用户名: 密码: 验证码:
家蚕30K蛋白的鉴定和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕是鳞翅目的模式昆虫,具有开放式的血液循环系统。血液在家蚕的生命活动中承担着重要的生理功能,它是体内各种营养物质和激素等的交换场所。家蚕的血液重量占整个体重的21%-25%,而血液蛋白质是血液的主要成分。家蚕30K蛋白是末龄幼虫和蛹期血液中含量最大的一群蛋白质,也是胚胎中主要的卵黄蛋白。30K蛋白属于鳞翅目昆虫低分子量脂蛋白家族。到目前为止,已在家蚕、烟草天蛾和粟夜蛾三个物种中鉴定到了该家族的同源蛋白。
     家蚕9倍基因组的组装成功,以及各种鳞翅目昆虫EST数据的公布,为系统性鉴定鳞翅目昆虫低分子量脂蛋白家族的成员奠定了良好的基础。本研究在此基础上,对鳞翅目昆虫的低分子量脂蛋白进行了鉴定,并对它们进行了结构分析和进化分析。此外,利用已公布的家蚕基因组和芯片数据,我们还对家蚕的低分子量脂蛋白基因进行了染色体定位分析、组织表达谱分析和发育时期表达谱分析。
     在获得了以上数据的基础上,本研究重点对家蚕低分子量脂蛋白家族中的典型30K蛋白亚家族进行了功能研究。利用已经制备获得的BmLP1和BmLP7的抗体,我们对30K蛋白基因的合成、分泌、转运和利用等进行了系统性的研究。另外,本研究还从家蚕血液中纯化获得了几种30K蛋白,利用氯仿和甲醇法提取了30K蛋白所结合的脂类,并进一步利用LC-MS/MS对30K蛋白所结合的脂类进行了质谱鉴定。
     本研究获得的主要结果如下:
     1.鳞翅目昆虫低分子量脂蛋白基因的鉴定
     (1)鳞翅目昆虫低分子量脂蛋白基因的鉴定:在家蚕基因组精细图序列数据和各种鳞翅目昆虫EST数据的基础上,本研究对鳞翅目昆虫的低分子量脂蛋白家族进行了鉴定。在蚕蛾总科、夜蛾总科和螟蛾总科的12个物种中,共鉴定到73个低分子量脂蛋白基因,它们的分布情况如下:家蚕46个、蓖麻蚕5个、琥珀蚕6个、印度柞蚕4个、烟草天蛾3个、草地贪夜蛾1个、粟夜蛾1个、西方豆类夜蛾1个、棉铃虫1个、甘蓝夜蛾1个、粉纹夜蛾1个和豆荚野螟蛾1个。在鉴定获得的73个基因中,有56个基因为首次鉴定。
     (2)低分子量脂蛋白的结构分类:对鉴定到的基因进行序列比对,发现它们根据结构可以分为三个亚家族:典型30K蛋白(Typical30KP)、富含丝氨酸和苏氨酸的30K蛋白(S/T-rich30KP)和ENF肽结合蛋白(ENF-BP)。这三个亚家族有着相似的C端序列,都由一个NTD和一个CTD组成,而它们的N端序列差别很大。典型30K蛋白的N端由信号肽和一段很短的不保守区域组成;S/T-rich30KP的N端则由信号肽和一个富含丝氨酸和苏氨酸的结构域(STD)组成;ENF肽结合蛋白的N端由一个恶臭假单胞菌同源区(PPD)组成。
     (3)低分子量脂蛋白的进化分析:在蚕蛾总科中,同时存在典型30K蛋白、富含丝氨酸和苏氨酸的30K蛋白和ENF肽结合蛋白亚家族。但在夜蛾总科和螟蛾总科中,我们只鉴定到了ENF肽结合蛋白亚家族。并且,在全基因组已被测序的棉铃虫中,也只能鉴定到ENF肽结合蛋白亚家族。这些结果表明,ENF肽结合蛋白亚家族是三个亚家族中起源最早的一个亚家族。富含丝氨酸和苏氨酸的30K蛋白只在家蚕中鉴定到,可能为家蚕特有的一群低分子量脂蛋白。
     2.家蚕低分子量脂蛋白基因的特征分析
     (1)家蚕低分子量脂蛋白基因的染色体定位:家蚕中共鉴定到46个低分子量脂蛋白基因,其中的43个基因能定位到染色体上。Bmlpl-Bmlp32(24个典型30K蛋白基因和8个富含丝氨酸和苏氨酸的30K蛋白基因)全部定位于第20号染色体的nscaf2795重叠群上的970Kbp(1380K-2350K)区域内,它们在染色体上呈串联重复分布。家蚕的10个ENF肽结合蛋白基因中,有8个基因构成了4个基因对(Bmlp37/38、Bmlp40/39、Bmlp41/42和Bmlp44/45),定位于第7号、22号和24号染色体上,每个基因对内的2个基因的转录方向相反。
     (2)家蚕低分子量脂蛋白基因的表达特征分析:家蚕中的三群低分子量脂蛋白基因的组织和时期表达特征各不相同,暗示它们存在功能的分化。典型30K蛋白基因主要在脂肪体和体壁中表达,部分30K蛋白基因在一龄到四龄幼虫期表达,部分在五龄幼虫到蛾期表达。ENF肽结合蛋白基因主要在血细胞中表达,可能参与了血细胞的免疫调控过程。富含丝氨酸和苏氨酸的30K蛋白基因主要在羽化前一天和化蛾第一天有表达,在精巢中的表达量很高,而在卵巢中几乎不表达。根据其富含丝氨酸和苏氨酸的特征,推测可能参与受精或者精子的形成过程。
