用户名: 密码: 验证码:
嵌段共聚物在稀溶液中多级自组装行为的计算机模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用粗粒化分子动力学(CGMD)方法,对嵌段共聚物的多级自组装行为进行模拟研究。首先研究了嵌段共聚物在不良溶剂中自组装形成具有良好对称性的纳米补丁粒子,并进一步利用不同交联度的补丁粒子在选择性溶剂中自组装形成三维网络结构及双连续膜结构,另外我们还研究了具有不同拓扑结构的两亲性嵌段共聚物在选择性溶剂中自组装形成花状胶束、桥状胶束、核壳状胶束等结构的过程。
     我们从一条嵌段共聚物链出发,提出一种简单且准确的制备补丁粒子的方法,这个方法可以克服目前“由上而下”(top-down)加工补丁粒子方法的限制。我们所得到的补丁粒子的尺寸在7-17纳米之间,并且具有良好且可控的对称性,例如带有一个补丁(具有C_(∞v)对称性)、二个补丁(具有D_(∞h)对称性)、三个补丁(具有D_(3h)对称性)和四个补丁(具有T_d对称性)的粒子等。本工作建议了一种“由下而上”(bottom-up)通过控制链长及溶液性质,一步实现制备具有可控对称性纳米补丁粒子的方法。
     我们进一步研究了双补丁粒子在选择性溶剂的自组装行为。补丁粒子的刚性和形变性是影响其自组装结构的重要因素,而其刚性和形变性可以通过改变补丁粒子内部的交联度进行控制。当溶剂对于补丁部分为不良溶剂而对于主体部分为良溶剂时,较高交联度下会形成三维网络结构,较低交联度下会形成短的线状结构;当溶剂对于补丁部分为良溶剂而对于主体部分为不良溶剂时,较低交联度下会形成双连续膜结构,较高交联度下会形成彼此连接的聚集体结构。
     此外,我们还研究具有不同拓扑结构的两亲性嵌段共聚物在选择性溶剂中的自组装情况。对于线型链,主要研究了溶剂条件以及链的刚性对具有不同组分比例的短链嵌段共聚物自组装结构的影响。当溶剂对于疏水嵌段为不良溶剂时,可以观察到花状胶束的出现;当链刚性比较大时,更倾向于形成桥状胶束;疏水嵌段的组分比例比较大时,我们更容易得到更多有序的自组装结构。同时我们也研究了链长对柔性嵌段共聚物链自组装的影响,随着链长的增加我们可以很容易看到单花状胶束到多花状胶束的转化。这些胶束可以作为预自组装结构,进而通过进一步自组装得到更多的多级自组装结构。对于接枝链,除了上述内容,我们还研究了改变溶剂选择性对自组装结构的影响,并得到了核壳状胶束和束状结构等。
We study the hierarchical self-assembly of multiblock copolymer viacoarse-grained molecular dynamics (CGMD) simulations. Well-defined patchynanoparticles are obtained by the self-assembly of single multiblock copolymerchain in solvent bad for both components. Three-dimensional network andbicontinuous membrane structures are observed for two-patch particles withdifferent cross-linking densities in selective solvent. We also study theself-assembly of an amphiphilic multiblock copolymer with different topologiesand observe the formation of flower-like, bridge, core-shell micelles, and so on.
     By using computer simulations, we propose a simple and rationalbottom-up method, which has great potential to overcome the size limitationsand processing restrictions of the current "top-down" processes, to fabricate7–17nm patchy particles via self-assembly of a multiblock copolymer in onestep by simply controlling the chain length and solvent properties. The patchyparticles possess controllable patch symmetries: We observe, such as one-patchparticle with C_(∞v) symmetry, two-patch particle with D_(∞h) symmetry,three-patch particle with D_(3h) symmetry, and four-patch particle with T_dsymmetry.
     The influence of deformability of patchy particles on their self-assemblybehavior is studied. The softness and the deformability of the patchy particlescan be controlled by varying the cross-linking densities in different parts of theparticles. The patchy particles in a solvent that is bad for patches but good forthe matrix form three-dimensional network structures at relatively highcross-linking densities, and form short thread-like structures for cross-linkingdensities are relatively low. For patchy particles in a solvent that is good forpatches but bad for the matrix, bicontinuous membrane structures are obtainedat relatively low cross-linking densities, and inter-connected clusters can be observed when cross-linking densities are relatively high.
     We study the influence of solvent condition and the chain backbonestiffness of amphiphilic multiblock copolymer with different topologies inselective solvent on their self-assembly structures. For linear chain, variousinteresting structures, such as flower micelles and bridge structures are observed.In general, stronger attractive interactions between hydrophobic beads arebenefit to form flower micelles, while semi-flexible chain is prone to formbridge structures, and high component ratio for the hydrophobic beads favorslarge structural region in phase diagram. A single to multiflower transitionhappens with increasing the chain length, while well-defined homogeneousmulticompartment wormlike micelles are obtained from the pre-assemblystructure of the flower micelles in solvent bad for both components. For graftedchain, core-shell micelles and bunchy-like structures can be observed when wechange the selectivity of the solvent.
引文
[1]杨小震.高分子科学的今天与明天:高分子的计算机模拟[M].北京:化学工业出版社,1994.
    [2]李泽生,吕中元.计算机模拟方法及其在物理化学中的应用[G]//梁文平,杨俊林,陈拥军, et al.新世纪的物理化学——学科前沿与展望.北京:科学出版社,2004.
    [3]张舒,褚艳利. GPU高性能运算之CUDA[M].北京:中国水利水电出版社,2009.
    [4]邱枫.嵌段高分子微相分离理论[G]//江明,艾森伯格A,刘国军, et al.大分子自组装.北京:科学出版社,2006.
    [5]梁好均.嵌段高分子在稀溶液中的自组装[G]//江明,艾森伯格A,刘国军, et al.大分子自组装.北京:科学出版社,2006.
    [6] R SLER A, VANDERMEULEN G W., KLOK H-A. Advanced drugdelivery devices via self-assembly of amphiphilic block copolymers[J].Adv. Drug Deliv. Rev.,2001,53(1):95–108.
