用户名: 密码: 验证码:
金纳米团簇的可控制备及结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金纳米团簇具有独特的原子构型、电子结构及新颖的光学、电学和催化性能,在催化、发光材料、探测设备、生物以及制药等领域有广泛的应用,是近几年以来纳米研究领域的一种新型材料体系,吸引着众多科学家对其进行广泛的研究。目前在该领域仍存在的一些亟需解决的问题,如如何制备出可以精确到原子个数的团簇,如何提高单次制备的产率进而提高最终产量,完善明确团簇结构的方法,是否可以调控团簇的电子原子结构以及如何充分了解其结构与性能间的关联等等。针对这些问题,本论文发展了一种简单、方便、易控的湿化学方法来制备不同尺寸以及不同表面活性剂覆盖的金纳米颗粒,利用同步辐射X射线吸收精细结构谱学(XAFS)技术,透射电镜(TEM)方法和紫外-可见(UV-vis)吸收光谱等实验方法研究了这些金纳米颗粒的尺寸、尺寸分布以及电子原子结构等信息,并对化学环境改变引起的金团簇的原子和电子结构的转变开展了深入研究。此外,本论文结合XAFS技术和X射线衍射(XRD)方法研究了Co掺杂导致的BaTiO3结构相变。
     本论文主要包括以下内容:
     1.不同尺寸金纳米颗粒的制备
     发展了一种简单方便的湿化学反应方法制备出了具有高单分散性(0.1-0.2nm)、尺寸可控的金纳米颗粒(0.9-3.3nm)。本方法的要点是利用金前驱AuClPPh3在乙醇溶剂中的有限溶解度,在弱还原剂的还原下实现颗粒的均匀分布;在不同时间加入强表面活性剂硫醇来控制金纳米颗粒的尺寸。原位XAFS技术对制备过程的研究结果表明,前驱在乙醇溶剂中的溶解度约为1.65mmol/L,随着弱还原反应的进行,初始加入的过量(17.86mmol/L)前驱不断自供给,使得溶液中的金原子浓度逐渐增加,并在反应1h以内都维持在一个很高的浓度,有利于得到高单分散的纳米颗粒。
     2.不同表面活性剂对金纳米颗粒影响
     制备了大小相近(3nm左右)、不同种类表面活性剂(三苯基膦PPh3,聚乙烯吡咯烷酮PVP,十二胺和十二硫醇)覆盖的金纳米颗粒,研究了不同表面活性剂对纳米颗粒的影响。其中硫醇覆盖样品的空间及尺寸分布最为均匀(3.1±0.1nm),而且硫醇也导致Au-S间发生明显的电子转移。X射线吸收谱表明,PPh3对颗粒的作用最弱,PVP对颗粒的作用有所增加,二者都是通过较弱的分子间作用力与Au颗粒发生作用。十二胺和十二硫醇对颗粒的作用进一步增加,它们与颗粒间能形成明显的化学键(Au-N和Au-S键),并且也导致颗粒内和颗粒表面的Au原子排布的一定程度的无序化。
     3.金纳米晶体的表面结构
     了解颗粒的真实表面结构是深入理解颗粒表面相关性能的前提。利用化学法制备得到硫醇覆盖的金纳米晶体(3-5nm),并且通过溶剂处理,在保证颗粒尺寸形貌不改变的基础下,移除颗粒表面覆盖的硫醇,使颗粒具有基本“裸露”的表面。X射线吸收谱研究表明,对于硫醇覆盖的样品,颗粒表面的Au-Au键具有较强的收缩(约0.10A),但是对于表面“裸露”的纳米颗粒,颗粒表面的键长收缩并不明显。这一反常的现象主要是因为溶剂与裸露Au颗粒之间的作用降低了其结构扭曲。
     4.硫醇脱附及其对金纳米团簇结构的影响
     发现利用简单的溶剂交换法可以脱附金纳米晶体和金纳米团簇表面的硫醇分子,并且不会引起颗粒尺寸及其分布的变化。UV-vis和XAFS结果表明这种脱附会导致1.1nm大小的金纳米团簇发生从二十面体到体心立方原子堆积结构的转化。深入的分析表明当溶剂环境从乙醇变换为正己烷时,由于正己烷与硫醇分子间的相互作用,引起团簇表面的电子结构发生改变,硫醇分子从颗粒表面迅速脱离。溶液中“裸露”的金团簇通过重新组合和结构重排,形成扭曲的面心立方结构。
     5.Co掺杂对BaTiO3结构的影响
     利用固相反应法制备了不同浓度Co(0.01-0.20)掺杂的BaTiO3材料,并且发现这种掺杂会导致BaTiO3材料从四方相相变为高温下才存在的六方相。当Co掺杂浓度低于0.03时,BaTiO3材料仍保持四方相,但当掺杂浓度高于0.05时,BaTiO3材料会发生相变。Co离子的掺杂可以导致BaTiO3从室温四方相相变至只在高温下存在的六方相。XAFS结果表明,掺杂后,Co离子会替代BaTiO3中的Ti离子,这可能是导致材料发生相变的主要因素。
Gold nanoclusters with specific electronic and atomic structures possess unique optic, electronic and catalytic properties and have potential application in fields like catalysis, luminescent material, detector, biology and medicine. Recently, gold nanocluster is one of the newest nanomaterials in nanoscience and trigers great interest for fundamental research. However, before the widely use of gold nanoparticles, there are some unsolved problems blocking the development of this field. Some of these problems include:how to synthesize gold clusters with accurate number of gold atoms; how to improve the yield of gold clusters; how to determine the structure of gold clusters and how to tailor the electronic and atomic structure of gold cluster for the specfic purpose. In this dissertation, by variation chemical parameters, gold nanoparticles with different sizes and capped with differernt surfactants were prepared. With the use of X-ray absorption fine structure (XAFS), transmission electron microscope (TEM) and UV-vis technologies, the size, size distribution, electrnoic and atomic structure of gold nanoparticles were investgated. Besides, we also studied the Co-induced phase transition of BaTiO3by a combination of XAFS and X-ray diffraction (XRD) methods. This dissertation includes:
     1. The synthesis of gold nanoparticles with different sizes
     A "precursor continuous-supply" strategy was developed for controllable synthesis of0.9-3.3nm Au nanoparticles with a narrow size distribution of0.1-0.2nm, using a weak reductant to slow-down the reducing rate of AuClPPh3precursor in ethanol. Time-dependent x-ray absorption and UV-Vis absorption measurements revealed that owing to the joint use of AuClPPh3and ethanol, the remnant AuClPPh3was self-supplied and the precursor concentration was maintained at a level near to its equilibrium solubility (ca1.65mmol/L) in ethanol. Hence the nucleation duration was extended that focused the initial size distribution of the Au clusters. With reaction going on to58minutes, most of AuClPPh3with a nominal Au concentration of17.86mmol/L was converted to ethanol-soluble Au clusters with the size of about1.0nm, resulting in a high-yield synthesis.
