用户名: 密码: 验证码:
氧化锌抗菌及降解有机污染物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维结构ZnO是近年来功能材料领域的研究热点,因其具有良好的生物相容性和环境安全性,基于ZnO的长效抗菌和环境净化材料更是吸引了学术界和工业界的广泛关注。ZnO的抗菌和光催化活性与其产生的羟基自由基(·OH)、超氧阴离子自由基(·02-)和过氧化氢(H202)等活性氧密切相关,而对于其产生活性氧的机理和影响因素的系统研究还很少,这恰恰是调控其功能活性的基础。本论文选择三种不同形貌的ZnO作为研究对象,以活性氧物种与ZnO材料学因素之间的关系作为研究主线,探讨了材料结构、形貌、比表面积等对其抗菌和降解有机污染物活性的影响规律和相关机理,在此基础上提出了ZnO的抗菌活性调控方法。
     对微/痕量活性氧的特异反应进行了对比分析,根据本研究中对检测方法特异性、灵敏度以及可操作性等方面的要求,首先采用电子顺磁共振(EPR)法对ZnO体系中产生的自由基类活性氧(·OH和·O2)进行了定性分析;在此基础上,进一步开展了系列活性氧物种的定量检测方法研究,建立了适用于ZnO在水悬浮体系中产生典型活性氧物种(·OH、·O2-和H202)的定量检测方法,包括:基于对苯二甲酸羟基化-荧光光谱分析(TAH-F)的·OH检测、基于氯化硝基四氮唑蓝还原-分光光度分析(NBTR-S)的·O2-表征和基于淀粉碘量法-分光光度分析(SIM-S)的H2O2检测。实验研究发现:无光条件下,ZnO体系中没有·OH和·O2-产生,但是有H202产生;模拟日光下,·OH、·O2和H2O2三种活性氧都有产生;ZnO悬液在模拟日光下的·OH和·O2-累积产量均随时间的延长而增加,在无光和模拟日光条件下的H202产量也均随时间的延长而增加,且模拟日光照射下的H202产量高于无光下的产量。
     分别对四针状ZnO晶须(T-ZnO)、纳米ZnO(n-ZnO)和微米ZnO(m-ZnO)这三种ZnO体系中产生的活性氧物种进行了研究,结果表明:其产生·OH的能力从大到小依次是T-ZnO、m-ZnO、n-ZnO,产生·O2-的能力从大到小依次是m-ZnO、T-ZnO、 n-ZnO,产生H2O2的能力从大到小依次是T-ZnO、n-ZnO、m-ZnO。对三种ZnO的材料学特性分析发现,比表面积不是影响ZnO悬液中·OH、·O2-和H2O2产量的主要因素;晶格畸变不利于ZnO体系产生-OH和·O2;表层晶格中的氧空位在H2O2的形成过程中发挥了重要作用,且有利于·OH的产生,而不利于·O2-的产生。
     采用抑菌环试验和抗菌率测试法,评价了三种ZnO在模拟日光和无光条件下的抗菌性能,结果表明:在模拟日光和无光条件下,T-ZnO、n-ZnO和m-ZnO都对大肠杆菌具有明显抑制作用,且模拟日光下的抗菌活性比在无光条件下更高。在相同的光照条件下,不同形貌ZnO的抗菌活性也存在差异,无论是在模拟日光下还是在无光条件下,其抗菌活性都是从大到小依次为T-ZnO、n-ZnO、m-ZnO。结合三种ZnO产生活性氧物种和溶出Zn2+的研究结果,证实了H2O2的产生是ZnO抗菌的主要机理。进一步研究了环境中的O2和ZnO表层晶格氧空位对H2O2产生量的影响,结果表明,实验环境中的O2和ZnO表层的晶格氧空位浓度对H2O2的产生具有显著的影响,提出了一种基于氧空位控制的ZnO抗菌活性调控方法。
     以甲基橙为降解底物,评价了ZnO光催化降解有机物的效果。结果表明:在模拟日光照射下,ZnO悬液中甲基橙的浓度随时间的延长而降低,三种ZnO降解甲基橙的活性从大到小依次为m-ZnO、T-ZnO、n-ZnO。结合ZnO产生活性物种的定量检测结果,发现此顺序与模拟日光下三种ZnO产生·O2-能力的大小顺序一致,与产生·OH能力的大小顺序不一致。说明甲基橙的降解不是以-OH氧化机理为主,而很有可能是空穴直接氧化机理。
     以T-ZnO为载体材料,以酒石酸铜为前驱体,通过可控分解,在T-ZnO表面原位均匀地沉积了纳米Cu(粒径约为18nm)。发现沉积纳米Cu之后,模拟日光下·OH产量变化不大,而·O2-产量明显降低,说明有效捕获了光生电子;无光下H2O2产量没有明显变化,而模拟日光下的H2O2产量有所降低。在表面沉积了纳米Cu之后,T-ZnO在无光下的抗菌活性随纳米Cu沉积量的增大而显著提高,沉积量从0.2mol%到1.0mol%的5个样品,4h抗菌率都在98.5%以上,沉积量为1.0mol%样品的最小抑菌浓度(MIC)可达125mg/L,明显优于纯ZnO的500mg/L。进一步研究表明,纳米Cu沉积T-ZnO抗菌活性的增加不是因为H2O2产量的增加,也不主要源自纳米Cu溶出的Cu2+,而是来源于Cu与ZnO的协同抗菌效果。T-ZnO经纳米Cu沉积后的光催化降解甲基橙的活性没有明显变化,这可能是由于Cu沉积未能有效提高光生空穴的量。
     采用高温固溶法对ZnO进行了Cu2+掺杂改性,表征结果表明,掺杂后ZnO的晶格常数发生了变化,对光的吸收阀值发生了红移,其中的Zn和O元素结合能发生了一定程度的偏移,说明Cu2+已掺杂到ZnO晶格中,并在ZnO中引入了杂质能级。掺杂改性后,ZnO体系中·OH、·O2-和H2O2的产量都急剧下降,其中·OH、·O2-的产量表现出同步下降规律,说明掺杂的Cu2+在ZnO中没有起到分离光生电子和空穴的作用,反而成为了光生电子和空穴的复合中心;Cu2+掺杂后的ZnO光催化降解甲基橙的活性也明显降低,这与活性氧的检测结果一致。掺杂后,ZnO的抗菌性能也有所下降,但针对所有掺杂样品而言,其抗菌性能随着Cu2+掺杂浓度的增加而增加,分析认为是掺杂进入ZnO晶格的Cu2+发挥了抗菌作用。
     在上述研究的基础上,对含T-ZnO的抗菌材料在载人航天飞行器上的应用进行了前期探索。将改性T-ZnO添加到聚氨酯涂料中,用喷涂法分别在航天器用铝合金、舱壁布(天然纤维织物)和门帘布(合成纤维织物)表面制备了抗菌涂层,形貌观察显不:T-ZnO在涂层表面分布均匀,四针状结构基本保持完好。用双螺杆共混挤出和模压成型方法制备含改性T-ZnO的聚丙烯复合材料,研究表明:T-ZnO的四针状形貌多数被破坏,主要以单针状体形式存在。四种材料表层均露出有ZnO针状体(四针或单针),能够保证其表面抗菌作用的发挥。地面抗菌性能评价表明,添加4wt%T-ZnO的聚氨酯涂层和聚丙烯复合材料对大肠杆菌的抗菌率均在98%以上。以聚丙烯为对象,对T-ZnO抗菌剂添加量的研究结果表明:T-ZnO添加量达到2wt%时,抗菌率达到了96%以上,可满足其作为抗菌制品的使用要求。
Low-dimensional structure of ZnO is a hot research topic in the field of functional materials in recent years. Because of the good biocompatibility and environmental safety, ZnO-based long-term antibacterial and environmental purification materials have attracted lots of attentions of academia and industry. Antibacterial activity and photocatalytical activity of ZnO are closely related to the production of reactive oxygen species, such as hydroxyl radical (·OH), superoxide anion (·O2-) and hydroxyl peroxide (H2O2). However, the mechanism and affecting factors of generation of the reactive oxygen species in ZnO, which are distinctly the bases for adjusting its functional activity, are still lacking of systematically study. In this dissertation, we comparatively studied the productions and affecting mechanisms of reactive oxygen species, and related antibacterial and/or photocatalytical properties of selected three types of ZnO, and then proposed a facile approach to improve the antibacterial activity.