    [7] HO K M, LI W Y, WONG C H, et al. Amphiphilic polymeric particles withcore–shell nanostructures: emulsion-based syntheses and potentialapplications[J]. Colloid. Polym. Sci.,2010,288(16-17):1503–1523.
    [8] JIANG S, CHEN Q, TRIPATHY M, et al. Janus Particle Synthesis andAssembly[J]. Adv. Mater.,2010,22(10):1060–1071.
    [9] ZHANG Z, GLOTZER S C. Self-Assembly of Patchy Particles[J]. NanoLett.,2004,4(8):1407–1413.
    [10] GLOTZER S C, SOLOMON M J. Anisotropy of building blocks and theirassembly into complex structures[J]. Nat. Mater.,2007,6(7):557–562.
    [11] PAWAR A B, KRETZSCHMAR I. Fabrication, Assembly, and Applicationof Patchy Particles[J]. Macromol. Rapid Comm.,2010,31(2):150–168.
    [12] BIANCHI E, BLAAK R, LIKOS C N. Patchy colloids: state of the art andperspectives[J]. Phys. Chem. Chem. Phys.,2011,13(14):6397–6410.
    [13] HAILE J M. Molecular Dynamics Simulation: Elementary Methods[M].Hoboken: Wiley InterScience,1997.
    [14] ALLEN M P, TILDESLEY D J. Computer Simulation of Liquids[M]. NewYork: Oxford Univ. Press,1987.
    [15] KARPLUS M, MCCAMMON J A. Molecular dynamics simulations ofbiomolecules[J]. Nat. Struct. Mol. Biol.,2002,9(9):646–652.
    [16] SHANKAR R. Principles of Quantum Mechanics[M]. New York: SpringerPublishing,1994.
    [17] MANDL F. Statistical Physics[M]. Hoboken: Wiley,1988.
    [18] ARKHIPOV A S. Coarse-grained molecular dynamics simulations ofmacromolecular complexes[M]. Ann Arbor: ProQuest, UMI DissertationPublishing,2011.
    [19] LENNARD-JONES J E. Cohesion[J]. Proc. Phys. Soc.,1931,43(5):461–482.
    [20] SLATER G W, HOLM C, CHUBYNSKY M V, et al. Modeling theseparation of macromolecules: a review of current computer simulationmethods[J]. Electrophoresis,2009,30(5):792–818.
    [21] WEEKS J D, CHANDLER D, ANDERSEN H C. Role of RepulsiveForces in Determining the Equilibrium Structure of Simple Liquids[J]. J.Chem. Phys.,1971,54(12):5237–5247.
    [22] ANDERSON J A, TRAVESSET A. Coarse-Grained Simulations of Gels ofNonionic Multiblock Copolymers with Hydrophobic Groups[J].Macromolecules,2006,39(15):5143–5151.
    [23] FLORY P J. Thermodynamics of High Polymer Solutions[J]. J. Chem.Phys.,1942,10(1):51–61.
    [24] RUBINSTEIN M, COLBY R H. Polymer Physics[M]. New York: OxfordUniv. Press,2003.
    [25] ALKAUSKAS A, BARATOFF A, BRUDER C. Gaussian Form ofEffective Core Potential and Response Function Basis Set Derived fromTroullier Martins Pseudopotential: Results for Ag and Au[J]. J. Phys.Chem. A,2004,108(33):6863–6868.
    [26] GREST G S, KREMER K. Molecular dynamics simulation for polymers inthe presence of a heat bath[J]. Phys. Rev. A,1986,33(5):3628–3631.
    [27] ISLAM M A. Einstein–Smoluchowski Diffusion Equation: A Discussion[J].Physica Scripta,2004,70(2-3):120–125.
    [28] LEMONS D S. Paul Langevin’s1908paper “On the Theory of BrownianMotion”[J]. Am. J. Phys.,1997,65(11):1079.
    [29] MOUSSAVI-BAYGI R, JAMALI Y, KARIMI R, et al. BrownianDynamics Simulation of Nucleocytoplasmic Transport: A Coarse-GrainedModel for the Functional State of the Nuclear Pore Complex[J]. PLoSComput Biol,2011,7(6): e1002049.
    [30] STRATING P. Brownian dynamics simulation of a hard-spheresuspension[J]. Physical Review E,1999,59(2):2175–2187.
    [31] HOOGERBRUGGE P J, KOELMAN J M V A. Simulating MicroscopicHydrodynamic Phenomena with Dissipative Particle Dynamics[J].Europhysics Letters (EPL),1992,19(3):155–160.
    [32] KOELMAN J M V A, HOOGERBRUGGE P J. Dynamic Simulations ofHard-Sphere Suspensions Under Steady Shear[J]. Europhysics Letters(EPL),1993,21(3):363–368.
    [33] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging thegap between atomistic and mesoscopic simulation[J]. The Journal ofChemical Physics,1997,107(11):4423–4435.
    [34] ESPA OL P, WARREN P. Statistical Mechanics of Dissipative ParticleDynamics[J]. Europhysics Letters (EPL),1995,30(4):191–196.
    [35] PAGONABARRAGA I, HAGEN M H J, FRENKEL D. Self-consistentdissipative particle dynamics algorithm[J]. Europhysics Letters (EPL),1998,42(4):377–382.
    [36] NOVIK K E, COVENEY P V. Finite-difference methods for simulationmodels incorporating nonconservative forces[J]. The Journal of ChemicalPhysics,1998,109(18):7667–7677.
    [37] NIKUNEN P, KARTTUNEN M, VATTULAINEN I. How would youintegrate the equations of motion in dissipative particle dynamicssimulations?[J]. Computer Physics Communications,2003,153(3):407–423.
    [38] SHARDLOW T. Splitting for Dissipative Particle Dynamics[J]. SIAM J.Sci. Comput.,2002,24(4):1267–1282.
    [39] STRANG G. On the Construction and Comparison of DifferenceSchemes[J]. SIAM Journal on Numerical Analysis,1968,5(3):506–517.