     3.家蚕30K蛋白的合成、分泌、转运和利用
     (1)家蚕30K蛋白的合成和分泌:通过RT-PCR技术分析不同发育时期脂肪体中30K蛋白基因的合成模式。同时,通过western blotting技术对不同发育时期血液中30K蛋白的变化情况进行分析。综合以上两方面结果,表明30K蛋白是由脂肪体合成,然后分泌入血液。
     (2)家蚕30K蛋白的转运:在蛹期和蛾期时,血液中的30K蛋白逐渐减少,而卵巢中的30K蛋白却逐渐增加。RT-PCR结果表明,卵巢中的30K蛋白并非自身合成而来。因此,卵巢中的30K蛋白可能是从血液中转运而来。通过制备30K蛋白亲和柱,对卵巢膜蛋白进行pull-down实验,发现卵黄原蛋白受体能与30K蛋白结合,因此推测卵黄原蛋白受体可能是介导30K蛋白转运的受体。免疫组织化学定位结果表明,30K蛋白主要转运进卵巢的卵母细胞内储存起来。
     (3)家蚕30K蛋白的利用:对不同发育时期的胚胎蛋白质进行western blotting分析,发现30K蛋白主要在胚胎的最后两天减少。对不同发育时期的胚胎进行酶活分析,发现酶活从胚胎第5天后升高,到蚁蚕时达到最大值。提取蚁蚕粗提物,并与30K蛋白进行体外孵育,发现蚁蚕粗提物能够降解30K蛋白。对第6天和第10天的胚胎进行免疫组织化学定位,结果表明30K蛋白在胚胎早期主要定位于胚外的卵黄颗粒中,在胚胎后期定位于胚子的肠腔内。综合以上结果,发现30K蛋白在反转期前定位于胚外卵黄颗粒中,反转期后由胚子吞入肠腔内,再由肠腔内的蛋白酶对30K蛋白进行降解,为蚁蚕的孵化提供能量来源。
     4.家蚕30K蛋白的纯化及其结合脂类的鉴定
     (1)30K蛋白的纯化:通过硫酸铵沉淀、疏水作用层析和阳离子交换层析成功地从家蚕五龄第7天血液中纯化到BmLP1、BmLP7、含2种30K蛋白的组分和含4种30K蛋白的组分。
     (2)30K蛋白载脂功能的验证:对纯化的30K蛋白进行SDS-PAGE电泳,并用油红O染色法染色,结果表明纯化得到的30K蛋白含有脂类,表明30K蛋白具有载脂功能。
     (3)30K蛋白所结合脂类的鉴定:采用氯仿和甲醇法提取30K蛋白所结合的脂类,并用LC-MS/MS进行鉴定。共鉴定到12种含量较高的脂类,其中分子式为C22H35O6、C25H31O8和C12H13O4的脂类较多,尤以分子式为C25H31Os的脂类最多,且该脂类含有多个同分异构体。但是,由于这些脂类分子结构较稳定,质谱碎裂时无法得到它们的结构信息,因而目前无法推测它们的结构式,需要进一步实验对其结构式进行鉴定。
     (4)胚胎中脂类的利用:利用薄层层析方法对不同发育时期胚胎中的脂类进行分离,结果显示脂类主要在胚胎后期被消化吸收,而30K蛋白也是在胚胎后期被利用。因此,我们认为在胚胎利用30K蛋白的同时,30K蛋白所结合的脂类也一起被胚胎利用。
     综合第3和第4点的结果,我们对家蚕30K蛋白的功能有了进一步的认识。从五龄期到上蔟期,几个30K蛋白基因(Bmlpl-Bmlp4,Bmlp7)在家蚕脂肪体中高量表达,之后分泌入家蚕血液中。在五龄末期的血液中30K蛋白含量最大,之后可能由卵黄原蛋白受体介导转运进卵巢的卵母细胞内。储存于卵巢内的30K蛋白直到下一个世代的胚胎期才被利用。30K蛋白最初位于胚外的卵黄颗粒中,到反转期后由胚子吞入肠腔内,肠腔内合成的降解酶对30K蛋白进行降解而被利用。同时,30K蛋白所结合的脂类也一同被利用,为蚁蚕孵化提供能量
Bombyx mori, the domesticated silkworm, is a lepidopteran model insect. Similar to most lepidoptera, the silkworm has an open vessel system. Hemolymph is involved in many physiological function processes, such as nutrient and hormone transportation. Silkworm hemolymph comprises21%~25%of the body weight, whereas proteins account for6%of the hemolymph.30K proteins (30KP) are the most abundant protein components at the late fifth instar larval and pupal stages, and30K proteins are also plentiful in silkworm eggs.30K proteins are classified into lepidopteran low molecular weight lipoproteins family. To date,30K proteins homologs have only been identified in Bombyx mori, Manduca sexta and Pseudaletia separata.