     Firstly, specific reactions of the reactive oxygen species were reviewed and comparatively analyzed. Considering the requirements in specificity, sensitivity and operability of the detecting methods in this study, electron spin resonance was chosen for qualitatively study of the free radicals such as·OH and·O2-. Then, specific methods for quantificationally detecting the reactive oxygen species in ZnO suspensions were developed respectively. The typical measurements included terephthalic acid hydroxylation methods combining with fluorescence analysis (TAH-F) for·OH, nitro blue tetrazolium reduction method collaborating with spectrophotometry analysis (NBTR-S) for·O2-, and starch iodometric method incorporating with spectrophotometry analysis (SIM-S) for H2O2. The results indicated that, without light irradiation, there were no·OH or·O2-but H2O2generation in ZnO suspension; while under simulated sunlight,·OH,·O2-and H2O2all generated in ZnO suspension. The cumulative productions of·OH and·O2-both increased with time under simulated sunlight. The cumulative production of H2O2increased along with the extension of time either in dark or under simulated sunlight, and the yield of H2O2under simulated sunlight was higher than that in in dark.
     The production of·OH,·O2-and H2O2of the three kinds of ZnO, which are tetrapod-like ZnO whisker (T-ZnO), nano-sized ZnO (n-ZnO) and micro-sized ZnO (m-ZnO), were comparatively tested in this work. The results showed that the activity forH production were T-ZnO, m-ZnO and n-ZnO in descending order, the activity for·O2-production were m-ZnO, T-ZnO and n-ZnO in descending order, and the activity for H2O2production were T-ZnO, n-ZnO and m-ZnO in descending order. By analyzing the material characteristics of the three typs of ZnO, it was found that the specific surface area was not the main factor on the production of·OH,·O2-and H2O2, and lattice distortion had a negative effect on the production of·OH and·O2-. Further investigations showed that oxygen vacancies in skin layers of the crystal played an important role in the formation of H2O2, and having a positive effect on the production of·OH and negative effect on·O2-.
     The antibacterial properties of ZnO with different morphologies under simulated sunlight and in dark were respectively evaluated with Escherichia coli (E. coli) by zone of inhibition and bactericidal rate. The results indicated that T-ZnO, n-ZnO and m-ZnO all exhibited antibacterial effect against E. coli both under simulated sunlight and in dark, and the antibacterial activity under simulated sunlight condition was higher than that in dark. In the same condition, the antibacterial activity displayed differences among the three types of ZnO, which was sorted in descending order as T-ZnO, n-ZnO and m-ZnO either under simulated sunlight or in dark. Results of Zn2+dissolution and reactive oxygen species productions indicated that the H2O2generating was the main mechanism for antibacterial activity of ZnO. Furthermore, the effects of O2in atmosphere and oxygen vacancy in the skin layer of ZnO crystal on the production of H2O2were studied, and the results indicated that they both had significant role on H2O2formation. Based on the experimental studies, a method for adjusting the antibacterial activity by controlling oxygen vacancies concentration was preliminarily advised.
     The activity of ZnO for decomposing organic contamination was evaluated using methyl orange as the substrate. The results showed that the concentration of methyl orange in ZnO suspensions decreased with time under simulated sunlight condition. The degradation rate of methyl orange in the aqueous suspensions displayed differences among the three types of ZnO, which was sorted in descending order as m-ZnO, T-ZnO, n-ZnO. Comparing the production of reactive oxygen species with the degradation rate of methyl orange, we concluded that the degradation of methyl orange in ZnO suspension was not consistent with the production of-OH, but showed the same order as the production of·O2-, which indicating that the degradation of methyl orange was not based on the·OH oxidation mechanism, but most likely based on the direct photo-generated hole oxidation mechanism.
     Copper nanoparticles were uniformly deposited onto the surface of T-ZnO by in-situ decomposition of cupric tartrate. The productions of·OH, O2-and H2O2were determined. The results showed that the production of-OH did not change significantly. But, the production of·O2-decreased obviously, which indicated that Schottky barrier was formed and effective in trapping electrons. The production of H2O2in dark did obviously changed, but it decreased under simulated sunlight. The antibacterial activity in dark of the modified T-ZnO increased with the increase of loading amount of copper nanoparticles. The value of minimum inhibitory concentration (MIC) of the deposit-modified sample with1.0mol%of copper nanoparticles was125mg/L, which was significantly lower than the origianl T-ZnO of500mg/L. Further studies indicated that the improvement of antibacterial activity of T-ZnO after deposition of copper nanoparticles was attributed neither to increasing H2O2production nor to releasing Cu2+, but may be derived from the synergistic antibacterial effect between Cu and ZnO. Afte deposited with Cu nanoparticles, the activity of T-ZnO for decomposing methyl orange did not change significantly.