    [40] SCHNEIDER T, STOLL E. Molecular-dynamics study of athree-dimensional one-component model for distortive phase transitions[J].Physical Review B,1978,17(3):1302–1322.
    [41] KADANOFF L P. Statistical Physics: Statics, Dynamics andRemormalization[M]. World Scientific,2000.
    [42] RISKEN H. The Fokker-Planck Equation[M]. Berlin: Springer-Verlag,1984.
    [43] GROOT R D, RABONE K L. Mesoscopic simulation of cell membranedamage, morphology change and rupture by nonionic surfactants.[J].Biophysical Journal,2001,81(2):725–736.
    [44] BRADLEY M, ROWE J. Cluster formation of Janus polymer microgels[J].Soft Matter,2009,5(16):3114–3119.
    [45] YETHIRAJ A, BLAADEREN A van. A colloidal model system with aninteraction tunable from hard sphere to soft and dipolar[J]. Nature,2003,421(6922):513–517.
    [46] LEUNISSEN M E, CHRISTOVA C G, HYNNINEN A-P, et al. Ioniccolloidal crystals of oppositely charged particles[J]. Nature,2005,437(7056):235–240.
    [47] OVARLEZ G, BARRAL Q, COUSSOT P. Three-dimensional jamming andflows of soft glassy materials[J]. Nat. Mater.,2010,9(2):115–119.
    [48] YOSHIDA M, LAHANN J. Smart Nanomaterials[J]. ACS Nano,2008,2(6):1101–1107.
    [49] GOLESTANIAN R, LIVERPOOL T B, AJDARI A. Propulsion of aMolecular Machine by Asymmetric Distribution of Reaction Products[J].Phys. Rev. Lett.,2005,94(22):220801.
    [50] CóRDOVA-FIGUEROA U M, BRADY J F. Osmotic Propulsion: TheOsmotic Motor[J]. Phys. Rev. Lett.,2008,100(15):158303.
    [51] WALTHER A, MüLLER A H E. Janus particles[J]. Soft Matter,2008,4(4):663–668.
    [52] DU J, O’REILLY R K. Anisotropic particles with patchy,multicompartment and Janus architectures: preparation and application[J].Chem. Soc. Rev.,2011,40(5):2402–2416.
    [53] PERRO A, MEUNIER F, SCHMITT V, et al. Production of largequantities of “Janus” nanoparticles using wax-in-water emulsions[J].Colloids Surf. A,2009,332(1):57–62.
    [54] TAKAHARA Y K, IKEDA S, ISHINO S, et al. Asymmetrically ModifiedSilica Particles: A Simple Particulate Surfactant for Stabilization of OilDroplets in Water[J]. J. Am. Chem. Soc.,2005,127(17):6271–6275.
    [55] B KER A, HE J, EMRICK T, et al. Self-assembly of nanoparticles atinterfaces[J]. Soft Matter,2007,3(10):1231–1248.
    [56] CUI J-Q, KRETZSCHMAR I. Surface-Anisotropic Polystyrene Spheresby Electroless Deposition[J]. Langmuir,2006,22(20):8281–8284.
    [57] CHO Y-S, YI G-R, LIM J-M, et al. Self-Organization of BidisperseColloids in Water Droplets[J]. J. Am. Chem. Soc.,2005,127(45):15968–15975.
    [58] KRAFT D J, GROENEWOLD J, KEGEL W K. Colloidal molecules withwell-controlled bond angles[J]. Soft Matter,2009,5(20):3823–3826.
    [59] SNYDER C E, ONG M, VELEGOL D. In-solution assembly of colloidalwater[J]. Soft Matter,2009,5(6):1263–1268.
    [60] KRAFT D J, VLUG W S, VAN KATS C M, et al. Self-Assembly ofColloids with Liquid Protrusions[J]. J. Am. Chem. Soc.,2009,131(3):1182–1186.
    [61] YI G‐R, MANOHARAN V N, MICHEL E, et al. Colloidal Clusters ofSilica or Polymer Microspheres[J]. Adv. Mater.,2004,16(14):1204–1208.
    [62] MANOHARAN V N, ELSESSER M T, PINE D J. Dense Packing andSymmetry in Small Clusters of Microspheres[J]. Science,2003,301(5632):483–487.
    [63] SNYDER C E, YAKE A M, FEICK J D, et al. Nanoscale Functionalizationand Site-Specific Assembly of Colloids by Particle Lithography[J].Langmuir,2005,21(11):4813–4815.
    [64] YAKE A M, SNYDER C E, VELEGOL D. Site-Specific Functionalizationon Individual Colloids: Size Control, Stability, and Multilayers[J].Langmuir,2007,23(17):9069–9075.
    [65] PAWAR A B, KRETZSCHMAR I. Multifunctional Patchy Particles byGlancing Angle Deposition[J]. Langmuir,2009,25(16):9057–9063.
    [66] PAWAR A B, KRETZSCHMAR I. Patchy Particles by Glancing AngleDeposition[J]. Langmuir,2008,24(2):355–358.
    [67] ZHANG G, WANG D, M HWALD H. Decoration of Microspheres withGold Nanodots—Giving Colloidal Spheres Valences[J]. Angew. Chem. Int.Ed.,2005,44(47):7767–7770.
    [68] HAYNES C L, VAN DUYNE R P. Nanosphere Lithography: A VersatileNanofabrication Tool for Studies of Size-Dependent NanoparticleOptics[J]. J. Phys. Chem. B,2001,105(24):5599–5611.
    [69] ROH K-H, MARTIN D C, LAHANN J. Triphasic Nanocolloids[J]. J. Am.Chem. Soc.,2006,128(21):6796–6797.
    [70] NIE Z, LI W, SEO M, et al. Janus and Ternary Particles Generated byMicrofluidic Synthesis: Design, Synthesis, and Self-Assembly[J]. J. Am.Chem. Soc.,2006,128(29):9408–9412.
    [71] LIKOS C N, BLAAK R, WYNVEEN A. Computer simulations ofpolyelectrolyte stars and brushes[J]. J. Phys.: Condens. Matter,2008,20(49):494221.