     The9x coverage silkworm genome data has been assembled, as well as many publicly lepidopteran EST datasets are available. In our study, we identified lepidopteran low molecular weight lipoprotein genes based on these datasets, and then analyzed their structure and evolution. By using the published silkworm genome and microarray data, we analyzed the genome locations and the temporal-spatial expression patterns of lepidopteran low molecular weight lipoprotein genes.
     On this basis, the function of silkworm typical30K proteins of lepidopteran low molecular weight lipoproteins family was characterized. In our study, we performed systematic studies of30K proteins and revealed their synthesis, transportation and degradation by using the BmLP1and BmLP7antibody. The results provide valuable preferences for other30K proteins. We also purified several30K proteins, and then extracted lipids which bind to30K proteins, and identified them by LC-MS/MS.
     The main results are as follows:
     1. Identification of lepidopteran low molecular weight lipoprotein genes
     (1) Identification of lepidopteran low molecular weight lipoprotein genes:We performed an extensive survey of lepidopteran-derived genome and EST datasets. We identified7330KP homologous genes in12lepidopteran species (belong to Bombycoidea, Noctuoidea, and Pyraloidea), including B. mori (46), Samia cynthia ricini (5), Antheraea assama (6), Antheraea mylitta (4), M. sexta (3), Spodoptera frugiperda (1), Pseudaletia separate (1), Striacosta albicosta (1), Heliothis virescens (1), Mamestra brassicae (1), Trichoplusia ni (1), and Maruca vitrata (1). Among these identified genes,5630KP genes are novel members.