     Cu2+doped ZnO was prepared by means of solid solution treatment. The change of lattice constants, the redshift of light absorption threshold and the offset of binding energy between Zn and O of the doped ZnO were investigated, and the results indicated that Cu2+had been successfully doped into the lattice of ZnO and the impurity level had been successfully introduced into ZnO. The productions of·OH,·O2-and H2O2all significantly decreased after doping. The similar level of decrease of·OH and·O2-illustrated that the doped Cu2+did not play the role in separating photogenerated electrons and holes in ZnO, but acted as recombination centers of the photo-induced electrons and holes. The activity of ZnO for decomposing methyl orange also decreased after Cu2+-doping, which was consistent with the measurements of reactive oxygen species. The antibacterial activity of ZnO decreased after doping, however, for the doped samples, the antibacterial activity increased with increase of doping concentration of Cu2+.
     Finally, the application of ZnO as antibacterial materials for manned spacecraft was pre-explored. Antibacterial coatings were prepared and coated on the surfaces of aluminum alloys, bulkhead cloth and curtain cloth by spraying polyurethane (PU) varnish mixed with modified T-ZnO. Scanning electron microscopy (SEM) observations showed that T-ZnO was uniformly distributed on the surfaces, and the tetrapod-like structure was preserved. Polypropylene (PP) composites filled with modified T-ZnO were prepared by twin-screw extrusion and molding method. SEM analyses demonstrated that the tetrapod-like structure of T-ZnO was destroyed and mainly instead by single spicules or fragments existing in PP. A lot of ZnO needles exposed on the surfaces of the mentioned four kinds of materials, which could ensure contacting with bacteria and playing activity. The antibacteriral rates of PU coating and PP composite with4wt%T-ZnO against E. coli were all higher than98%. The effect of adding amount of T-ZnO onantibacteriral rate was studied with PP, and the result indicated that antibacteriral rates increased with the loading of T-ZnO increasing. The antibacteriral rate could get96%when T-ZnO was2wt%in the composites, which met the requirement of use as antimicrobial products.
引文
[1]金宗哲.无机抗菌材料及应用.北京:化学工业出版社,2004.
    [2]O. Carp, C. L. Huisman, A. Reller. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem.,2004,32:33-177.
    [3]J. Sawai, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu. Evaluation of growth-inhibitory effect of ceramics powder slurry on bacteria by conductance method.J. Chem. Eng. Jpn.,1995,28:288-293.
    [4]J. Sawai, H. Kojima, H. Igarashi, A. Hashimoto, S. Shoji, A. Takehara, et al. Escherichia coli damage by ceramic powder slurries.J. Chem. Eng. Jpn.,1997',30: 1034-1039.
    [5]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38.
    [6]J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. B. Environ. Contam. Tox, 1976,16:697-701.
    [7]C. A. K. Gouvea, F. Wypych, S. G. Moraes, N. Duran, N. Nagata, P. Peralta-Zamora. Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere,2000,40:433-440.
    [8]A. A. Khodja, T. Sehili, J. F. Pilichowski, P. Boule. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photoch. Photobio. A, 2001,141:231-239.
    [9]C. Lizama, J. Freer, J. Baeza, H. D. Mansilla. Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions. Catal. Today,2002,76:235-246.
    [10]S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan. Solar photocatalytic degradation of azo dye:Comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energ. Mat. Sol. C.,2003,77: 65-82.
    [11]A. Akyol, H. C. Yatmaz, M. Bayramoglu. Photocatalytic decolorization of remazol red RR in aqueous ZnO suspensions. Appl. Catal. B-Environ.,2004,54:19-24.
    [12]A. Chatzitakis, C. Berberidou, I. Paspaltsis, G. Kyriakou, T. Sklaviadis, I. Poulios. Photocatalytic degradation and drug activity reduction of Chloramphenicol. Water Res.,2008,42:386-394.
    [13]R. A. Palominos, M. A. Mondaca, A. Giraldo, G. Penuela, M. Perez-Moya, H. D. Mansilla. Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal. Today,2009,144:100-105.
    [14]P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun.,1997,103:459-463.
    [15]K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu. Growth of p-type zinc oxide films by chemical vapor deposition. Jpn. J. Appl. Phys., Part 2, 1997,36:L1453-L1455.
    [16]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys.,2005,98.
    [17]叶志镇,吕建国,张银珠,何海平.氧化锌半导体材料掺杂技术与应用.杭州:浙江大学出版社,2009.
    [18]Y. P. Xie, Y. P. He, P. L. Irwin, T. Jin, X. M. Shi. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microb.,2011,77:2325-2331.
    [19]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner. Recent progress in processing and properties of ZnO. Prog. Mater. Sci.,2005,50:293-340.
    [20]Z. L. Wang. ZnO nanowire and nanobelt platform for nanotechnology. Mat. Sci. Eng.R.,2009,64:33-71.
    [21]Z. L. Wang. Nanostructures of zinc oxide. Mater. Today,2004,7:26-33.
    [22]J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao, C. H. Yan. Control of ZnO morphology via a simple solution route. Chem. Mater.,2002,14:4172-4177.
    [23]S.-H. Jung, E. Oh, K.-H. Lee, Y. Yang, C. G. Park, W. Park, et al. Sonochemical preparation of shape-selective ZnO nanostructures. Cryst. Growth Des.,2008,8: 265-269.
    [24]季君晖,史维明.抗菌材料.北京:化学工业出版社,2003.
    [25]童忠良.无机抗菌新材料与技术.北京:化学工业出版社,2006.
    [26]董加胜,陈四红,吕曼祺,杨柯.抗菌材料发展和现状.材料导报,2004:41-43.
    [27]S. Pal, Y. K. Tak, J. M. Song. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microb.,2007,73:1712-1720.
    [28]V. K. Sharma, R. A. Yngard, Y. Lin. Silver nanoparticles:Green synthesis and their antimicrobial activities. Adv. Colloid Interfac,2009,145:83-96.
    [29]A. J. Kora, J. Arunachalam. Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J. Microb. Biot.,2011,27:1209-1216.
    [30]W.-R. Li, X.-B. Xie, Q.-S. Shi, S.-S. Duan, Y.-S. Ouyang, Y.-B. Chen. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals,2011,24: 135-141.
    [31]J. P. Ruparelia, A. K. Chatteriee, S. P. Duttagupta, S. Mukherji. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia,2008, 4:707-716.