    [72] CHEN T, LAMM M H, GLOTZER S C. Biomolecule-directed assemblyof nanoscale building blocks studied via lattice Monte Carlo simulation[J].J. Chem. Phys.,2004,121(8):3919–3924.
    [73] COREZZI S, DE MICHELE C, ZACCARELLI E, et al. A moleculardynamics study of chemical gelation in a patchy particle model[J]. SoftMatter,2008,4(6):1173.
    [74] SRINIVAS G, PITERA J W. Soft Patchy Nanoparticles fromSolution-Phase Self-Assembly of Binary Diblock Copolymers[J]. NanoLett.,2008,8(2):611–618.
    [75] IACOVELLA C R, GLOTZER S C. Phase behavior of ditetherednanospheres[J]. Soft Matter,2009,5(22):4492–4498.
    [76] ZHANG Z, KEYS A S, CHEN T, et al. Self-Assembly of Patchy Particlesinto Diamond Structures through Molecular Mimicry[J]. Langmuir,2005,21(25):11547–11551.
    [77] GLOTZER S C, HORSCH M A, IACOVELLA C R, et al. Self-assemblyof anisotropic tethered nanoparticle shape amphiphiles[J]. Curr. Opin.Colloid Interface Sci.,2005,10(5-6):287–295.
    [78] SCIORTINO F, GIACOMETTI A, PASTORE G. A numerical study ofone-patch colloidal particles: from square-well to Janus[J]. Phys. Chem.Chem. Phys.,2010,12(38):11869–11877.
    [79] DE MICHELE C, GABRIELLI S, TARTAGLIA P, et al. Dynamics in thePresence of Attractive Patchy Interactions[J]. J. Phys. Chem. B,2006,110(15):8064–8079.
    [80] FANTONI R, GIACOMETTI A, SCIORTINO F, et al. Cluster theory ofJanus particles[J]. Soft Matter,2011,7(6):2419–2427.
    [81] BIANCHI E, LARGO J, TARTAGLIA P, et al. Phase Diagram of PatchyColloids: Towards Empty Liquids[J]. Phys. Rev. Lett.,2006,97(16):168301.
    [82] BIANCHI E, TARTAGLIA P, ZACCARELLI E, et al. Theoretical andnumerical study of the phase diagram of patchy colloids: Ordered anddisordered patch arrangements[J]. J. Chem. Phys.,2008,128(14):144504.
    [83] SCIORTINO F, BIANCHI E, DOUGLAS J F, et al. Self-assembly ofpatchy particles into polymer chains: A parameter-free comparisonbetween Wertheim theory and Monte Carlo simulation[J]. J. Chem. Phys.,2007,126(19):194903.
    [84] TAVARES J M, TEIXEIRA P I C, TELO DA GAMA M M. Criticality ofcolloids with distinct interaction patches: The limits of linear chains,hyperbranched polymers, and dimers[J]. Phys. Rev. E,2009,80(2):021506.
    [85] LIU H, KUMAR S K, SCIORTINO F. Vapor-liquid coexistence of patchymodels: Relevance to protein phase behavior[J]. J. Chem. Phys.,2007,127(8):084902.
    [86] ROMANO F, TARTAGLIA P, SCIORTINO F. Gas–liquid phasecoexistence in a tetrahedral patchy particle model[J]. J. Phys.: Condens.Matter,2007,19(32):322101.
    [87] G GELEIN C, N GELE G, TUINIER R, et al. A simple patchy colloidmodel for the phase behavior of lysozyme dispersions[J]. J. Chem. Phys.,2008,129(8):085102.
    [88] WILBER A W, DOYE J P K, LOUIS A A, et al. Reversible self-assemblyof patchy particles into monodisperse icosahedral clusters[J]. J. Chem.Phys.,2007,127:085106.
    [89] VILLAR G, WILBER A W, WILLIAMSON A J, et al. Self-Assembly andEvolution of Homomeric Protein Complexes[J]. Phys. Rev. Lett.,2009,102(11):118106.
    [90] DOYE J P K, LOUIS A A, LIN I-C, et al. Controlling crystallization andits absence: proteins, colloids and patchy models[J]. Phys. Chem. Chem.Phys.,2007,9(18):2197–2205.
    [91] NOYA E G, VEGA C, DOYE J P K, et al. Phase diagram of modelanisotropic particles with octahedral symmetry[J]. J. Chem. Phys.,2007,127(5):054501.
    [92] WILLIAMSON A J, WILBER A W, DOYE J P K, et al. Templatedself-assembly of patchy particles[J]. Soft Matter,2011,7(7):3423–3431.
    [93] HOLMES R M, WILLIAMS D R M. Single Chain Asymmetric BlockCopolymers in Poor Solvents. Candidates for Patchy Colloids[J].Macromolecules,2011,44(15):6172–6181.
    [94] YU B, LI B, JIN Q, et al. Self-Assembly of Symmetric DiblockCopolymers Confined in Spherical Nanopores[J]. Macromolecules,2007,40(25):9133–9142.
    [95] LEWANDOWSKI K, BANASZAK M. Collapse-driven self-assembly ofmultiblock chains: A Monte Carlooff-lattice study[J]. J. Non-Cryst. Solids,2009,355(24-27):1289–1294.
    [96] PARSONS D, WILLIAMS D. Single Chains of Block Copolymers in PoorSolvents: Handshake, Spiral, and Lamellar Globules Formed by GeometricFrustration[J]. Phys. Rev. Lett.,2007,99(22):228302.
    [97] THEODORAKIS P E, FYTAS N G. Phase behavior of symmetric linearmultiblock copolymers[J]. Europhys. Lett.,2011,93(4):43001.
    [98] WU C, XIE Z, ZHANG G, et al. Self-assembly assisted polymerization(SAAP): approaching long multi-block copolymers with an ordered chainsequence and controllable block length[J]. Chem. Commun.,2002(23):2898–2899.
    [99] CHANDLER D. Interfaces and the driving force of hydrophobicassembly[J]. Nature,2005,437(7059):640–647.
    [100] HUANG D M, GEISSLER P L, CHANDLER D. Scaling ofHydrophobic Solvation Free Energies [J]. J. Phys. Chem. B,2001,105(28):6704–6709.