     (2) Classification of lepidopteran low molecular weight lipoproteins:The multiple sequence alignment results revealed that the identified30KP homologous genes could be classified into three groups:ENF-BP genes, typical30KP genes, and serine/threonine-rich30KP (S/T-rich30KP) genes. The C-terminal regions are common to all the three subfamilies (NTD and CTD), but the N-termini are highly variable. The N-terminal region of typical30KP is composed of the signal peptides and an unconserved region. S/T-rich30KP have an exclusive S/T-rich domain between signal peptides and NTD in the N terminus. ENF-BP was found to contain a special domain in the N terminus, which is homologous to Pp-0912of Pseudomonas putida.
     (3) Phylogenetic analysis of lepidopteran low molecular weight lipoprotein genes: In Bombycoidea insects, we found typical30KP genes, S/T-rich30KP and ENF-BP genes. However, in Noctuidea and Pyralidea, we only found ENF-BP genes. By searching against the whole genome data of H.virescens (unpublished data), we identify a total of four30KP genes, all of which belong to ENF-BP subfamily. Therefore, ENF-BP subfamily may be the origin of lepidopteran low molecular weight lipoprotein family. S/T-rich30KPs were only found in B. mori, and may be a Bombyx-specific low molecular weight lipoprotein subfamily.
     2. Characterization of silkworm low molecular weight lipoproteins
     (1) Genome locations of silkworm low molecular weight lipoprotein genes:46low molecular weight lipoprotein genes were identified in the silkworm, and43genes could be located on the chromosomes.24typical30KP genes (Bmlpl-Bmlp24) and8S/T-rich30KP genes (BmIp24-Bmlp32) exist in nscaf2795of Chr.20. The32genes are confined within970Kbp (1380K-2350K) and display a tandem pattern. Four sense and antisense transcnptional pairs (Bmlp37/38and Bmlp40/39and Bmlp41/42and Bmlp44/45) of ENF-BPs exist on chromosome7,22, and24in B. mori.
     (2) Temporal-spatial expression patterns of silkworm low molecular weight lipoprotein genes:The three groups have their respective temporal-spatial expression patterns, which revealed the functional divergence of three subfamilies. ENF-BP genes are mainly expressed in the hemocyte. Typical30KP genes are expressed mainly in the fat body and integument. The cluster analysis on30KP genes suggested that they show five different temporal expression profiles in the whole life cycle. S/T-rich30KP genes are expressed highly in testis, whereas lowly in ovary during the metamorphosis in which a pupa turns into an adult. S/T-rich30KPs may be involved in the process of spermatogenesis or fertilization because they are expressed highly in testis.
     3. The synthesis, transportation, degradation and utilization of30K proteins
     (1) The synthesis and secretion of30K proteins:RT-PCR was used to analyze the developmental expression profile of30K protein genes in the fat body. The protein level of30K protein in the hemolymph was detected by western blotting using the antibody. Comparative analysis revealed that30K proteins were synthesized in fat body and then secreted into hemolymph.
     (2) The transportation of30K proteins:In the pupal and adult stage, the protein level of30K proteins decreases gradually in the hemolymph, whereas increasing in the ovary. Our results revealed that the30K proteins in the ovary were transported mostly from the hemolymph and not the result of mRNA translation in the ovary. We made a30K proteins affinity chromatography column. The result of pull-down assays of membrane proteins of ovary showed that30K proteins could interact with vitellogenin receptor. We speculated that vitellogenin receptor is the receptor of30K proteins, but further investigation is needed before we address a definite conclusion. We used immunohistochemistry to confirm the location of30K proteins in the ovary and found that most of30K proteins were located in the oocyte of eggs.