    [32]K. Y. Yoon, J. H. Byeon, J. H. Park, J. Hwang. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles.Sci. Total. Environ.,2007,373:572-575.
    [33]N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, et al. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater.,2005,17:5255-5262.
    [34]S. Kang, M. Pinault, L. D. Pfefferle, M. Elimelech. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir,2007,23:8670-8673.
    [35]F. Ahmed, C. M. Santos, R. A. M. V. Vergara, M. C. R. Tria, R. Advincula, D. F. Rodrigues. Antimicrobial applications of electroactive PVK-SWNT nanocomposites. Environ. Sci. Technol.,2012,46:1804-1810.
    [36]W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, et al. Graphene-based antibacterial paper. Acs Nano,2010,4:4317-4323.
    [37]O. Akhavan, E. Ghaderi. Escherichia coil bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon,2012,50:1853-1860.
    [38]K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto. Quantum yields of active oxidative species formed on TiO2 photocatalyst.J. Photoch. Photobio. A,2000,134: 139-142.
    [39]J. Sawai, I. Saito, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, et al. Mutagenicity test of ceramic powder which have growth-inhibitory effect on bacteria.J. Chem. Eng. Jpn.,1995,28:352-354.
    [40]P. T. Craddock.2000 years of zinc and brass. London:British Museum,1998.
    [41]P. T. Craddock, Mining and Metallurgy. In The Oxford Handbook of Engineering and Technology in the Classical World, P. J. Oleson, Ed. Oxford University:2008; pp 111-112.
    [42]F. J. Harding. Breast Cancer:Cause-Prevention-Cure. Barnstaple:Tekline Publishing, 2007.
    [43]H. Akiyama, O. Yamasaki, H. Kanzaki, J. Tada, J. Arata. Effects of zinc oxide on the attachment of Staphylococcus aureus strains. J. Dermatol. Sci.,1998,17:67-74.
    [44]N. Jones, B. Ray, K. T. Ranjit, A. C. Manna. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett.,2008,279:71-76.
    [45]J. Sawai, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu. Effect of ceramic powder slurry on spores of Bacillus subtilis. J. Chem. Eng. Jpn.,1995,28:556-561.
    [46]K. M. Reddy, K. Feris, J. Bell, D. G. Wingett, C. Hanley, A. Punnoose. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett.,2007,90:213902/1-3.
    [47]O. Yamamoto, M. Hotta, J. Sawai, T. Sasamoto, H. Kojima. Influence of powder characteristic of ZnO on antibacterial activity-Effect of specific surface area.J. Ceram. Soc. Jpn.,1998,106:1007-1011.
    [48]K. R. Raghupathi, R. T. Koodali, A. C. Manna. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir,2011,27:4020-4028.
    [49]J. Sawai, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu. Effect of particle size and heating temperature of ceramic powders on antibacterial activity of their slurries. J. Chem. Eng. Jpn.,1996,29:251-256.
    [50]L. K. Adams, D. Y. Lyon, P. J. J. Alvarez. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res.,2006,40:3527-3532.
    [51]T. A. Soderberg, B. Sunzel, S. Holm, T. Elmros, G. Hallmans, S. Sjoberg. Antibacterial effect of zinc-oxide invitro. Scand. J. Plast. Recons,1990,24: 193-197.
    [52]J. Sawai. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay.J. Microbiol. Meth.,2003,54: 177-182.
    [53]K. H. Tam, A. B. Djurisic, C. M. N. Chan, Y. Y. Xi, C. W. Tse, Y. H. Leung, et al. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films,2008,516:6167-6174.
    [54]J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, et al. Detection of active oxygen generated from ceramic powders having antibacterial activity.J. Chem. Eng. Jpn.,1996,29:627-633.
    [55]L. L. Zhang, Y. H. Jiang, Y. L. Ding, N. Daskalakis, L. Jeuken, M. Povey, et al. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research,2010,12: 1625-1636.
    [56]O. Yamamoto, M. Komatsu, J. Sawa, Z. E. Nakagawa. Effect of lattice constant of zinc oxide on antibacterial characteristics. J. Mater. Sci.-Mater. M.,2004,15: 847-851.
    [57]L. L. Zhang, Y. H. Jiang, Y. L. Ding, M. Povey, D. York. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids).J. Nanopart. Res.,2007,9:479-489.
    [58]S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc.,1977,99: 303-304.
    [59]M. A. Fox, M. T. Dulay. Heterogeneous photocatalysis. Chem. Rev.,1993,93: 341-357.
    [60]A. L. Linsebigler, G. Q. Lu, J. T. Yates. Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results. Chem. Rev.,1995,95:735-758.
    [61]U. Sirimahachai, N. Ndiege, R. Chandrasekharan, S. Wongnawa, M. A. Shannon. Nanosized TiO2 particles decorated on SiO2 spheres (TiO2/SiO2):synthesis and photocatalytic activities. J. Sol-gel. Sci. Techn.,2010,56:53-60.
    [62]M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann. Environmental applications of semiconductor photocatalysis. Chem. Rev.,1995,95:69-96.
    [63]T. Matsunaga, M. Okochi. TiO2-mediated photochemical disinfection of Escherichia coli using optical fibers. Environ. Sci. Technol.,1995,29:501-505.
    [64]R. X. Cai, Y. Kubota, T. Shuin, H. Sakai, K. Hashimoto, A. Fujishima. Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res.,1992,52:2346-2348.
    [65]J. C. Sjogren, R. A. Sierka. Inactivation of phage MS2 by iron-aided titanium-dioxide photocatalysis. Appl. Environ. Microb.,1994,60:344-347.
    [66]M. Ashokkumar. An overview on semiconductor particulate systems for photoproduction of hydrogen. Int. J. Hydrogen. Energ,1998,23:427-438.
    [67]M. Halmann. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature,1978,275.
    [68]T. Inoue, A. Fujishima, S. Konishi, K. Honda. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature,1979, 277.
    [69]M. Halmann, M. Ulman, B. Aurian-Blajeni. Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. Sol. Energy,1983,31.
    [70]M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites:Effects of the structure of the active sites and the addition of Pt. J. Phys. Chem. B,1997,101: 2632-2636.
    [71]K. Ikeue, H. Yamashita, M. Anpo, T. Takewaki. Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts:Effect of the hydrophobic and hydrophilic properties.J. Phys. Chem. B,2001,105:8350-8355.
    [72]吴聪萍,周勇,邹志刚.光催化还原CO2的研究现状和发展前景.催化学报,2011:1565-1572.