    [101] FATHALLA M, NEUBERGER A, LI S-C, et al. StraightforwardSelf-Assembly of Porphyrin Nanowires in Water: HarnessingAdamantane/β-Cyclodextrin Interactions[J]. J. Am. Chem. Soc.,2010,132(29):9966–9967.
    [102] LUTZ J-F, B RNER H G, WEICHENHAN K. Combining ATRP and“Click” Chemistry: a Promising Platform toward FunctionalBiocompatible Polymers and Polymer Bioconjugates[J].Macromolecules,2006,39(19):6376–6383.
    [103] VOGT A P, SUMERLIN B S. An Efficient Route to Macromonomers viaATRP and Click Chemistry[J]. Macromolecules,2006,39(16):5286–5292.
    [104] DENG G, MA D, XU Z. Synthesis of ABC-type miktoarm star polymersby “click” chemistry, ATRP and ROP[J]. Eur. Polym. J.,2007,43(4):1179–1187.
    [105] DE GRAAF A J, MASTROBATTISTA E, VAN NOSTRUM C F, et al.ATRP, subsequent azide substitution and “click” chemistry: threereactions using one catalyst in one pot[J]. Chem. Commun.,2011,47(24):6972.
    [106] ANDERSON J A, LORENZ C D, TRAVESSET A. General purposemolecular dynamics simulations fully implemented on graphicsprocessing units[J]. J. Comput. Phys.,2008,227(10):5342–5359.
    [107] LI I T S, WALKER G C. Interfacial Free Energy Governs SinglePolystyrene Chain Collapse in Water and Aqueous Solutions[J]. J. Am.Chem. Soc.,2010,132(18):6530–6540.
    [108] CARTER R L. Molecular Symmetry and Group Theory[M]. Hoboken:Wiley,1997.
    [109] ZHOU T, CHEN S B. Monte Carlo Simulations of Dendrimer PolymerConjugates[J]. Macromolecules,2005,38(20):8554–8561.
    [110] LIN C M, CHEN Y Z, SHENG Y J, et al. Effects of macromoleculararchitecture on the micellization behavior of complex blockcopolymers[J]. React. Funct. Polym.,2009,69(7):539–545.
    [111] NOGUCHI H, YOSHIKAWA K. Morphological variation in a collapsedsingle homopolymer chain[J]. J. Chem. Phys.,1998,109(12):5070.
    [112] HYNDMAN R J, KOEHLER A B. Another look at measures of forecastaccuracy[J]. International Journal of Forecasting,2006,22(4):679–688.
    [113] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual moleculardynamics[J]. Journal of Molecular Graphics,1996,14(1):33–38.
    [114] YUAN Z, QUE Z, CHENG S, et al. pH-triggered blooming of“nano-flowers” for tumor intracellular drug delivery[J]. Chem.Commun.,2012,48(65):8129–8131.
    [115] HORSCH M A, ZHANG Z, GLOTZER S C. Simulation studies ofself-assembly of end-tethered nanorods in solution and role of rod aspectratio and tether length[J]. J. Chem. Phys.,2006,125(18):184903.
    [116] NOSKOV S Y, LAMOUREUX G, ROUX B. Molecular Dynamics Studyof Hydration in Ethanol Water Mixtures Using a Polarizable ForceField[J]. J. Phys. Chem. B,2005,109(14):6705–6713.
    [117] BUTLER P J G. The Current Picture of the Structure and Assembly ofTobacco Mosaic Virus[J]. J. Gen. Virol.,1984,65(2):253–279.
    [118] VAN WORKUM K, DOUGLAS J F. Symmetry, equivalence, andmolecular self-assembly[J]. Phys. Rev. E,2006,73(3):031502.
    [119] ZHANG J, LU Z-Y, SUN Z-Y. A possible route to fabricate patchynanoparticles via self-assembly of a multiblock copolymer chain in onestep[J]. Soft Matter,2011,7(21):9944–9950.
    [120] WHITESIDES G M, BONCHEVA M. Beyond molecules: Self-assemblyof mesoscopic and macroscopic components[J]. Nat. Acad. Sci. Proc.,2002,99(8):4769–4774.
    [121] BUTLER P J G. The Current Picture of the Structure and Assembly ofTobacco Mosaic Virus[J]. J. Gen. Virol.,1984,65(2):253–279.
    [122] OHNO T, TAKAHASHI M, OKADA Y. Assembly of tobacco mosaicvirus in vitro: elongation of partially reconstituted RNA.[J]. Proc. Natl.Acad. Sci.,1977,74(2):552–555.
    [123] WILBER A W, DOYE J P K, LOUIS A A. Self-assembly ofmonodisperse clusters: Dependence on target geometry[J]. J. Chem.Phys.,2009,131(17):175101.
    [124] WILBER A W, DOYE J P K, LOUIS A A, et al. Monodisperseself-assembly in a model with protein-like interactions[J]. J. Chem.Phys.,2009,131:175102.
    [125] DEN OTTER W K, RENES M R, BRIELS W J. Self-assembly ofthree-legged patchy particles into polyhedral cages[J]. J. Phys.: Condens.Matter,2010,22:104103.
    [126] RAPAPORT D C. Role of Reversibility in Viral Capsid Growth: AParadigm for Self-Assembly[J]. Phys. Rev. Lett.,2008,101(18):186101.
    [127] NGUYEN H D, REDDY V S, BROOKS III C L. InvariantPolymorphism in Virus Capsid Assembly[J]. J. Am. Chem. Soc.,2009,131(7):2606–2614.
    [128] GLOTZER S C. Some Assembly Required[J]. Science,2004,306(5695):419–420.
    [129] NOYA E G, VEGA C, DOYE J P K, et al. The stability of a crystal withdiamond structure for patchy particles with tetrahedral symmetry[J]. J.Chem. Phys.,2010,132(23):234511.
    [130] MALDOVAN M, THOMAS E L. Diamond-structured photoniccrystals[J]. Nat. Mater.,2004,3(9):593–600.