     2. Gold nanoparticles capped by different surfactants
     Gold nanoparticles passivated by different kinds of surfactants such as triphenylphosphine (PPh3), polyvinylpyrrolidone (PVP), dodecanamine (C12H27N) and dodecanethiol (C12H26S) were prepared and the interactions of Au nanoparticles with different surfactants were also studied. TEM images showed the size of all samples was about3nm and the size distribution of gold nanoparticles could be well controlled by dodecanethiol (3.1±0.1nm). The X-ray absorption near edge spectra manifested the electron transfer between Au and S atoms. For PPh3, PVP, dodecanamine and dodecanethiol covered Au nanoparticles, the atomic structure disorder of Au-Au shell gradually increased in order ranging from0.0095to0.0152A. And dodecanamine and dodecanethiol interacted with Au nanoparticles by forming Au-N or Au-S bond.
     3. The surface structure of gold nanocrystals
     To compare the surface structure of gold nanocrystals, dodecanethiol passivated gold nanocrystals (3and5nm) and "bare" gold nanocrystals (3and5nm) were prepared. Using in situ X-ray absorption fine structure (XAFS), we are able to distinguish the real surface structure information of the monodispersive sphere-shape Au nanocrystals (NCs) dispersed in hexane solution, in which the NCs are free from the influences of surfactant and polar solvent. It is demonstrated that in such a solution environment the surface Au-Au bond lengths of the naked3and5nm Au NCs are very close to the bulk value, contrary to the strong surface contraction for supported, capped or dried Au NCs. Nevertheless, for the same-sized NCs capped by a strong surfactant such as dodecanethiol, a large surface contraction of-0.10A is observed, most likely due to the stress generated by Au-S interactions..
     4. Thiol desorption and its effects on the structure of gold nanoclusters
     A solvent-exchange method was proposed to remove thiol molecules from the surface of gold nanocrystals and nanoclusters, while keeping the size and size distribution of gold nanoparticles unchanged. However, the electronic and atomic structures of gold nanoparticles experienced a significant change. It is demonstrated that for dodecanethoil-protected icosahedral Au clusters of1.1nm, solvent-exchange of ethanol by hexane leads to quick desorption of the Au-thiolate protecting layers from the surface, as indicated by XAFS. The survived Au cores then undergo a much slower energy-minimization process via recombination and structural rearrangement, resulting in the formation of distorted face-centered-cubic structured clusters. In response to the dramatically changed atomic structure, the electronic structure of the Au clusters is converted from semiconducting to metallic-like characters.
     5. Hexagonal BaTi1-xCoxO3phase stabilized by Co dopants
     The phase transition from tetragonal to hexagonal of crystalline BaTi1-xCoxO3(0.01≤x≤0.20) powders prepared by solid state reaction was studied by x-ray diffraction and x-ray absorption fine structure. At the low Co doping level of x≤0.03, the structure of the samples is tetragonal, and it is transformed gradually to a hexagonal structure upon increasing Co content to≥0.05. The detailed analysis of Co K-edge XAFS indicated unambiguously that the doped Co ions are substantially incorporated into the BaTiO3host and likely serve as a trigger in leading the structure transition.
引文
Abad A, Concepcion P, Corma A, et al.2005. A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols [J]. Angewandte Chemie International Edition, 44:4066-4069.
    Alivisatos A P.1996. Semiconductor Clusters, Nanocrystals, and Quantum Dots [J]. Science,271: 933-937.
    Bartlett P A, Bauer B, Singer S J.1978. Synthesis of water-soluble undecagold cluster compounds of potential importance in electron microscopic and other studies of biological systems [J]. Journal of the American Chemical Society,100:5085-5089.
    Bellon P, Manassero M, Sansoni M.1972. Crystal and molecular structure of tri-iodoheptakis(tri-p-fluorophenylphosphine)undecagold [J]. Journal of the Chemical Society, Dalton Transactions,1481-1487.
    Briant C E, Theobald B R C, White J W, et al.1981. Synthesis and X-ray structural characterization of the centred icosahedral gold cluster compound [Aul3(PMe2Ph)10C12](PF6)3; the realization of a theoretical prediction [J]. Journal of the Chemical Society, Chemical Communications,201-202.
    Brust M, Kiely C J.2002. Some recent advances in nanostructure preparation from gold and silver particles:a short topical review [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,202:175-186.
    Brust M, Walker M, Bethell D, et al.1994. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system [J]. Journal of the Chemical Society, Chemical Communications,801-802.
    Burda C, Chen X, Narayanan R, et al.2005. Chemistry and Properties of Nanocrystals of Different Shapes [J]. Chemical Reviews,105:1025-1102.
    Chandrasekharan N, Kamat P V, Hu J, et al.2000. Dye-Capped Gold Nanoclusters:Photoinduced Morphological Changes in Gold/Rhodamine 6G Nanoassemblies [J]. The Journal of Physical Chemistry B,104:11103-11109.
    Chen J, Jiang T, Wei G, et al.1999. Electrochemical and Chemical Oxidation of Gold(Ⅰ) Thiolate Phosphine Complexes:Formation of Gold Clusters and Disulfide [J]. Journal of the American Chemical Society,121:9225-9226.
    Chen M M Y, Katz A.2002. Steady-State Fluorescence-Based Investigation of the Interaction between Protected Thiols and Gold Nanoparticles [J]. Langmuir,18:2413-2420.
    Chen W, Chen S.2009. Oxygen Electroreduction Catalyzed by Gold Nanoclusters:Strong Core Size Effects [J]. Angewandte Chemie International Edition,48:4386-4389.
    Corma A, Serna P.2006. Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts [J]. Science,313:332-334.