    [73]N. Daneshvar, D. Salari, A. R. Khataee. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photoch. Photobio. A, 2004,162:317-322.
    [74]P. Spathis, I. Poulios. The corrosion and photocorrosion of zinc and zinc oxide coatings. Corros. Sci.,1995,37:673-680.
    [75]H. Fu, T. Xu, S. Zhu, Y. Zhu. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C6o-Environ. Sci. Technol., 2008,42:8064-8069.
    [76]L. Zhang, H. Cheng, R. Zong, Y. Zhu. Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. J. Phys. Chem. C,2009,113:2368-2374.
    [77]H. Zhang, R. Zong, Y. Zhu. Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline./. Phys. Chem. C,2009,113:4605-4611.
    [78]O. A. Fouad, A. A. Ismail, Z. I. Zaki, R. M. Mohamed. Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity. Appl. Catal. B-Environ.,2006,62:144-149.
    [79]J. P. Percherancier, R. Chapelon, B. Pouyet. Semiconductor-sensitized photodegradation of pesticides in water-the case of carbetamide.J. Photoch. Photobio. A,1995,87:261-266.
    [80]A. Akyol, M. Bayramoglu. Photocatalytic degradation of Remazol Red F3B using ZnO catalyst. J. Hazard. Mater.,2005,124:241-246.
    [81]S. Chakrabarti, B. K. Dutta. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst.J. Hazard. Mater.,2004,112: 269-278.
    [82]M. A. Behnajady, N. Modirshahla, R. Hamzavi. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater.,2006, 133:226-232.
    [83]S. K. Pardeshi, A. B. Patil. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. J. Hazard. Mater.,2009,163: 403-409.
    [84]D. Chen, A. K. Ray. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Appl. Catal. B-Environ.,1999,23:143-157.
    [85]J. C. Crittenden, J. Liu, D. W. Hand, D. L. Perram. Photocatalytic oxidation of chlorinated hydrocarbons in water. Water Res.,1997,31:429-438.
    [86]Y. Inel, A. N. Okte. Photocatalytic degradation of malonic acid in aqueous suspensions of titanium dioxide:An initial kinetic investigation of CO2 photogeneration. J. Photoch. Photobio. A,1996,96:175-180.
    [87]C. S. Turchi, D. F. Ollis. Mixed reactant photocatalysis:Intermediates and mutual rate inhibition. J. Catal.,1989,119:483-496.
    [88]L. Le Campion, C. Giannotti, J. Ouazzani. Photocatalytic degradation of 5-Nitro-1,2,4-Triazol-3-one NTO in aqueous suspention of TiO2. Comparison with fenton oxidation. Chemosphere,1999,38:1561-1570.
    [89]E. Yassitepe, H. C. Yatmaz, C. Ozturk, K. Ozturk, C. Duran. Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions.J. Photoch. Photobio. A,2008,198:1-6.
    [90]A. McLaren, T. Valdes-Solis, G. Li, S. C. Tsang. Shape and size effects of ZnO nanocrystals on photocatalytic activity.J. Am. Chem. Soc.,2009,131: 12540-12541.
    [91]J. Becker, K. R. Raghupathi, J. St Pierre, D. Zhao, R. T. Koodali. Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation.J. Phys. Chem. C, 2011,115:13844-13850.
    [92]E. S. Jang, J.-H. Won, S.-J. Hwang, J.-H. Choy. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv. Mater.,2006,18: 3309-3312.
    [93]N. Kislov, J. Lahiri, H. Verma, D. Y. Goswami, E. Stefanakos, M. Batzill. Photocatalytic degradation of methyl orange over single crystalline ZnO: Orientation dependence of photoactivity and photostability of ZnO. Langmuir,2009, 25:3310-3315.
    [94]Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, et al. Luminescence and photocatalytic activity of ZnO nanocrystals:Correlation between structure and property. Inorg. Chem.,2007,46:6675-6682.
    [95]J. Wang, P. Liu, X. Fu, Z. Li, W. Han, X. Wang. Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes. Langmuir,2009,25:1218-1223.
    [96]Y. Liu, Z. H. Kang, Z. H. Chen, I. Shafiq, J. A. Zapien, I. Bello, et al. Synthesis, characterization, and photocatalytic application of different ZnO nanostructures in array configurations. Cryst. Growth Des.,2009,9:3222-3227.
    [97]S. Baruah, S. S. Sinha, B. Ghosh, S. K. Pal, A. K. Raychaudhuri, J. Dutta. Photoreactivity of ZnO nanoparticles in visible light:Effect of surface states on electron transfer reaction.J. Appl. Phys.,2009,105.
    [98]Y. Li, W. Xie, X. Hu, G. Shen, X. Zhou, Y. Xiang, et al. Comparison of dye photodegradation and its coupling with light-to-electricity conversion over TiO2 and ZnO. Langmuir,2010,26:591-597.
    [99]G. Colon, M. C. Hidalgo, J. A. Navio, E. P. Melian, O. G. Diaz, J. M. D. Rodriguez. Highly photoactive ZnO by amine capping-assisted hydrothermal treatment. Appl. Catal. B-Environ.,2008,83:30-38.
    [100]H. H. Wang, C. S. Me. The effects of oxygen partial pressure on the microstructures and photocatalytic property of ZnO nanoparticles. Physica. E,2008,40:2724-2729.
    [101]H. Gerischer, A. Heller. Photocatalytic oxidation of organic-molecules at TiO2 particles by sunlight in aerated water. J. Electrochem. Soc.,1992,139:113-118.
    [102]H. Yin, P. S. Casey, M. J. McCall, M. Fenech. Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir,2010,26:15399-15408.
    [103]T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. B. Shi, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano,2008,2:2121-2134.
    [104]N. Padmavathy, R. Vijayaraghavan. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci. Technol. Adv. Mat.,2008,9:035004/1-7.
    [105]G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, et al. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Funct. Mater.,2009,19:842-852.
    [106]J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, et al. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng.,1998,86:521-522.
    [107]C. Maria. Kinetics of reaction of Fe(phen)32+ with hydrogen peroxide in neutral medium. Inorg. Chim. Acta,1985,98:25-28.
    [108]A. Gomes, E. Fernandes, J. L. F. C. Lima. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Bioph. Meth,2005,65:45-80.
    [109]W. N. Sloot, J. B. P. Gramsbergen. Detection of salicylate and its hydroxylated adducts 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid as possible indexes for in-vivo hydroxyl radical formation in combination with catecholamines and indoleamines and their metabolites in cerebrospinal-fluid and brain-tissue. J. Neurosci. Meth.,1995,60:141-149.