    [131] KO MRLJ A, PAUSCHENWEIN G J, KAHL G, et al. ContinuumTheory for Cluster Morphologies of Soft Colloids[J]. J. Phys. Chem. B,2011,115(22):7206–7217.
    [132] AYKARA T, NAM R. Determination of average molecular weightbetween crosslinks and polymer–solvent interaction parameters ofpoly(acrylamide‐g‐ethylene diamine tetraacetic acid) polyelectrolytehydrogels[J]. J. Appl. Polym. Sci.,2004,91(4):2168–2175.
    [133] ERHARDT R, B KER A, ZETTL H, et al. Janus Micelles[J].Macromolecules,2001,34(4):1069–1075.
    [134] SHIN H, GRASON G M, SANTANGELO C D. Mesophases ofsoft-sphere aggregates[J]. Soft Matter,2009,5(19):3629–3638.
    [135] ERHARDT R, ZHANG M, B KER A, et al. Amphiphilic JanusMicelles with Polystyrene and Poly(methacrylic acid) Hemispheres[J]. J.Am. Chem. Soc.,2003,125(11):3260–3267.
    [136] COCHRAN E W, BATES F S. Shear-Induced Network-to-NetworkTransition in a Block Copolymer Melt[J]. Phys. Rev. Lett.,2004,93(8):087802.
    [137] GRASON G M, DIDONNA B A, KAMIEN R D. Geometric Theory ofDiblock Copolymer Phases[J]. Phys. Rev. Lett.,2003,91(5):058304.
    [138] PERCEC V, AHN C-H, UNGAR G, et al. Controlling polymer shapethrough the self-assembly of dendritic side-groups[J]. Nature,1998,391(6663):161–164.
    [139] ZIHERL P, KAMIEN R D. Soap Froths and Crystal Structures[J]. Phys.Rev. Lett.,2000,85(16):3528–3531.
    [140] MLADEK B M, GOTTWALD D, KAHL G, et al. Formation ofPolymorphic Cluster Phases for a Class of Models of Purely RepulsiveSoft Spheres[J]. Phys. Rev. Lett.,2006,96(4):045701.
    [141] BATISTA V M O, MILLER M A. Crystallization of DeformableSpherical Colloids[J]. Phys. Rev. Lett.,2010,105(8):088305.
    [142] PERCEC V, WILSON D A, LEOWANAWAT P, et al. Self-Assembly ofJanus Dendrimers into Uniform Dendrimersomes and Other ComplexArchitectures[J]. Science,2010,328(5981):1009–1014.
    [143] UNGAR G, ZENG X. Frank–Kasper, quasicrystalline and related phasesin liquid crystals[J]. Soft Matter,2005,1(2):95–106.
    [144] LEE S, BLUEMLE M J, BATES F S. Discovery of a Frank-Kasper σPhase in Sphere-Forming Block Copolymer Melts[J]. Science,2010,330(6002):349–353.
    [145] ZENG X, UNGAR G, LIU Y, et al. Supramolecular dendritic liquidquasicrystals[J]. Nature,2004,428(6979):157–160.
    [146] HAYASHIDA K, DOTERA T, TAKANO A, et al. PolymericQuasicrystal: Mesoscopic Quasicrystalline Tiling in ABC StarPolymers[J]. Phys. Rev. Lett.,2007,98(19):195502.
    [147] ANGELL C A, UENO K. Materials science: Soft is strong[J]. Nature,2009,462(7269):45–46.
    [148] JUNG H, HWANG D, KIM E, et al. Three-Dimensional MultilayeredNanostructures with Controlled Orientation of Microdomains fromCross-Linkable Block Copolymers[J]. ACS Nano,2011,5(8):6164–6173.
    [149] MARINOTTO D, PROUTIèRE S, DRAGONETTI C, et al. Evidencefor the applicability of a novel procedure (swelling-poling-deswelling) toproduce a stable alignment of second order NLO-chromophorescovalently attached to a cross-linked PMMA or polystyrene polymericnetwork[J]. J. Non-Cryst. Solids,2011,357(10):2075–2080.
    [150] KOBAYASHI T, TAKENAKA M, SAIJO K, et al. Self-assembly andmorphology of gel networks inl,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol/n-dibutylphthalate[J]. J.Colloid Interface Sci.,2003,262(2):456–465.
    [151] NJIKANG G, LIU G, HONG L. Chiral Imprinting of Diblock CopolymerSingle-Chain Particles[J]. Langmuir,2011,27(11):7176–7184.
    [152] TOLEDANO J C F, SCIORTINO F, ZACCARELLI E. Colloidalsystems with competing interactions: from an arrested repulsive clusterphase to a gel[J]. Soft Matter,2009,5(12):2390–2398.
    [153] ZACCARELLI E, ANDREEV S, SCIORTINO F, et al. NumericalInvestigation of Glassy Dynamics in Low-Density Systems[J]. Phys. Rev.Lett.,2008,100(19):195701.
    [154] BIANCHI E, TARTAGLIA P, LA NAVE E, et al. Fully SolvableEquilibrium Self-Assembly Process: Fine-Tuning the Clusters Size andthe Connectivity in Patchy Particle Systems[J]. J. Phys. Chem. B,2007,111(40):11765–11769.
    [155] CONIGLIO A, ARCANGELIS L D, GADO E D, et al. Percolation,gelation and dynamical behaviour in colloids[J]. J. Phys.: Condens.Matter,2004,16(42): S4831–S4839.
    [156] RUSSO J, TARTAGLIA P, SCIORTINO F. Reversible gels of patchyparticles: Role of the valence[J]. J. Chem. Phys.,2009,131(1):014504.
    [157] WU J, LIU Y, CHEN W-R, et al. Structural arrest transitions in fluidsdescribed by two Yukawa potentials[J]. Phys. Rev. E,2004,70(5):050401.
    [158] ZHANG Z, HORSCH M A, LAMM M H, et al. Tethered Nano BuildingBlocks: Toward a Conceptual Framework for NanoparticleSelf-Assembly[J]. Nano Lett.,2003,3(10):1341–1346.
