L. Song, A. Atrens, Understanding magnesium corrosion-A framework for improved alloy performance [J], Advanced Engineering Materials,2003,5(12): 837-858.
    [34]W.J. Lorenz, F. Mansfeld, Determination of corrosion rates by electrochemical DC and AC methods [J], Corrosion Science,1981,21(9-10):647-672.
    [35]N.D. Tomashov, Development of electrochemical theory of metallic corrosion [J], Corrosion,1964,20(76):7t-14t.
    [1]F. Rosalbino, E. Angelini, S. De Negri, A. Saccone, S. Delfino, Electrochemical behaviour assessment of novel Mg-rich Mg-Al-RE alloys (RE=Ce, Er) [J], Intermetallics,2006,14(12):1487-1492.
    [2]X.W. Guo, J.W. Chang, S.M. He, W.J. Ding, X.S. Wang, Investigation of corrosion behaviors of Mg-6Gd-3Y-0.4Zr alloy in NaCl aqueous solutions [J], Electrochimica Acta,2007,52(7):2570-2579.
    [3]T. Takenaka, T. Ono, Y. Narazaki, Y. Naka, M. Kawakami, Improvement of corrosion resistance of magnesium metal by rare earth elements [J], Electrochimica Acta,2007,53(1):117-121.
    [4]Y.L. Song, Y.H. Liu, S.H. Wang, S.R. Yu, X.Y. Zhu, Effect of cerium addition on microstructure and corrosion resistance of die cast AZ91 magnesium alloy [J], Materials and Corrosion-Werkstoffe Und Korrosion,2007,58(3):189-192.
    [5]X.H. Zhou, Y.W. Huang, Z.L. Wei, Q.R. Chen, F.X. Gan, Improvement of corrosion resistance of AZ91D magnesium alloy by holmium addition [J], Corrosion Science,2006,48(12):4223-4233.
    [6]G.S. Frankel, M. Stratmann, M. Rohwerder, A. Michalik, B. Maier. J. Dora, M. Wicinski, Potential control under thin aqueous layers using a Kelvin Probe [J], Corrosion Science,2007,49(4):2021-2036.
    [7]Y.X. Wang, S.K. Guan, X.Q. Zeng, W.J. Dine, Effects of RE on the microstructure and mechanical properties of Mg-8Zn-4Al magnesium alloy [J], Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006,416(1-2):109-118.
    [8]R. Lindstrom, L.G Johansson, J.E. Svensson, The influence of NaCl and CO2 on the atmospheric corrosion of magnesium alloy AZ91 [J], Materials and Corrosion, 2003,54(8):587-594.
    [9]M. Jonsson, D. Persson, D. Thierry, Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D [J], Corrosion Science, 2007,49(3):1540-1558.
    [10]M. Jonsson, D. Persson, C. Leygraf, Atmospheric corrosion of field-exposed magnesium alloy AZ91D [J], Corrosion Science,2008,50(5):1406-1413.
    [11]J.H. Nordlien, K. Nisancioglu, S. Ono, N. Masuko, Morphology and structure of water-formed oxides on ternary MgAl alloys [J], Journal of the Electrochemical Society,1997,144(2):461-466.
    [12]R. Lindstrom, J.E. Svensson, L.G. Johansson, The influence of carbon dioxide on the atmospheric corrosion of some magnesium alloys in the presence of NaCl [J], Journal of the Electrochemical Society,2002,149(4):B103-B107.
    [13]J.H. Nordlien, K. Nisancioglu, S. Ono, N. Masuko, Morphology and structure of oxide films formed on MgAl alloys by exposure to air and water [J], Journal of the Electrochemical Society,1996,143(8):2564-2572.
    [14]M. Santamaria, F. Di Quarto, S. Zanna, P. Marcus, Initial surface film on magnesium metal:A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS) [J], Electrochimica Acta,2007,53(3):1314-1324.
    [15]S. Feliu, A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys [J], Applied Surface Science,2009,255(7):4102-4108.
    [16]W.J. Liu, F.H. Cao, L.R. Chang, Z. Zhang, J.Q. Zhang, Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy [J], Corrosion Science,2009,51(6):1334-1343.
    [17]T. Zhang, C.M. Chen, Y.W. Shao, G.Z. Meng, F.H. Wang, X.G. Li, C.F. Dong, Corrosion of pure magnesium under thin electrolyte layers [J], Electrochimica Acta, 2008,53(27):7921-7931.
    [18]Y.L. Cheng, Z. Zhang, F.H. Cao, J.F. Li, J.Q. Zhang, J.M. Wang, C.N. Cao, A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers [J], Corrosion Science,2004,46(7):1649-1667.
    [19]L. Wang, T. Shinohara, B.P. Zhang, H. Iwai, Characterization of surface products on AZ31 magnesium alloy in dilute NaCl solution [J], Journal of Alloys and Compounds,2009,485(1-2):747-752.