    [110]C. Coudray, M. Talla, S. Martin, M. Fatome, A. Favier. High-performance liquid-chromatography electrochemical determination of salicylate hydroxylation products as an in-vivo marker of oxidative stress. Anal. Biochem.,1995,227: 101-111.
    [111]M. Anbar, D. Meyerstein, P. Neta. The reactivity of aromatic compounds toward hydroxyl radicals. J. Phys. Chem.,1966,70:2660-2662.
    [112]V. G. Buxton, L. C. Greenstock, W. P. Helman, B. A. Ross. Critical review of rate constants for reactions of hydrated electrons, hydrated atoms and hydroxyl radicals. J. Phys. Chem. Ref. Data,1988,17:513-886.
    [113]D. R. McCabe, T. J. Maher, I. N. Acworth. Improved method for the estimation of hydroxyl free radical levels in vivo based on liquid chromatography with electrochemical detection.J. Chromatogr. B,1997,691:23-32.
    [114]C. Coudray, A. Favier. Determination of salicylate hydroxylation products as an in vivo oxidative stress marker. Free. Radical. Bio. Med,2000,29:1064-1070.
    [115]J. Montgomery, L. Stemarie, D. Boismenu, L. Vachon. Hydroxylation of aromatic-compounds as indexes of hydroxyl radical production-a cautionary note revisited. Free. Radical. Bio. Med,1995,19:927-933.
    [116]L. SteMarie, D. Boismenu, L. Vachon, J. Montgomery. Evaluation of sodium 4-hydroxybenzoate as an hydroxyl radical trap using gas chromatography mass spectrometry and high-performance liquid chromatography with electrochemical detection. Anal. Biochem.,1996,241:67-74.
    [117]M. Saran, K. H. Summer. Assaying for hydroxyl radicals:Hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free. Radical. Res.,1999,31:429-436.
    [118]W. Freinbichler, L. Bianchi, M. A. Colivicchi, C. Ballini, K. F. Tipton, W. Linert, et al. The detection of hydroxyl radicals in vivo. J. Inorg. Biochem.,2008,102: 1329-1333.
    [119]Y. Nosaka, Y. Yamashita, H. Fukuyama. Application of chemiluminescent probe to monitoring superoxide radicals and hydrogen peroxide in TiO2 photocatalysis. J. Phys. Chem. B,1997,101:5822-5827.
    [120]K. Ishibashi, Y. Nosaka, K. Hashimoto, A. Fujishima. Time-dependent behavior of active oxygen species formed on photoirradiated TiO2 films in air.J. Phys. Chem. B, 1998,102:2117-2120.
    [121]L. Benov, L. Sztejnberg, I. Fridovich. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free. Radical. Bio. Med,1998,25: 826-831.
    [122]J. Butler, G. G. Jayson, A. J. Swallow. The reaction between the superoxide anion radical and cytochrome c. Biochim. Biophys. Acta.,1975,408:215-22.
    [123]M. M. Tarpey, D. A. Wink, M. B. Grisham. Methods for detection of reactive metabolites of oxygen and nitrogen:in vitro and in vivo considerations. Am. J. Physiol-Reg. I.,2004,286:R431-R444.
    [124]A. Ardestani, R. Yazdanparast. Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem.,2007,104:21-29.
    [125]D. Prakash, B. N. Singh, G. Upadhyay. Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chem.,2007,102:1389-1393.
    [126]庞战军.自由基医学研究方法.北京:人民卫生出版社,2000.
    [127]H. Goto, Y. Hanada, T. Ohno, M. Matsumura. Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles.J. Catal.,2004,225:223-229.
    [128]B. H. J. Bielski, G. G. Shiue, S. Bajuk. Reduction of nitro blue tetrazolium by CO2' and O2- radicals. J. Phys. Chem.,1980,84:830-833.
    [129]勾艳玲,李汉成,刘丽.水发产品浸泡液中过氧化氢残留量测定.中国卫生检验杂志,2004,14:65-66.
    [130]俞绍才.大气和降水中过氧化氢的测定方法.中国环境监测,1992,8:49-52.
    [131]徐金荣,陈忠明.高效液相色谱-荧光检测法测定环境样品中的过氧化物.色谱2005,23:366-370.
    [132]郭治安,赵景婵,党高潮,常建华.离子抑制色谱法测定消毒剂中的过氧乙酸和过氧化氢.色谱,2003,21:524-526.
    [133]K. Yamamoto, T. Ohgaru, M. Torimura, H. Kinoshita, K. Kano, T. Ikeda. Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry. Anal. Chim. Acta,2000,406:201-207.
    [134]M. I. Stefan, J. R. Bolton. Mechanism of the degradation of 1,4-dioxane in dilute aqueous solution using the UV hydrogen peroxide process. Environ. Sci. Technol., 1998,32:1588-1595.
    [135]张国芳,陈洪渊.流动注射胶束电化学发光测定过氧化氢的研究.分析科学学报,2001,171:1-5.
    [136]徐晓斌,王美蓉.大气降水中H202的测定方法.环境化学,1990,9:25-31.
    [137]D. Janasek, U. Spohn. Chemiluminometric flow Injection analysis procedures for the enzymatic determination of 1-alanine, a-ketoglutarate and 1-glutamate. Biosens. Bioelectron.,1999,14:123-129.
    [138]朱昌青,李东辉,郑洪,朱庆枝,许金钩.利用四磺基锰酞菁催化酪氨酸与过氧化氢荧光反应测定环境水样中的过氧化氢.厦门大学学报(自然科学版),2001,40:68-73.
    [139]蒋治良,李纪顺,张南南,梁爱惠,刘庆业,黄智.(Au)核(Ag)壳纳米微粒光度法快速检测过氧化氢.高等学校化学学报,2008,29:1953-1958.
    [140]X. S. Chai, Q. X. Hou, Q. Luo, J. Y. Zhu. Rapid determination of hydrogen peroxide in the wood pulp bleaching streams by a dual-wavelength spectroscopic method. Anal. Chim.Acta,2004,507:281-284.
    [141]朱文君.ZnO抗菌性能与机理研究.西南交通大学硕士论文,2010.
    [142]C. Mottley, H. D. Connor, R. P. Mason. [17O]oxygen hyperfine structure for the hydroxyl and superoxide radical adducts of the spin traps DMPO, PBN and 4-POBN. Biochem. Bioph. Res. Co,1986,141:622-628.
    [143]T. J. Mason, J. P. Lorimer, D. M. Bates, Y. Zhao. Dosimetry in sonochemistry-the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason. Sonochem., 1994,1:S91-S95.