    Daniel M-C, Astruc D.2003. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chemical Reviews,104:293-346.
    Dubertret B, Calame M, Libchaber A J.2001. Single-mismatch detection using gold-quenched fluorescent oligonucleotides [J]. Nat Biotech,19:365-370.
    Dulkeith E, Morteani A C, Niedereichholz T, et al.2002. Fluorescence Quenching of Dye Molecules near Gold Nanoparticles:Radiative and Nonradiative Effects [J]. Physical Review Letters,89:203002.
    Faraday M.1857. The Bakerian Lecture:Experimental Relations of Gold (and Other Metals) to Light [J]. Philosophical Transactions of the Royal Society of London,147:145-181.
    Grubbs R B.2007. Nanoparticle assembly:Solvent-tuned structures [J]. Nat Mater,6:553-555.
    Gu T, Whitesell J K, Fox M A.2003. Energy Transfer from a Surface-Bound Arene to the Gold Core in ω-Fluorenyl-Alkane-1-Thiolate Monolayer-Protected Gold Clusters [J]. Chemistry of Materials,15:1358-1366.
    Hall K P, Theoblad B R C, Gilmour D I, et al.1982. Synthesis and structural characterization of [Au9{P(p-C6H4OMe)3}8](BF4)3; a cluster with a centred crown of gold atoms [J]. Journal of the Chemical Society, Chemical Communications,528-530.
    Haruta M.2005. Catalysis:Gold rush [J]. Nature,437:1098-1099.
    Haruta M, Kobayashi T, Sano H, et al.1987. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C [J]. Chemistry Letters,16:405-408.
    Heaven M W, Dass A, White P S, et al.2008. Crystal Structure of the Gold Nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18] [J]. Journal of the American Chemical Society,130: 3754-3755.
    Hu J, Zhang J, Liu F, et al.2001. Competitive Photochemical Reactivity in a Self-Assembled Monolayer on a Colloidal Gold Cluster [J]. Journal of the American Chemical Society,123: 1464-1470.
    Hutchings G J.1985. Vapor phase hydrochlorination of acetylene:Correlation of catalytic activity of supported metal chloride catalysts [J]. Journal of Catalysis,96:292-295.
    Hutchings G J, Haruta M.2005. A golden age of catalysis:A perspective [J]. Applied Catalysis A: General,291:2-5.
    Hwang Y-N, Jeong D H, Shin H J, et al.2002. Femtosecond Emission Studies on Gold Nanoparticles [J]. The Journal of Physical Chemistry B,106:7581-7584.
    Imahori H, Arimura M, Hanada T, et al.2000. Photoactive Three-Dimensional Monolayers: Porphyrin-Alkanethiolate-Stabilized Gold Clusters [J]. Journal of the American Chemical Society,123:335-336.
    Imahori H, Fukuzumi S.2001. Porphyrin Monolayer-Modified Gold Clusters as Photoactive Materials [J]. Advanced Materials,13:1197-1199.
    Jadzinsky P D, Calero G, Ackerson C J, et al.2007. Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 A Resolution [J]. Science,318:430-433.
    Landon P, Ferguson J, Solsona B E, et al.2005. Selective oxidation of CO in the presence of H2, H2O and CO2 via gold for use in fuel cells [J]. Chemical Communications,3385-3387.
    Logunov S L, Ahmadi T S, El-Sayed M A, et al.1997. Electron Dynamics of Passivated Gold Nanocrystals Probed by Subpicosecond Transient Absorption Spectroscopy [J]. The Journal of Physical Chemistry B,101:3713-3719.
    Lopez-Sanchez J A, Dimitratos N, Hammond C, et al.2011. Facile removal of stabilizer-ligands from supported gold nanoparticles [J]. Nature Chemistry,3:551-556.
    Makarova O V, Ostafin A E, Miyoshi H, et al.1999. Adsorption and Encapsulation of Fluorescent Probes in Nanoparticles [J]. The Journal of Physical Chemistry B,103:9080-9084.
    Melinger J S, Kleiman V D, Mcmorrow D, et al.2003. Ultrafast Dynamics of Gold-Based Nanocomposite Materials?[J]. The Journal of Physical Chemistry A,107:3424-3431.
    Mie G.1908. Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen [J]. Annalen der Physik,330:377-445.
    Mulvaney P.1996. Surface Plasmon Spectroscopy of Nanosized Metal Particles [J]. Langmuir,12: 788-800.
    Murphy C J, Gole A M, Hunyadi S E, et al.2006. One-Dimensional Colloidal Gold and Silver Nanostructures [J]. Inorganic Chemistry,45:7544-7554.
    Nath N, Chilkoti A.2001. Interfacial Phase Transition of an Environmentally Responsive Elastin Biopolymer Adsorbed on Functionalized Gold Nanoparticles Studied by Colloidal Surface Plasmon Resonance [J]. Journal of the American Chemical Society,123:8197-8202.
    Papavassiliou G C.1979. Optical properties of small inorganic and organic metal particles [J]. Progress in Solid State Chemistry,12:185-271.
    Prati L, Rossi M.1998. Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols [J]. Journal of Catalysis,176:552-560.
    Safer D, Hainfeld J, Wall J, et al.1982. Biospecific labeling with undecagold:visualization of the biotin-binding site on avidin [J]. Science,218:290-291.
    Schaaff T G, Shafigullin M N, Khoury J T, et al.1997. Isolation of Smaller Nanocrystal Au Molecules:Robust Quantum Effects in Optical Spectra [J]. The Journal of Physical Chemistry B,101:7885-7891.
    Schmid G, Pfeil R, Boese R, et al.1981. Au55[P(C6H5)3]12CI6-ein Goldcluster ungewohnlicher Groβe [J]. Chemische Berichte,114:3634-3642.
    Sermon P A, Bond G C, Wells P B.1979. Hydrogenation of alkenes over supported gold [J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,75:385-394.
    Swami A, Kumar A, Sastry M.2003. Formation of Water-Dispersible Gold Nanoparticles Using a Technique Based on Surface-Bound Interdigitated Bilayers [J]. Langmuir,19:1168-1172.
    Teles J H, Brode S, Chabanas M.1998. Cationic Gold(Ⅰ) Complexes:Highly Efficient Catalysts for the Addition of Alcohols to Alkynes [J]. Angewandte Chemie International Edition,37: 1415-1418.