    [20]V.C. Farmer, The infrared spectra of minerals [M], Beijing, Science Press,1982.
    [21]W.J. Liu, F.H. Cao, A.N. Chen, L.R. Chang, J.Q. Zhang, C.A. Cao, Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1:Microstructural characterization and electrochemical behaviour [J], Corrosion Science,2010,52(2):627-638.
    [22]W. Liu, F. Cao, L. Zhong, L. Zheng, B. Jia, Z. Zhang, J. Zhang, Influence of rare earth element Ce and La addition on corrosion behavior of AZ91 magnesium alloy [J], Materials and Corrosion,2009,60(10):795-803.
    [23]A. Valor, F. Caleyo, L. Alfonso, D. Rivas, J.M. Hallen, Stochastic modeling of pitting corrosion:A new model for initiation and growth of multiple corrosion pits [J], Corrosion Science,2007,49(2):559-579.
    [24]E.J. Gumbel, Statistics of Extremes [M], New York, Columbia University Press, 1957.
    [25]GL. Song, A. Atrens, Understanding magnesium corrosion-A framework for improved alloy performance [J], Advanced Engineering Materials,2003,5(12): 837-858.
    [26]H.P. Godard, W.B. Jepson, M.R. Bothwell, R.L. Kane, The corrosion of the Light Metal [M], New York, John Wiley Son,1967.
    [27]L.J. Yang, Y.F. Li, Y.H. Wei, L.F. Hou, Y.G. Li, Yun Tian, Atmospheric corrosion of field-exposed AZ91D Mg alloys in a polluted environment [J], Corrosion Science, 2010,52(6):2188-2196.
    [28]R. Arrabal, A. Pardo, M.C. Merino, S. Merino, M. Mohedano, P. Casajus. Corrosion behaviour of Mg/Al alloys in high humidity atmospheres [J], Materials and Corrosion,2011,62(4):326-334.
    [29]I.L.Rozenfeld, Atmospheric corrosion of metals, Houston, TX,1972.
    [1]G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys [J], Advanced Engineering Materials,1999,1(1):11-33.
    [2]G.L. Song, Z. Xu, The surface, microstructure and corrosion of magnesium alloy AZ31 sheet [J], Electrochimica Acta,2010,55(13):4148-4161.
    [3]M.C. Zhao, M. Liu, G.L. Song, A. Atrens, Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41 [J], Corrosion Science,2008,50(11): 3168-3178.
    [4]W.A. Ferrando, Review of Corrosion and Corrosion Control of Magnesium Alloys and Composites [J], Journal of Materials Engineering,1989,11(4):299-313.
    [5]H.E. Friedrich, B. L.Mordike, Magnesium Technology-Metallurgy, Design Data, Applications [M], Berlin, Springer,2006.
    [6]M. Liu, S. Zanna, H. Ardelean, I. Frateur, P. Schmutz, G. Song, A. Atrens, P. Marcus, A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg-Al intermetallics:A13Mg2 and Mg17Al12 [J], Corrosion Science,2009,51(5):1115-1127.
    [7]M. Santamaria, F. Di Quarto, S. Zanna, P. Marcus, Initial surface film on magnesium metal:A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS) [J], Electrochimica Acta,2007,53(3):1314-1324.
    [8]J.H. Nordlien, K. Nisancioglu, S. Ono, N. Masuko, Morphology and structure of water-formed oxides on ternary MgAl alloys [J], Journal of the Electrochemical Society,1997,144(2):461-466.
    [9]J. Kwak, A.J. Bard, Scanning electrochemical microscopy. Theory of the feedback mode [J], Analytical Chemistry,1989,61(11):1221-1227.
    [10]N. Casillas, S. Charlebois, W.H. Smyrl, H.S. White, Pitting Corrosion of Titanium [J], Journal of the Electrochemical Society,1994,141(3):636-642.
    [11]N. Casillas, S.J. Charlebois, W.H. Smyrl, H.S. White, Scanning Electrochemical Microscopy of Precursor Sites for Pitting Corrosion on Titanium [J], Journal of the Electrochemical Society,1993,140(9):L142-L145.
    [12]S.B. Basame, H.S. White, Scanning Electrochemical Microscopy of Native Titanium-Oxide Films-Mapping the Potential Dependence of Spatially-Localized Electrochemical Reactions [J], Journal of Physical Chemistry,1995,99(44): 16430-16435.
    [13]A.J. Bard, F.R.F. Fan, J. Kwak, O. Lev, Scanning electrochemical microscopy, Introduction and principles [J], Analytical Chemistry,1989,61(2):132-138.
    [14]C.G. Zoski, Handbook of Electrochemistry [M], Amsterdam, Holland, Elservier Science,2007.
    [15]L. Chang, F. Cao, J. Cai, W. Liu, J. Zhang, C. Cao, Formation and transformation of Mg(OH)2 in anodic coating using FTIR mapping [J], Electrochemistry Communications,2009,11(11):2245-2248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700