    [144]Z. W. Zhou, H. Deng, J. Yi, S. K. Liu. A new method for preparation of zinc oxide whiskers. Mater. Res. Bull.,1999,34:1563-1567.
    [145]E. S. Kumar, S. Venkatesh, M. S. R. Rao. Oxygen vacancy controlled tunable magnetic and electrical transport properties of (Li, Ni)-codoped ZnO thin films. Appl. Phys. Lett.,2010,96:232504
    [146]A. Janotti, C. G. Van de Walle. Oxygen vacancies in ZnO. Appl. Phys. Lett.,2005, 87.
    [147]D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, et al. Properties of the oxygen vacancy in ZnO. Appl. Phys. A-mater.,2007,88:147-151.
    [148]A. B. Djurisic, Y. H. Leung. Optical properties of ZnO nanostructures. Small,2006, 2:944-961.
    [149]L. Q. Jing, Z. L. Xu, X. J. Sun, J. Shang, W. M. Cai. The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl. Surf. Sci.,2001,180: 308-314.
    [150]X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang, C. Yang. Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Physica. B,2007,388:145-152.
    [151]Y. G. Chang, J. Xu, Y. Y. Zhang, S. Y. Ma, L. H. Xin, L. N. Zhu, et al. Optical properties and photocatalytic performances of Pd modified ZnO samples. J. Phys. Chem. C,2009,113:18761-18767.
    [152]W. W. Lu, S. Y. Gao, J. J. Wang. One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance.J. Phys. Chem. C, 2008,112:16792-16800.
    [153]B. Panigrahy, M. Aslam, D. S. Misra, M. Ghosh, D. Bahadur. Defect-related emissions and magnetization properties of ZnO nanorods. Adv. Funct. Mater.,2010, 20:1161-1165.
    [154]F. Gallino, C. Di Valentin, G. Pacchioni, M. Chiesa, E. Giamello. Nitrogen impurity states in polycrystalline ZnO. A combined EPR and theoretical study. J. Mater. Chem.,2010,20:689-697.
    [155]L. S. Vlasenko. Magnetic resonance studies of intrinsic defects in ZnO:Oxygen vacancy. Appl. Magn. Reson.,2010,39:103-111.
    [156]H. P. Kasai. Electron spin resonance studies of donors and acceptors in ZnO. Phys. Rev.,1963,130:989-995.
    [157]S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal, D. Jana. Role of defects in tailoring structural, electrical and optical properties of ZnO. Prog. Mater. Sci.,2009,54:89-136.
    [158]M. Andersson, A. Kiselev, L. Osterlund, A. E. C. Palmqvist. Microemulsion-mediated room-temperature synthesis of high-surface-area rutile and its photocatalytic performance.J. Phys. Chem. C,2007,111:6789-6797.
    [159]K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir,2004,20:2900-2907.
    [160]Z. S. Lin, A. Orlov, R. M. Lambert, M. C. Payne. New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. J. Phys. Chem. B,2005,109:20948-20952.
    [161]H. Noei, H. S. Qiu, Y. M. Wang, E. Loffler, C. Woll, M. Muhler. The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys. Chem. Chem. Phys.,2008,10:7092-7097.
    [162]T. M. B(?)rseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, M. Willander. Identification of oxygen and zinc vacancy optical signals in ZnO. Appl. Phys. Lett.,2006,89:262112.
    [163]S. J. Park, Y. C. Park, S. W. Lee, M. S. Jeong, K. N. Yu, H. Jung, et al. Comparing the toxic mechanism of synthesized zinc oxide nanomaterials by physicochemical characterization and reactive oxygen species properties. Toxicol. Lett.,2011,207: 197-203.
    [164]M. Li, L. Z. Zhu, D. H. Lin. Toxicity of ZnO nanoparticles to Escherichia coil: Mechanism and the influence of medium components. Environ. Sci. Technol.,2011, 45:1977-1983.
    [165]D. Hufschmidt, L. Liu, V. Selzer, D. Bahnemann. Photocatalytic water treatment: fundamental knowledge required for its practical application. Water Sci. Technol., 2004,49:135-140.
    [166]Y Nosaka, S. Komori, K. Yawata, T. Hirakawa, A. Y. Nosaka. Photocatalytic·OH radical formation in TiO2 aqueous suspension studied by several detection methods. Phys. Chem. Chem. Phys.,2003,5:4731-4735.
    [167]S. H. Szczepankiewicz, A. J. Colussi, M. R. Hoffmann. Infrared spectra of photoinduced species on hydroxylated titania surfaces. J. Phys. Chem. B,2000,104: 9842-9850.
    [168]J. Cunningham, S. Srijaranai. Isotope-effect evidence for hydroxyl radical involvement in alcohol photo-oxidation sensitized by TiO2 in aqueous suspension.J. Photoch. Photobio. A,1988,43:329-335.
    [169]A. Fujishima, N. T. Rao, A. D. Tryk. Titanium dioxide photocatalysis. J. Photoch. Photobio. C,2000,1:1-21.
    [170]I. Ilisz, A. Dombi. Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. Ⅱ. Effect of charge-trapping species on product distribution. Appl. Catal. A-Gen.,1999,180:35-45.
    [171]M. Muruganandham, M. Swaminathan. Photochemical oxidation of reactive azo dye with UV-H2O2 process. Dyes. Pigments,2004,62:269-275.
    [172]C. Baiocchi, M. C. Brussino, E. Pramauro, A. B. Prevot, L. Palmisano, G. Marci. Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV-VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry. Int. J. Mass. Spectrom.,2002,214:247-256.
    [173]Y. J. Li, X. D. Li, J. W. Li, J. Yin. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res.,2006,40:1119-1126.
    [174]S. Al-Quadawi, S. R. Salman. Photocatalytic degradation of methyl orange as a model compound.J. Photoch. Photobio. A,2002,148:161-168.
    [175]N. Q. Wu, J. Wang, D. Tafen, H. Wang, J. G. Zheng, J. P. Lewis, et al. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) Nanobelts. J.Am. Chem. Soc.,2010,132:6679-6685.
    [176]杨世迎.Ti02光催化降解有机污染物的初始步骤机理研究.浙江大学博士学位论文,2005,博士
    [177]G. A. Parks. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev.,1965,65:177-198.
    [178]A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, et al. Silver colloid nanoparticles:Synthesis, characterization, and their antibacterial activity.J. Phys. Chem. B,2006,110:16248-16253.