    Teo B K, Shi X, Zhang H.1992. Pure gold cluster of 1:9:9:1:9:9:1 layered structure:a novel 39-metal-atom cluster [(Ph3P)14Au39C16]C12 with an interstitial gold atom in a hexagonal antiprismatic cage [J]. Journal of the American Chemical Society,114:2743-2745.
    Teo B K, Zhang H.1990. High nuclearity metal clusters:Miniature bulk of unusual structures and properties? [J]. Journal of Cluster Science,1:155-187.
    Thomas K G, Kamat P V.2000. Making Gold Nanoparticles Glow:Enhanced Emission from a Surface-Bound Fluoroprobe [J]. Journal of the American Chemical Society,122:2655-2656.
    Turkevich J, Stevenson P C, Hillier J.1951. A study of the nucleation and growth processes in the synthesis of colloidal gold [J]. Discussions of the Faraday Society,11:55-75.
    Van Der Velden J W A, Bour J J, Bosnian W P, et al.1981. Synthesis and X-ray crystal structure determination of the cationic gold cluster compound [Au8(PPh3)7](NO3)2 [J]. Journal of the Chemical Society, Chemical Communications,1218-1219.
    Vijaya Sarathy K, Narayan K S, Kim J, et al.2000. Novel fluorescence and morphological structures in gold nanoparticle-polyoctylthiophene based thin films [J]. Chemical Physics Letters,318:543-548.
    Wang T, Zhang D, Xu W, et al.2002. Preparation, Characterization, and Photophysical Properties of Alkanethiols with Pyrene Units-Capped Gold Nanoparticles:Unusual Fluorescence Enhancement for the Aged Solutions of These Gold Nanoparticles [J]. Langmuir,18: 1840-1848.
    Wilcoxon J P, Martin J E, Parsapour F, et al.1998. Photoluminescence from nanosize gold clusters [J]. The Journal of Chemical Physics,108:9137-9143.
    Xia Y, Xiong Y, Lim B, et al.2009. Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics? [J]. Angewandte Chemie International Edition,48: 60-103.
    Xia Y, Yang P, Sun Y, et al.2003. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications [J]. Advanced Materials,15:353-389.
    Xu P, Yanagi H.1999. Fluorescence Patterning in Dye-Doped Sol-Gel Films by Generation of Gold Nanoparticles [J]. Chemistry of Materials,11:2626-2628.
    Zaitoun M A, Mason W R, Lin C T.2001. Magnetic Circular Dichroism Spectra for Colloidal Gold Nanoparticles in Xerogels at 5.5 K [J]. The Journal of Physical Chemistry B,105: 6780-6784.
    Zheng N, Fan J, Stucky G D.2006. One-Step One-Phase Synthesis of Monodisperse Noble-Metallic Nanoparticles and Their Colloidal Crystals [J]. Journal of the American Chemical Society,128:6550-6551.
    Zhu M, Aikens C M, Hendrich M P, et al.2009. Reversible Switching of Magnetism in Thiolate-Protected Au25 Superatoms [J]. Journal of the American Chemical Society,131: 2490-2492.
    Zhu M, Aikens C M, Hollander F J, et al.2008. Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties [J]. Journal of the American Chemical Society,130:5883-5885.
    Zhu M, Eckenhoff W T, Pintauer T, et al.2008. Conversion of Anionic [Au25(SCH2CH2Ph)18]-Cluster to Charge Neutral Cluster via Air Oxidation [J]. The Journal of Physical Chemistry C, 112:14221-14224.
    Ankudinov A L, Ravel B, Rehr J J, et al.1998. Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure [J]. Physical Review B,58:7565-7576.
    Azaroff L V.1963. Theory of Extended Fine Structure of X-Ray Absorption Edges [J]. Reviews of Modern Physics,35:1012-1021.
    Benfatto M, Congiu-Castellano A, Daniele A, et al.2001. MXAN:a new software procedure to perform geometrical fitting of experimental XANES spectra [J]. Journal of Synchrotron Radiation,8:267-269.
    Brouder C, Alouani M, Bennemann K H.1996. Multiple-scattering theory of x-ray magnetic circular dichroism:Implementation and results for the iron K edge [J]. Physical Review B,54: 7334-7349.
    Dehmer J L, Dill D.1975. Shape Resonances in K-Shell Photoionization of Diatomic Molecules [J]. Physical Review Letters,35:213-215.
    Dent A J.2002. Development of Time-Resolved XAFS Instrumentation for Quick EXAFS and Energy-Dispersive EXAFS Measurements on Catalyst Systems [J]. Topics in Catalysis,18: 27-35.
    Fricke H.1920. The K-Characteristic Absorption Frequencies for the Chemical Elements Magnesium to Chromium [J]. Physical Review,16:202-215.
    Hertz G.1920. iiber die Absorptionsgrenzen in der<i>L-Serie [J]. Zeitschrift fur Physik A Hadrons and Nuclei,3:19-25.
    Kossel W.1920. Zum Bau der Rontgenspektren [J]. Zeitschrift fur Physik A Hadrons and Nuclei, 1:119-134.
    Kronig R D L.1932. Zur Theorie der Feinstruktur in den Rontgenabsorptionsspektren. Ⅲ [J]. Zeitschrift fur Physik A Hadrons and Nuclei,75:468-475.
    Lee P A, Pendry J B.1975. Theory of the extended x-ray absorption fine structure [J]. Physical Review B,11:2795-2811.
    Natoli C R, Benfatto M, Brouder C, et al.1990. Multichannel multiple-scattering theory with general potentials [J]. Physical Review B,42:1944-1968.
    Natoli C R, Misemer D K, Doniach S, et al.1980. First-principles calculation of x-ray absorption-edge structure in molecular clusters [J]. Physical Review A,22:1104-1108.
    Oyanagi H, Sakamoto K, Shioda R, et al.1995. Ge overlayers on Si(001) studied by surface-extended x-ray-absorption fine structure [J]. Physical Review B,52:5824-5829.
    Poiarkova A V, Rehr J J.1999. Multiple-scattering x-ray-absorption fine-structure Debye-Waller factor calculations [J]. Physical Review B,59:948-957.
    Rehr J J, Albers R C.1990. Scattering-matrix formulation of curved-wave multiple-scattering theory:Application to x-ray-absorption fine structure [J]. Physical Review B,41:8139-8149.