    [159] DUDOWICZ J, FREED K F, DOUGLAS J F. Lattice model ofequilibrium polymerization. IV. Influence of activation, chemicalinitiation, chain scission and fusion, and chain stiffness onpolymerization and phase separation[J]. J. Chem. Phys.,2003,119(23):12645–12666.
    [160] PHAM T T, BAJAJ M, PRAKASH J R. Brownian dynamics simulationof polymer collapse in a poor solvent: influence of implicithydrodynamic interactions[J]. Soft Matter,2008,4(6):1196–1207.
    [161] KIM J W, SUH K D. Highly monodisperse crosslinkedpolymethylmethacrylate microparticles by dispersion polymerization[J].Colloid. Polym. Sci.,1999,277:66–72.
    [162] ZHANG Y, XU J, CHENG F, et al. Photoinduced bending behavior ofcrosslinked liquid-crystalline polymer films with a long spacer[J]. J.Mater. Chem.,2010,20(34):7123–7130.
    [163] G SCHEL U, ULRICH C. Mechanical relaxation of medical gradeUHMWPE of different crosslink density as prepared by electron beamirradiation[J]. J. Appl. Polym. Sci.,2009,113(1):49–59.
    [164] MURAKAMI K, ANDO S. Effects of UV Crosslinking under HighTemperature on the Refractive Indices and Aggregation Structures ofBenzophenone-containing Polyimides[J]. J. Photopolym. Sci. Technol.,2011,24(3):277–282.
    [165] LIU H, LI M, LU Z-Y, et al. Multiscale Simulation Study on the CuringReaction and the Network Structure in a Typical Epoxy System[J].Macromolecules,2011,44(21):8650–8660.
    [166] YAROVSKY I, EVANS E. Computer simulation of structure andproperties of crosslinked polymers: application to epoxy resins[J].Polymer,2002,43(3):963–969.
    [167] FODI B, HENTSCHKE R. Simulated phase behavior of reversiblyassembled polymers[J]. J. Chem. Phys.,2000,112(15):6917–6924.
    [168] RUIZ R, SANDSTROM R L, BLACK C T. Induced Orientational Orderin Symmetric Diblock Copolymer Thin Films[J]. Adv. Mater.,2007,19(4):587–591.
    [169] LIU S, FOURKAS J T. Orientational Time Correlation Functions forVibrational Sum-Frequency Generation.1. Acetonitrile[J]. J. Phys.Chem. A,2012.
    [170] STEELE W A. Perturbation theory for orientational time-correlationfunctions[J]. Mol. Phys.,1981,43(1):141–159.
    [171] CHEN Q, DIESEL E, WHITMER J K, et al. Triblock Colloids forDirected Self-Assembly[J]. J. Am. Chem. Soc.,2011,133(20):7725–7727.
    [172] SCIORTINO F. Gel-forming patchy colloids and network glass formers:thermodynamic and dynamic analogies[J]. Eur. Phys. J. B,2008,64(3-4):505–509.
    [173] YAO C, QI L, JIA H, et al. A novel glycidyl methacrylate-basedmonolith with sub-micron skeletons and well-defined macropores[J]. J.Mater. Chem.,2008,19(6):767–772.
    [174] NODA T, MORISHIMA Y. Hydrophobic Association of RandomCopolymers of Sodium2-(Acrylamido)-2-methylpropanesulfonate andDodecyl Methacrylate in Water As Studied by Fluorescence andDynamic Light Scattering[J]. Macromolecules,1999,32(14):4631–4640.
    [175] KOGA T. Multicanonical Monte Carlo simulations on intramolecularmicelle formation in copolymers[J]. Eur. Phys. J. E,2005,17(3):381–388.
    [176] BOISSIERE O, HAN D, TREMBLAY L, et al. Flower micelles ofpoly(N-isopropylacrylamide) with azobenzene moieties regularlyinserted into the main chain[J]. Soft Matter,2011,7(19):9410–9415.
    [177] LUO S, LING C, HU X, et al. Thermoresponsive unimolecular micelleswith a hydrophobic dendritic core and a double hydrophilic blockcopolymer shell[J]. J. Colloid Interface Sci.,2011,353(1):76–82.
    [178] HALPERIN A. On the collapse of multiblock copolymers[J].Macromolecules,1991,24(6):1418–1419.
    [179] UEDAM, HASHIDZUME A, SATO T. Unicore Multicore Transition ofthe Micelle Formed by an Amphiphilic Alternating Copolymer inAqueous Media by Changing Molecular Weight[J]. Macromolecules,2011,44(8):2970–2977.
    [180] SHI L, ZHANG W, YIN F, et al. Formation of flower-like aggregatesfrom assembly of single polystyrene-b-poly(acrylic acid) micelles[J].New J. Chem.,2004,28(8):1038–1042.
    [181] SEMENOV A N, JOANNY J-F, KHOKHLOV A R. Associatingpolymers: Equilibrium and linear viscoelasticity[J]. Macromolecules,1995,28(4):1066–1075.
    [182] SCHMALZ A, SCHMALZ H, MüLLER A H E. Smart hydrogels basedon responsive star-block copolymers[J]. Soft Matter,2012,8(36):9436–9445.
    [183] KOGA T. Structure and dynamics of polymeric systems[J]. Chem. Eng.Sci.,2006,61(7):2161–2168.
    [184] SLIOZBERG Y R, STRAWHECKER K E, ANDZELM J W, et al.Computational and experimental investigation of morphology inthermoplastic elastomer gels composed of AB/ABA blends inB-selective solvent[J]. Soft Matter,2011,7(16):7539–7551.
    [185] WANG C, LI G, GUO R. Multiple morphologies from amphiphilic graftcopolymers based on chitooligosaccharides as backbones andpolycaprolactones as branches[J]. Chem. Commun.,2005(28):3591–3593.
    [186] IATRIDI Z, MATTHEOLABAKIS G, AVGOUSTAKIS K, et al.Self-assembly and drug delivery studies of pH/thermo-sensitivepolyampholytic (A-co-B)-b-C-b-(A-co-B) segmented terpolymers[J].Soft Matter,2011,7(23):11160–11168.