     (3) The utilization of30K proteins:Western blotting analysis showed that30K proteins were present at only very low levels at days9and10during embryogenesis. The proteolytic activity of the crude extracts from eggs or newly hatched larvae was measured throughout embryogenesis of the silkworm, and suggested that protease activity increase from day5eggs and attained a maximum in the newly hatched larvae. The densitometry showed that30K proteins were degraded after being incubated with the crude extracts of the newly hatched larvae. Immunohistochemistry revealed that strong signals for30K proteins were detected in the extraembryonic yolk granules at day6eggs. At day10eggs,30K proteins filled the whole gut lumen. Integrated these data suggest that3OK proteins first loacted in the extraembryonic yolk granules at day6eggs, when the embryonic reverse (blastokinesis) is completed,30K proteins are then ingested into the gut lumen. Our data clearly shows that degradation of30K proteins takes place in the gut lumen. We considered that degraded30K proteins may provide essential nutrients for hatching newly larvae.
     4. Purification of30K proteins and identification of the lipids which bind to30K proteins
     (1) Purification of30K proteins:We purified several30K proteins from day7fifth instar larvae by using ammonium sulfate precipitation, hydrophobic chromatography and cation exchange chromatography. The30K proteins including fraction of2kinds of30K proteins, fraction of4kinds of30K proteins, BmLPl and BmLP7.
     (2)30K proteins can bind to lipids:The purified30K proteins were separated by SDS-PAGE. The result of oil red-O staining suggested that all purified30K proteins could bind to lipids.
     (3) Identification of the lipids of30K proteins:The lipids of30K proteins were extracted by using chloroform/methanol (2/1) mixture and then analyzed by LC-MS/MS. In total, we identified12lipids, and three lipids (molecular formulas are C22H35O6, C25H31O8, and C12H13O4) are abundant component. The lipid whose molecular formula is C25H31O8is the most abundant, and it has various isomerides. However, these lipids are too stable to obtain more information about their structure formula. So, we can not detecte their structure formula and we will detect the structure formula in future.
     (4) The utilization of lipids during embryogenesis:Thin-layer chromatography was performed to analyze the change pattern of lipids during embryogenesis. We found that the lipids decrease in the anaphase of embryogenesis. Therefore, we suggested that30K proteins together with the lipids were utilized in the anaphase of embryogenesis to provide essential nutrients for hatching newly larvae.
     Taken together with3and4, we found that30K protein genes(Bmlp1-Bmlp4, Bmlp7) were synthesized in fat body and then secreted into hemolymph from the fifth instar larval stage to wandering stage.30K proteins attained the maximum in the anaphase of the fifth instar, and then transported to the oocyte of eggs of ovary. Vitellogenin receptor is the possible receptor of30K proteins.30K proteins did not be utilized until the next generation.30K proteins were first loacted in the extraembryonic yolk granules, when the embryonic reverse is completed,30K proteins could be easily ingested into the gut lumen.30K proteins were degraded by de novo proteases in the gut lumen.30K proteins together with their binding lipids were utilized in the anaphase of embryogenesis to provide essential nutrients for embryogenesis.
引文
[1]Vierstraete, E., Cerstiaens, A., Baggerman, G. et al. Proteomics in Drosophila melanogaster:first 2D database of larval hemolymph proteins[J]. Biochem Biophys Res Commun,2003,304(4): 831-838.
    [2]Xiang, Z. H., Huang, J. T., Xia, J. G. et al. Biology of Sericulture (China Forestry Publishing House, Beijing)[J].2005.
    [3]Tsuchida, K., Yokoyama, T., Sakudoh, T. et al. Apolipophorin-Ⅲ expression and low density lipophorin formation during embryonic development of the silkworm, Bombyx mori[J]. Comp Biochem Physiol B Biochem Mol Biol,2010,155(4):363-370.
    [4]Izumi, S., Tomino, S. Purification and molecularproperties of vitellin from the silkworm, Bombyx mori[J]. Insect Biochemistry,1980,10(2):199-208.
    [5]泉进.,富野士良.昆虫变态时の蛋白质代谢[J].(要旨)动杂,1976,(85):406.
    [6]Raikhel, A. S., Dhadialla, T. S. Accumulation of yolk proteins in insect oocytes[J]. Annu Rev Entomol,1992,37:217-251.
    [7]Sappington, T. W., Raikhel, A. S. Molecular characteristics of insect vitellogenins and vitellogenin receptors[J]. Insect Biochem Mol Biol,1998,28(5-6):277-300.