    Rehr J J, Albers R C.2000. Theoretical approaches to x-ray absorption fine structure [J]. Reviews of Modern Physics,72:621-654.
    Sayers D E, Stern E A, Lytle F W.1971. New Technique for Investigating Noncrystalline Structures:Fourier Analysis of the Extended X-Ray-Absorption Fine Structure [J]. Physical Review Letters,27:1204-1207.
    Schwinger J.1949. On the Classical Radiation of Accelerated Electrons [J]. Physical Review,75: 1912-1925.
    Tyson T A, Hodgson K O, Natoli C R, et al.1992. General multiple-scattering scheme for the computation and interpretation of x-ray-absorption fine structure in atomic clusters with applications to SF_{6}, GeCl_{4}, and Br_{2} molecules [J]. Physical Review B,46: 5997-6019.
    Alvarez M M, Khoury J T, Schaaff T G, et al.1997. Optical Absorption Spectra of Nanocrystal Gold Molecules [J]. The Journal of Physical Chemistry B,101:3706-3712.
    Brust M, Walker M, Bethell D, et al.1994. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system [J]. Journal of the Chemical Society, Chemical Communications,801-802.
    Chen S, Ingram R S, Hostetler M J, et al.1998. Gold Nanoelectrodes of Varied Size:Transition to Molecule-Like Charging [J]. Science,280:2098-2101.
    Christensen C H, N(?)rskov J K.2010. Green Gold Catalysis [J]. Science,327:278-279.
    Colombi Ciacchi L, Pompe W, De Vita A.2001. Initial Nucleation of Platinum Clusters after Reduction of K2PtC14 in Aqueous Solution:A First Principles Study [J]. Journal of the American Chemical Society,123:7371-7380.
    Donkers R L, Lee D, Murray R W.2004. Synthesis and Isolation of the Molecule-like Cluster Au38(PhCH2CH2S)24 [J]. Langmuir,20:1945-1952.
    Duff D G, Edwards P P, Johnson B F G.1995. Formation of a Polymer-Protected Platinum Sol: A New Understanding of the Parameters Controlling Morphology [J]. The Journal of Physical Chemistry,99:15934-15944.
    Fields-Zinna C A, Parker J F, Murray R W.2010. Mass Spectrometry of Ligand Exchange Chelation of the Nanoparticle [Au25(SCH2CH2C6H5)18]1-by CH3C6H3(SH)2 [J]. Journal of the American Chemical Society,132:17193-17198.
    Hostetler M J, Wingate J E, Zhong C-J, et al.1998. Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm:Core and Monolayer Properties as a Function of Core Size [J]. Langmuir,14:17-30.
    Hussain I, Graham S, Wang Z, et al.2005. Size-Controlled Synthesis of Near-Monodisperse Gold Nanoparticles in the 1-4 nm Range Using Polymeric Stabilizers [J]. Journal of the American Chemical Society,127:16398-16399.
    Ji X, Song X, Li J, et al.2007. Size Control of Gold Nanocrystals in Citrate Reduction:The Third Role of Citrate [J]. Journal of the American Chemical Society,129:13939-13948.
    Jin R.2010. Quantum sized, thiolate-protected gold nanoclusters [J]. Nanoscale,2:343-362.
    Jin R, Qian H, Wu Z, et al.2010. Size Focusing:A Methodology for Synthesizing Atomically Precise Gold Nanoclusters [J]. The Journal of Physical Chemistry Letters,1:2903-2910.
    Jin R, Zhu Y, Qian H.2011. Quantum-Sized Gold Nanoclusters:Bridging the Gap between Organometallics and Nanocrystals [J]. Chemistry-A European Journal,17:6584-6593.
    Lamer V K, Dinegar R H.1950. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols [J]. Journal of the American Chemical Society,72:4847-4854.
    Lee D, Donkers R L, Wang G, et al.2004. Electrochemistry and Optical Absorbance and Luminescence of Molecule-like Au38 Nanoparticles [J]. Journal of the American Chemical Society,126:6193-6199.
    Matthey D, Wang J G, Wendt S, et al.2007. Enhanced Bonding of Gold Nanoparticles on Oxidized TiO2(110) [J]. Science,315:1692-1696.
    Negishi Y, Nobusada K, Tsukuda T.2005. Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals [J]. Journal of the American Chemical Society,127:5261-5270.
    Negishi Y, Takasugi Y, Sato S, et al.2004. Magic-Numbered Aun Clusters Protected by Glutathione Monolayers (n=18,21,25,28,32,39):Isolation and Spectroscopic Characterization [J]. Journal of the American Chemical Society,126:6518-6519.
    Negishi Y, Tsukuda T.2003. One-Pot Preparation of Subnanometer-Sized Gold Clusters via Reduction and Stabilization by meso-2,3-Dimercaptosuccinic Acid [J]. Journal of the American Chemical Society,125:4046-4047.
    Park J, Joo J, Kwon S G, et al.2007. Synthesis of Monodisperse Spherical Nanocrystals [J]. Angewandte Chemie International Edition,46:4630-4660.
    Peng X, Wickham J, Alivisatos A P.1998. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ Colloidal Semiconductor Nanocrystal Growth:"Focusing" of Size Distributions [J]. Journal of the American Chemical Society,120:5343-5344.
    Pettibone J M, Hudgens J W.2010. Synthetic Approach for Tunable, Size-Selective Formation of Monodisperse, Diphosphine-Protected Gold Nanoclusters [J]. The Journal of Physical Chemistry Letters,1:2536-2540.
    Qian H, Zhu M, Andersen U N, et al.2009. Facile, Large-Scale Synthesis of Dodecanethiol-Stabilized Au38 Clusters? [J]. The Journal of Physical Chemistry A,113: 4281-4284.
    Sardar R, Shumaker-Parry J S.2011. Spectroscopic and Microscopic Investigation of Gold Nanoparticle Formation:Ligand and Temperature Effects on Rate and Particle Size [J]. Journal of the American Chemical Society,133:8179-8190.
    Schulz-Dobrick M, Sarathy K V, Jansen M.2005. Surfactant-Free Synthesis and Functionalization of Gold Nanoparticles [J]. Journal of the American Chemical Society,127:12816-12817.
    Schwerdtfeger P, Boyd P D W.1992. Role of phosphine ligands in gold cluster chemistry. Relativistic SCF calculations on Au2 and Au2(PH3)2 [J]. Inorganic Chemistry,31:327-329.