    [187] ZHANG G, WINNIK F, WU C. Structure of a Collapsed Polymer Chainwith Stickers: A Single-or Multiflower?[J]. Phys. Rev. Lett.,2003,90(3):035506.
    [188] KIKUCHI A, NOSE T. Unimolecular Micelle Formation of Poly(methylmethacrylate)-graft-polystyrene in Mixed Selective Solvents ofAcetonitrile/Acetoacetic Acid Ethyl Ether[J]. Macromolecules,1996,29(21):6770–6777.
    [189] KIKUCHI A, NOSE T. Unimolecular-micelle formation of poly(methylmethacrylate)-graft-polystyrene in iso-amyl acetate[J]. Polymer,1996,37(26):5889–5896.
    [190] KAWATA T, HASHIDZUME A, SATO T. Micellar Structure ofAmphiphilic Statistical Copolymers Bearing Dodecyl Hydrophobes inAqueous Media[J]. Macromolecules,2007,40(4):1174–1180.
    [191] KADAM V, NICOLAI T, NICOL E, et al. Structure and Rheology ofSelf-Assembled Telechelic Associative Polymers in Aqueous Solutionbefore and after Photo-Cross-Linking[J]. Macromolecules,2011,44(20):8225–8232.
    [192] KADAM V S, NICOL E, GAILLARD C. Synthesis of Flower-LikePoly(Ethylene Oxide) Based Macromolecular Architectures byPhoto-Cross-Linking of Block Copolymers Self-Assemblies[J].Macromolecules,2011,45(1):410–419.
    [193] ZHAO X, LIU W, CHEN D, et al. Effect of Block Order of ABA‐andBAB‐Type NIPAAm/HEMA Triblock Copolymers onThermoresponsive Behavior of Solutions[J]. Macromol. Chem. Phys.,2007,208(16):1773–1781.
    [194] HE P, LI X, DENG M, et al. Complex micelles from the self-assemblyof coil-rod-coil amphiphilic triblock copolymers in selective solvents[J].Soft Matter,2010,6(7):1539–1546.
    [195] HINESTROSA J P, UHRIG D, PICKEL D L, et al. Hydrodynamics ofpolystyrene–polyisoprene miktoarm star copolymers in a selective and anon-selective solvent[J]. Soft Matter,2012,8(39):10061–10071.
    [196] WANG L, LIN J. Discovering multicore micelles: insights into theself-assembly of linear ABC terpolymers in midblock-selectivesolvents[J]. Soft Matter,2011,7(7):3383–3391.
    [197] MEZZENGA R, RUOKOLAINEN J, FREDRICKSON G H, et al.Templating Organic Semiconductors via Self-Assembly of PolymerColloids[J]. Science,2003,299(5614):1872–1874.
    [198] MORKVED T L, WILTZIUS P, JAEGER H M, et al. Mesoscopicself-assembly of gold islands on diblock copolymer films[J]. Appl. Phys.Lett.,1994,64(4):422–424.
    [199] KNOTTS T A, RATHORE N, SCHWARTZ D C, et al. A coarse grainmodel for DNA[J]. J. Chem. Phys.,2007,126(8):084901.
    [200] GR SCHEL A H, SCHACHER F H, SCHMALZ H, et al. Precisehierarchical self-assembly of multicompartment micelles[J]. Nat.Commun.,2012,3:710.
    [201] XU B, YEKTA A, WINNIK M A, et al. Viscoelastic Properties in Waterof Comb Associative Polymers Based On Poly(ethylene oxide)[J].Langmuir,1997,13(26):6903–6911.
    [202] TANAKA F, KOGA T. Intramolecular and intermolecular association inthermoreversible gelation of hydrophobically modified associatingpolymers[J]. Comput. Theor. Polym. Sci.,2000,10(3–4):259–267.
    [203]韩文驰,唐萍,张红东, et al.嵌段共聚物和星型均聚物共混体系相行为的自洽场理论研究[J].化学学报,2008,66(14):1707–1712.
    [204]陈弢,刘鸿,吕中元.三嵌段共聚物自组装结构的分子调控[J].吉林大学学报(理学版),2012,50(4):798–804.
    [205] TEZUKA Y. Topological polymer chemistry by dynamic selection fromelectrostatic polymer self-assembly[J]. Chem. Rec.,2005,5(1):17–26.
    [206]李占伟,贾晓溪,张静, et al.嵌段共聚物纳米结构设计的计算机模拟研究[J].高分子学报,2011,9:973–984.
    [207]杨永彪,孙昭艳. Monte Carlo模拟研究高分子单链在基体中扩散的拓扑效应[J].高等学校化学学报,2011,32(2):389–394.
    [208] TEZUKA Y. Topological polymer chemistry by electrostaticself-assembly[J]. J. Polym. Sci., Part A: Polym. Chem.,2003,41(19):2905–2917.
    [209]杨荣巧,丁大同,李宝会.对称两嵌段共聚物/均聚物共混体系受限在球形纳米孔内的自组装行为[J].高分子学报,2011,11:1355–1360.
    [210] TONCHEVA V, WOLFERT M A, DASH P R, et al. Novel vectors forgene delivery formed by self-assembly of DNA with poly(l-lysine)grafted with hydrophilic polymers[J]. Biochim. Biophys. Acta,1998,1380(3):354–368.
    [211] ZHUANG Z, ZHU X, CAI C, et al. Self-assembly of a mixture systemcontaining polypeptide graft and block copolymers: experimental studiesand self-consistent field theory simulations[J]. J. Phys. Chem. B,2012,116(33):10125–10134.
    [212] TROMBLY D M, PRYAMITSYN V, GANESAN V. Surface energiesand self-assembly of block copolymers on grafted surfaces[J]. Phys. Rev.Lett.,2011,107(14):148304.
    [213]卫兰,蔡春华,林嘉平.聚电解质微球多级自组装制备双重药物载体[J].高分子学报,2011,12:1461–1469.
    [214]樊娟娟,韩媛媛,姜伟.溶剂尺寸对ABA两亲性三嵌段共聚物在选择性溶剂中自组装行为影响的Monte Carlo模拟[J].高等学校化学学报,2011,32(7):1651–1655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700