    [8]Tojo, S., Nagata, M., Kobayashi, M. Storage proteins in the silkworm Bombyx mori.[J]. Insect Biochemistry,1980, (10):289-303.
    [9]Mine, E., Izumi, S., Katsuki, M. et al. Developmental and sex-dependent regulation of storage protein synthesis in the silkworm, Bombyx mori[J]. Dev Biol,1983,97(2):329-337.
    [10]官建,赵萍,侯勇等.家蚕体液低分子蛋白ApolipophorinⅢ的质谱鉴定及表达分析[J].动物学报,2008,54(1):122-127.
    [11]Izumi, S., Fujie, J., Yamada, S. et al. Molecular properties and biosynthesis of major plasma proteins in Bombyx mori[J]. Biochemica et Biophysica Acta,1981,660:222-229.
    [12]Sakai, N., Mori, S., Izumi, S. et al. Structures and expression of mRNAs coding for major plasma proteins of Bombyx mori[J]. Biochim Biophys Acta,1988,949(2):224-232.
    [13]Hou, Y., Zou, Y., Wang, F. et al. Comparative analysis of proteome maps of silkworm hemolymph during different developmental stages[J]. Proteome Sci,2010,8:45.
    [14]Kuwana, J., Takami, T. Insecta (Kume M, Dan K, eds). NY:Garland, Invertebrate Embryology.[J].1968:86-116.
    [15]Ueno, K., Nagata, T., Suzuki, Y. Roles of Homeotic Genes in the Bombyx Body plan. (Goodsmith M. R., Wilkins A. S., eds.) Molecular Model Systems in the Lepidoptera. Cambridge, UK:Cambridge University Press[J].1995:165-180.
    [16]柴春利,鲁成.从形态学不同到基因水平差异:家蚕与果蝇早期胚胎发育比较[J].遗传,2006,28(9):1173-1179.
    [17]Zhu, J., Indrasith, L. S., Yamashita, O. Characterization of vitellin, egg-specific protein and 30 kDa protein from Bombyx eggs, and their fates during oogenesis and embryogenesis.[J]. Biochim Biophys Acta,1986,882:427-436.
    [18]Tufail, M., Takeda, M. Molecular characteristics of insect vitellogenins[J]. J Insect Physiol,2008, 54(12):1447-1458.
    [19]Ziegler, R., Van Antwerpen, R. Lipid uptake by insect oocytes[J]. Insect Biochem Mol Biol,2006, 36(4):264-272.
    [20]Stifani, S., Barber, D. L., Nimpf, J. et al. A single chicken oocyte plasma membrane protein mediates uptake of very low density lipoprotein and vitellogenin[J]. Proc Natl Acad Sci U S A, 1990,87(5):1955-1959.
    [21]Schneider, W. J. Vitellogenin receptors:oocyte-specific members of the low-density lipoprotein receptor supergene family[J].Int Rev Cytol,1996,166:103-137.
    [22]Lu, H. L., Vinson, S. B., Pietrantonio, P. V. Oocyte membrane localization of vitellogenin receptor coincides with queen flying age, and receptor silencing by RNAi disrupts egg formation in fire ant virgin queens[J]. FEBSJ,2009,276(11):3110-3123.
    [23]Liu,O.N., Zhu, B. J., Liu, C. L. et al. Characterization of vitellogenin receptor (VgR) from the Chinese oak silkworm, Antheraea pernyi[J]. Bulletin of Insectology,2011,64(2):167-174.
    [24]Shu, Y. H., Wang, J. W., Lu, K. et al. The first vitellogenin receptor from a Lepidopteran insect: molecular characterization, expression patterns and RNA interference analysis[J]. Insect Mol Biol,2011,20(1):61-73.
    [25]Roth, Z., Khalaila, I. Identification and Characterization of the Vitellogenin Receptor in Macrobrachium rosenbergii and Its Expression During Vitellogenesis[J]. Molecular Reproduction & Development,2012, (79):478-487.