    Shichibu Y, Negishi Y, Tsukuda T, et al.2005. Large-Scale Synthesis of Thiolated Au25 Clusters via Ligand Exchange Reactions of Phosphine-Stabilized Au11 Clusters [J]. Journal of the American Chemical Society,127:13464-13465.
    Tao A R, Habas S, Yang P.2008. Shape Control of Colloidal Metal Nanocrystals [J]. Small,4: 310-325.
    Templeton A C, Wuelfing W P, Murray R W.1999. Monolayer-Protected Cluster Molecules [J]. Accounts of Chemical Research,33:27-36.
    Tsunoyama H, Sakurai H, Negishi Y, et al.2005. Size-Specific Catalytic Activity of Polymer-Stabilized Gold Nanoclusters for Aerobic Alcohol Oxidation in Water [J]. Journal of the American Chemical Society,127:9374-9375.
    Weare W W, Reed S M, Warner M G, et al.2000. Improved Synthesis of Small (dCORE≈1.5 nm) Phosphine-Stabilized Gold Nanoparticles [J]. Journal of the American Chemical Society, 122:12890-12891.
    Whetten R L, Khoury J T, Alvarez M M, et al.1996. Nanocrystal gold molecules [J]. Advanced Materials,8:428-433.
    Wu Z, Macdonald M A, Chen J, et al.2011. Kinetic Control and Thermodynamic Selection in the Synthesis of Atomically Precise Gold Nanoclusters [J]. Journal of the American Chemical Society,133:9670-9673.
    Wuelfing W P, Gross S M, Miles D T, et al.1998. Nanometer Gold Clusters Protected by Surface-Bound Monolayers of Thiolated Poly(ethylene glycol) Polymer Electrolyte [J]. Journal of the American Chemical Society,120:12696-12697.
    Xia Y, Xiong Y, Lim B, et al.2009. Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics? [J]. Angewandte Chemie International Edition,48: 60-103.
    Yao T, Sun Z, Li Y, et al.2010. Insights into Initial Kinetic Nucleation of Gold Nanocrystals [J]. Journal of the American Chemical Society,132:7696-7701.
    Zheng H, Smith R K, Jun Y-W, et al.2009. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories [J]. Science,324:1309-1312.
    Zheng N, Fan J, Stucky G D.2006. One-Step One-Phase Synthesis of Monodisperse Noble-Metallic Nanoparticles and Their Colloidal Crystals [J]. Journal of the American Chemical Society,128:6550-6551.
    Zhu M, Lanni E, Garg N, et al.2008. Kinetically Controlled, High-Yield Synthesis of Au25 Clusters [J]. Journal of the American Chemical Society,130:1138-1139.
    Alivisatos A P, Johnsson K P, Peng X, et al.1996. Organization of nanocrystal molecules' using DNA [J]. Nature,382:609-611.
    Cossaro A, Mazzarello R, Rousseau R, et al.2008. X-ray Diffraction and Computation Yield the Structure of Alkanethiols on Gold(111) [J]. Science,321:943-946.
    Daniel M-C, Astruc D.2003. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chemical Reviews,104:293-346.
    Edwards P P, Thomas J M.2007. Gold in a Metallic Divided State-From Faraday to Present-Day Nanoscience [J]. Angewandte Chemie International Edition,46:5480-5486.
    Giljohann D A, Seferos D S, Daniel W L, et al.2010. Gold Nanoparticles for Biology and Medicine [J]. Angewandte Chemie International Edition,49:3280-3294.
    Huang W J, Sun R, Tao J, et al.2008. Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction [J]. Nat Mater,7:308-313.
    Jadzinsky P D, Calero G, Ackerson C J, et al.2007. Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 A Resolution [J]. Science,318:430-433.
    Kondoh H, Iwasaki M, Shimada T, et al.2003. Adsorption of Thiolates to Singly Coordinated Sites on Au(111) Evidenced by Photoelectron Diffraction [J]. Physical Review Letters,90: 066102.
    Navrotsky A, Ma C, Lilova K, et al.2010. Nanophase Transition Metal Oxides Show Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria [J]. Science,330: 199-201.
    Pyykko P.2004. Theoretical Chemistry of Gold [J]. Angewandte Chemie International Edition,43: 4412-4456.
    Talapin D V, Lee J-S, Kovalenko M V, et al.2009. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications [J]. Chemical Reviews,110:389-458.
    Tang Y, Ouyang M.2007. Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering [J]. Nat Mater,6:754-759.
    Xiao Y, Patolsky F, Katz E, et al.2003. "Plugging into Enzymes":Nanowiring of Redox Enzymes by a Gold Nanoparticle [J]. Science,299:1877-1881.
    Yin Y, Alivisatos A P.2005. Colloidal nanocrystal synthesis and the organic-inorganic interface [J]. Nature,437:664-670.
    Zhang P, Sham T K.2003. X-Ray Studies of the Structure and Electronic Behavior of Alkanethiolate-Capped Gold Nanoparticles:The Interplay of Size and Surface Effects [J]. Physical Review Letters,90:245502.
    Aikens C M.2009. Effects of Core Distances, Solvent, Ligand, and Level of Theory on the TDDFT Optical Absorption Spectrum of the Thiolate-Protected Au25 Nanoparticle [J]. The Journal of Physical Chemistry A,113:10811-10817.
    Amendola V, Meneghetti M.2009. Size Evaluation of Gold Nanoparticles by UV-vis Spectroscopy [J]. The Journal of Physical Chemistry C,113:4277-4285.
    Antonello S, Holm A H, Instuli E, et al.2007. Molecular Electron-Transfer Properties of Au38 Clusters [J]. Journal of the American Chemical Society,129:9836-9837.
    Brinas R P, Hu M, Qian L, et al.2007. Gold Nanoparticle Size Controlled by Polymeric Au(I) Thiolate Precursor Size [J]. Journal of the American Chemical Society,130:975-982.
    Brust M, Walker M, Bethell D, et al.1994. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system [J]. Journal of the Chemical Society, Chemical Communications,801-802.
    Chaki N K, Negishi Y, Tsunoyama H, et al.2008. Ubiquitous 8 and 29 kDa Gold:Alkanethiolate Cluster Compounds:Mass-Spectrometric Determination of Molecular Formulas and Structural Implications [J]. Journal of the American Chemical Society,130:8608-8610.