    [179]K. C. Anyaogu, A. V. Fedorov, D. C. Neckers. Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir,2008,24: 4340-4346.
    [180]Y. H. Kim, D. K. Lee, H. G. Cha, C. W. Kim, Y. S. Kang. Synthesis and characterization of antibacterial Ag-SiO2 nanocomposite.J. Phys. Chem. C,2007, 111:3629-3635.
    [181]Y. H. Kim, D. K. Lee, H. G. Cha, C. W. Kim, Y. C. Kang, Y. S. Kang. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles.J. Phys. Chem. B,2006,110:24923-24928.
    [182]K. Sunada, T. Watanabe, K. Hashimoto. Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environ. Sci. Technol.,2003,37: 4785-4789.
    [183]W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang, Y. B. Chen. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biot.,2010,85:1115-1122.
    [184]B. Sun, A. V. Vorontsov, P. G. Smirniotis. Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir,2003,19:3151-3156.
    [185]S. Kim, W. Choi. Dual photocatalytic pathways of trichloroacetate degradation on TiO2:Effects of nanosized platinum deposits on kinetics and mechanism. J. Phys. Chem. B,2002,106:13311-13317.
    [186]I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophytides, P. Falaras. Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation.J. Catal.,2003,220:127-135.
    [187]H. X. Li, Z. F. Bian, J. Zhu, Y. N. Huo, H. Li, Y. F. Lu. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc.,2007, 129:4538-+.
    [188]B. L. Zhu, K. R. Li, J. Zhou, S. R. Wang, S. M. Zhang, S. H. Wu, et al. The preparation of palladium-modified TiO2 nanofibers and their photocatalytic performance. Catalysis Communications,2008,9:2323-2326.
    [189]C. Belver, M. J. Lopez-Munoz, J. M. Coronado, J. Soria. Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors. Appl. Catal. B-Environ.,2003,46:497-509.
    [190]V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. McEvoy. Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. J. Photoch. Photobio. A,2002,148:233-245.
    [191]L. Z. Zhang, J. C. Yu, H. Y. Yip, Q. Li, K. W. Kwong, A. W. Xu, et al. Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir,2003,19: 10372-10380.
    [192]M. Gabas, S. Gota, J. R. Ramos-Barrado, M. Sanchez, N. T. Barrett, J. Avila, et al. Unraveling the conduction mechanism of Al-doped ZnO films by valence band soft x-ray photoemission spectroscopy. Appl. Phys. Lett.,2005,86.
    [193]Q.-B. Ma, Z.-Z. Ye, H.-P. He, S.-H. Hu, J.-R. Wang, L.-P. Zhu, et al. Structural, electrical, and optical properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering. J. Cryst. Growth,2007,304:64-68.
    [194]J. H. Park, M. G. Kim, H. M. Jang, S. Ryu, Y. M. Kim. Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett.,2004,84: 1338-1340.
    [195]D. A. Schwartz, K. R. Kittilstved, D. R. Gamelin. Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots. Appl. Phys. Lett.,2004,85:1395-1397.
    [196]P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater.,2003,2:673-677.
    [197]D. L. Hou, X. J. Ye, H. J. Meng, H. J. Zhou, X. L. Li, C. M. Zhen, et al. Magnetic properties of n-type Cu-doped ZnO thin films. Appl. Phys. Lett.,2007,90.
    [198]N. H. Hong, J. Sakai, A. Hassini. Magnetic properties of V-doped ZnO thin films. J. Appl. Phys.,2005,97.
    [199]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett.,2002,81:1830-1832.
    [200]S. S. Lin, J. G. Lu, Z. Z. Ye, H. P. He, X. Q. Gu, L. X. Chen, et al. p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes. Solid State Commun.,2008,148:25-28.
    [201]C. C. Lin, S. Y. Chen, S. Y. Cheng, H. Y. Lee. Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering. Appl. Phys. Lett.,2004,84:5040-5042.
    [202]R. Ding, H. Zhu, Q. Zeng. Fabrication of p-type ZnO thin films via magnetron sputtering and phosphorus diffusion. Vacuum,2008,82:510-513.
    [203]梁孝锡,孙檬茜,李良超,郝斌,陈柯宇,周琴.CuxZn1-xO纳米复合物的制备及其抗菌性能.武汉大学学报(理学版),2011,57:293-297.
    [204]K. G. Kanade, B. B. Kale, J.-O. Baeg, S. M. Lee, C. W. Lee, S.-J. Moon, et al. Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation. Mater. Chem. Phys.,2007,102:98-104.
    [205]B. Donkova, D. Dimitrov, M. Kostadinov, E. Mitkova, D. Mehandjiev. Catalytic and photocatalytic activity of lightly doped catalysts M:ZnO (M=Cu, Mn). Mater. Chem. Phys.,2010,123:563-568.
    [206]M. Fu, Y. Li, S. Wu, P. Lu, J. Liu, F. Dong. Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci.,2011, 258:1587-1591.
    [207]L. Yu, S. Yuan, L. Shi, Y. Zhao, J. Fang. Synthesis of Cu2+ doped mesoporous titania and investigation of its photocatalytic ability under visible light. Micropor. Mesopor. Mat,2010,134:108-114.
    [208]C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan, V. Anandi. Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light.J. Colloid Interf. Sci,2010,352:68-74.
    [209]井立强,孙志华,袁福龙,王百齐,辛柏福,付宏刚.La和Cu掺杂对纳米TiO2光生电荷性质的影响及其与光催化活性的关系.中国科学(B辑 化学),2006,36:53-57.
    [210]J. W. Wilson, C. M. Ott, K. H. z. Bentrup, R. Ramamurthy, L. Quick, S. Porwollik, et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. P. Natl. Acad. Sci. USA,2007,104:16299-16304.
    [211]J. D. Gu, M. Roman, T. Esselman, R. Mitchell. The role of microbial biofilms in deterioration of space station candidate materials. Int. Biodeter. Biodegr,1998,41: 25-33.
    [212]D. L. Pierson, R. M. McGinnis, N. A. Viktorov, Microbiological contamination. In Space Biology and Medicine F. M. Sulzman,A. M. Genin, Eds. American Institute of Aeronautics and Astronautics:Washington DC,1994; Vol.Ⅱ:pp 77-93.
    [213]X. A. Jian, M. Jiang, Z. W. Zhou, M. L. Yang, J. Lu, S. C. Hu, et al. Preparation of high purity helical carbon nanofibers by the catalytic decomposition of acetylene and their growth mechanism. Carbon,2010,48:4535-4541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700