    Cleveland C L, Landman U, Schaaff T G, et al.1997. Structural Evolution of Smaller Gold Nanocrystals:The Truncated Decahedral Motif [J]. Physical Review Letters,79:1873-1876.
    Crooks R M, Zhao M, Sun L, et al.2000. Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis [J]. Accounts of Chemical Research,34:181-190.
    Dai J, Li Z, Jin J, et al.2008. Study of the solvent effect on the quality of dodecanethiol self-assembled monolayers on polycrystalline gold [J]. Journal of Electroanalytical Chemistry,624:315-322.
    Debono R F, Loucks G D, Manna D D, et al.1996. Self-assembly of short and long-chain n-alkyl thiols onto gold surfaces:A real-time study using surface plasmon resonance techniques [J]. Canadian Journal of Chemistry,74:677-688.
    Fields-Zinna C A, Parker J F, Murray R W.2010. Mass Spectrometry of Ligand Exchange Chelation of the Nanoparticle [Au25(SCH2CH2C6H5)18]1-by CH3C6H3(SH)2 [J]. Journal of the American Chemical Society,132:17193-17198.
    Hakkinen H, Walter M, Gronbeck H.2006. Divide and Protect:Capping Gold Nanoclusters with Molecular Gold-Thiolate Rings [J]. The Journal of Physical Chemistry B,110:9927-9931.
    Haehner G, Woell C, Buck M, et al.1993. Investigation of intermediate steps in the self-assembly of n-alkanethiols on gold surfaces by soft x-ray spectroscopy [J]. Langmuir,9:1955-1958.
    Heaven M W, Dass A, White P S, et al.2008. Crystal Structure of the Gold Nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18] [J]. Journal of the American Chemical Society,130: 3754-3755.
    Huang J, Hemminger J C.1993. Photooxidation of thiols in self-assembled monolayers on gold [J]. Journal of the American Chemical Society,115:3342-3343.
    Hutchings G J, Brust M, Schmidbaur H.2008. Gold-an introductory perspective [J]. Chemical Society Reviews,37:
    Jadzinsky P D, Calero G, Ackerson C J, et al.2007. Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 A Resolution [J]. Science,318:430-433.
    Jiang D-E, Luo W, Tiago M L, et al.2008. In Search of a Structural Model for a Thiolate-protected Au38 Cluster [J]. The Journal of Physical Chemistry C,112: 13905-13910.
    Jiang D-E, Tiago M L, Luo W, et al.2008. The "Staple" Motif:A Key to Stability of Thiolate-Protected Gold Nanoclusters [J]. Journal of the American Chemical Society,130: 2777-2779.
    Jung L S, Campbell C T.2000. Sticking Probabilities in Adsorption from Liquid Solutions: Alkylthiols on Gold [J]. Physical Review Letters,84:5164-5167.
    Lee D, Donkers R L, Wang G, et al.2004. Electrochemistry and Optical Absorbance and Luminescence of Molecule-like Au38 Nanoparticles [J]. Journal of the American Chemical Society,126:6193-6199.
    Li X, Guo J, Asong J, et al.2011. Multifunctional Surface Modification of Gold-Stabilized Nanoparticles by Bioorthogonal Reactions [J]. Journal of the American Chemical Society, 133:11147-11153.
    Lopez-Sanchez J A, Dimitratos N, Hammond C, et al.2011. Facile removal of stabilizer-ligands from supported gold nanoparticles [J]. Nat Chem,3:551-556.
    Lopez-Sanchez J A, Dimitratos N, Hammond C, et al.2011. Facile removal of stabilizer-ligands from supported gold nanoparticles [J]. Nature Chemistry,3:551-556.
    Macdonald M A, Chevrier D M, Zhang P, et al.2011. The Structure and Bonding of Au25(SR)18 Nanoclusters from EXAFS:The Interplay of Metallic and Molecular Behavior [J]. The Journal of Physical Chemistry C,115:15282-15287.
    Macdonald M A, Chevrier D M, Zhang P, et al.2011. The Structure and Bonding of Au(25)(SR)(18) Nanoclusters from EXAFS:The Interplay of Metallic and Molecular Behavior [J]. Journal of Physical Chemistry C,115:15282-15287.
    Negishi Y, Takasugi Y, Sato S, et al.2004. Magic-Numbered Aun Clusters Protected by Glutathione Monolayers (n=18,21,25,28,32,39):Isolation and Spectroscopic Characterization [J]. Journal of the American Chemical Society,126:6518-6519.
    Ohyama J, Teramura K, Higuchi Y, et al.2011. An in situ quick XAFS spectroscopy study on the formation mechanism of small gold nanoparticles supported by porphyrin-cored tetradentate passivants [J]. Physical Chemistry Chemical Physics,13:
    Pei Y, Gao Y, Zeng X C.2008. Structural Prediction of Thiolate-Protected Au38:A Face-Fused Bi-icosahedral Au Core [J]. Journal of the American Chemical Society,130:7830-7832.
    Pundlik S S, Kalyanaraman K, Waghmare U V.2011. First-Principles Investigation of the Atomic and Electronic Structure and Magnetic Moments in Gold Nanoclusters [J]. The Journal of Physical Chemistry C,115:3809-3820.
    Qian H, Eckenhoff W T, Zhu Y, et al.2010. Total Structure Determination of Thiolate-Protected Au38 Nanoparticles [J]. Journal of the American Chemical Society,132:8280-8281.
    Quinn B M, Kontturi K.2004. Reductive Desorption of Thiolate from Monolayer Protected Gold Clusters [J]. Journal of the American Chemical Society,126:7168-7169.
    Ron H, Matlis S, Rubinstein I.1998. Self-Assembled Monolayers on Oxidized Metals.2. Gold Surface Oxidative Pretreatment, Monolayer Properties, and Depression Formation [J]. Langmuir,14:1116-1121.
    Sandhyarani N, Pradeep T.2003. Current understanding of the structure, phase transitions and dynamics of self-assembled monolayers on two- and three-dimensional surfaces [J]. International Reviews in Physical Chemistry,22:221-262.
    Shepherd J L, Kell A, Chung E, et al.2004. Selective Reductive Desorption of a SAM-Coated Gold Electrode Revealed Using Fluorescence Microscopy [J]. Journal of the American Chemical Society,126:8329-8335.
    Stoeva S, Klabunde K J, Sorensen C M, et al.2002. Gram-Scale Synthesis of Monodisperse Gold Colloids by the Solvated Metal Atom Dispersion Method and Digestive Ripening and Their Organization into Two- and Three-Dimensional Structures [J]. Journal of the American Chemical Society,124:2305-2311.
    Tian D, Zhao J.2008. Competition among fcc-like, double-layered flat, tubular cage, and close-packed structural motifs for medium-sized Au-n (n=21-28) clusters [J]. Journal of Physical Chemistry A,112:3141-3144.
    Toikkanen O, Carlsson S, Dass A, et al.2009. Solvent-Dependent Stability of Monolayer-Protected Au38 Clusters [J]. The Journal of Physical Chemistry Letters,1:32-37.
    Tsunoyama H, Nickut P, Negishi Y, et al.2007. Formation of Alkanethiolate-Protected Gold Clusters with Unprecedented Core Sizes in the Thiolation of Polymer-Stabilized Gold Clusters [J]. The Journal of Physical Chemistry C,111:4153-4158.
    Underwood S, Mulvaney P.1994. Effect of the Solution Refractive Index on the Color of Gold Colloids [J]. Langmuir,10:3427-3430.
    Walker C H, St. John J V, Wisian-Neilson P.2001. Synthesis and Size Control of Gold Nanoparticles Stabilized by Poly(methylphenylphosphazene) [J]. Journal of the American Chemical Society,123:3846-3847.
    Zhu M, Aikens C M, Hollander F J, et al.2008. Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties [J]. Journal of the American Chemical Society,130:5883-5885.
    Zhu Y, Qian H, Zhu M, et al.2010. Thiolate-Protected Aun Nanoclusters as Catalysts for Selective Oxidation and Hydrogenation Processes [J]. Advanced Materials,22:1915-1920.
    Blochl P E.1994. Projector augmented-wave method [J]. Physical Review B,50:17953-17979.
    C. Sinclair D, M. S. Skakle J, D. Morrison F, et al.1999. Structure and electrical properties of oxygen-deficient hexagonal BaTiO3 [J]. Journal of Materials Chemistry,9:1327-1331.
    Chan N H, Sharma R K, Smyth D M.1982. Nonstoichiometry in Acceptor-Doped BaTiO3 [J]. Journal of the American Ceramic Society,65:167-170.
    Chan N H, Sharma R K, Smyth D M.1981. Nonstoichiometry in Undoped BaTiO3 [J]. Journal of the American Ceramic Society,64:556-562.
    Dickson J G, Katz L, Ward R.1961. Compounds with the Hexagonal Barium Titanate Structurel,2 [J]. Journal of the American Chemical Society,83:3026-3029.
    Feteira A, Keith G M, Rampling M J, et al.2002. Synthesis and characterisation of Ga-doped hexagonal BaTiO3 [J]. Crystal Engineering,5:439-448.
    Jayanthi S, Kutty T.2008. Dielectric properties of 3d transition metal substituted BaTiO<sub>3</sub> ceramics containing the hexagonal phase formation [J]. Journal of Materials Science:Materials in Electronics,19:615-626.
    Kolen'ko Y V, Kovnir K A, Neira I S, et al.2007. A Novel, Controlled, and High-Yield Solvothermal Drying Route to Nanosized Barium Titanate Powders [J]. The Journal of Physical Chemistry C,111:7306-7318.
    Kolodiazhnyi T, Belik A A, Wimbush S C, et al.2008. Electrical and magnetic properties of hexagonal BaTiO3-delta [J]. Physical Review B,77:075103.
    Kresse G, Furthmuller J.1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B,54:11169-11186.
    Langhammer H T, Muller T, Felgner K-H, et al.2000. Crystal Structure and Related Properties of Manganese-Doped Barium Titanate Ceramics [J]. Journal of the American Ceramic Society, 83:605-611.
    Langhammer H T, Muller T, Bottcher R, et al.2003. Crystal structure and related properties of copper-doped barium titanate ceramics [J]. Solid State Sciences,5:965-971.
    Langhammer H T, Muller T, Bottcher R, et al.2008. Structural and optical properties of chromium-doped hexagonal barium titanate ceramics [J]. Journal of Physics-Condensed Matter,20:085206.
    Lee J S, Khim Z G, Park Y D, et al.2003. Magnetic properties of Co- and Mn-implanted BaTiO3, SrTiO3 and KTaO3 [J]. Solid-State Electronics,47:2225-2230.
    Lee T, Aksay I A.2001. Hierarchical Structure-Ferroelectricity Relationships of Barium Titanate Particles [J]. Crystal Growth & Design,1:401-419.
    Perdew J P, Wang Y.1992. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B,45:13244-13249.
    Ray S, Mahadevan P, Mandal S, et al.2008. High temperature ferromagnetism in single crystalline dilute Fe-doped BaTiO3 [J]. Physical Review B,77:104416.
    Ren F, Ishida S, Mineta S.1994. Effect of manganese addition on phase stability of hexagonal BaTiO3 [J]. journal of the Ceramic society of Japan,102:105-107.
    Roberts S.1947. Dielectric and Piezoelectric Properties of Barium Titanate [J]. Physical Review, 71:890-895.
    Yang L, Mccabe E E, Sinclair D C, et al.2009. Synthesis, structure and properties of the hexagonal perovskite, h-BaTi/sub 1-x/HO/sub x/O/sub 3-x/2 [J]. Journal of Materials Chemistry,19:5201-5206.
    Heaven M W, Dass A, White P S, et al.2008. Crystal Structure of the Gold Nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18] [J]. Journal of the American Chemical Society, 130:3754-3755.
    Jadzinsky P D, Calero G, Ackerson C J, et al.2007. Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 A Resolution [J]. Science,318:430-433.
    Jiang D-E, Tiago M L, Luo W, et al.2008. The "Staple" Motif:A Key to Stability of Thiolate-Protected Gold Nanoclusters [J]. Journal of the American Chemical Society,130: 2777-2779.
    Pei Y, Gao Y, Zeng X C.2008. Structural Prediction of Thiolate-Protected Au38:A Face-Fused Bi-icosahedral Au Core [J]. Journal of the American Chemical Society,130:7830-7832.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700