    [26]Sappington, T. W., Kokoza, V. A., Cho, W. L. et al. Molecular characterization of the mosquito vitellogenin receptor reveals unexpected high homology to the Drosophila yolk protein receptor[J]. Proc Natl Acad Sci USA,1996,93(17):8934-8939.
    [27]Tufail, M., Takeda, M. Molecular cloning and developmental expression pattern of the vitellogenin receptor from the cockroach, Leucophaea maderae[J].Insect Biochem Mol Biol, 2007,37(3):235-245.
    [28]Tufail, M., Takeda, M. Molecular cloning, characterization and regulation of the cockroach vitellogenin receptor during oogenesis[J]. Insect Mol Biol,2005,14(4):389-401.
    [29]Hjalm, G., Murray, E., Crumley, G. et al. Cloning and sequencing of human gp330, a Ca(2+)-binding receptor with potential intracellular signaling properties[J]. Eur J Biochem,1996, 239(1):132-137.
    [30]Schonbaum, C. P., Lee, S., Mahowald, A. P. The Drosophila yolkless gene encodes a vitellogenin receptor belonging to the low density lipoprotein receptor superfamily[J]. Proc Natl Acad Sci USA,1995,92(5):1485-1489.
    [31]Chen, M. E., Lewis, D. K., Keeley, L. L. et al. cDNA cloning and transcriptional regulation of the vitellogenin receptor from the imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae)[J]. Insect Mol Biol,2004,13(2):195-204.
    [32]Mitchell III, R. D., Ross, E., Osgood, C. et al. Molecular characterization, tissue-specific expression and RNAi knockdown of the first vitellogenin receptor from a tick[J]. Insect Biochem Mol Biol,2007,37(4):375-388.
    [33]Boldbaatar, D., Battsetseg, B., Matsuo, T. et al. Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite[J]. Biochem Cell Biol, 2008,86(4):331-344.
    [34]Tufail, M., Takeda, M. Insect vitellogenin/lipophorin receptors:molecular structures, role in oogenesis, and regulatory mechanisms[J]. J Insect Physiol,2009,55(2):87-103.
    [35]Jeon, H., Blacklow, S. C. An intramolecular spin of the LDL receptor beta propeller[J]. Structure, 2003,11(2):133-136.
    [36]Willnow, T. E. The low-density lipoprotein receptor gene family:multiple roles in lipid metabolism[J]. J Mol Med (Berl),1999,77(3):306-315.
    [37]Herz, J., Bock, H. H. Lipoprotein receptors in the nervous system[J]. Annu Rev Biochem,2002, 71:405-434.
    [38]Djordjevic, J. T., Waterkeyn, J. G., Hennessy, K. L. et al. Role of phosphorylation of the cytoplasmic domain of the alpha(2)-macroglobulin receptor (LRP)[J]. Cell Biol Int,2000,24(9): 599-610.
    [39]Herz, J., Gotthardt, M., Willnow, T. E. Cellular signalling by lipoprotein receptors[J]. Curr Opin Lipidol,2000,11(2):161-166.
    [40]Trommsdorff, M., Borg, J. P., Margolis, B. et al. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein[J]. J Biol Chem,1998, 273(50):33556-33560.
    [41]Trommsdorff, M., Gotthardt, M., Hiesberger, T. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2[J]. Cell,1999, 97(6):689-701.
    [42]Stockinger, W., Brandes, C., Fasching, D. et al. The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and -2[J]. J Biol Chem,2000,275(33):25625-25632.
    [43]Gotthardt, M., Trommsdorff, M., Nevitt, M. F. et al. Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction[J]. J Biol Chem,2000,275(33): 25616-25624.
    [44]Takeda, T., Yamazaki, H., Farquhar, M. G. Identification of an apical sorting determinant in the cytoplasmic tail of me:galin[J]. Am J Physiol Cell Physiol,2003,284(5):C1105-1113.
    [45]Chen, Y. L., Yamashita, O. Nonselective uptake of different 30 kDa plasma proteins by developing ovaries of the silkworm, Bombyx mori[J]. J Seric Sci Jpn,1990, (59):202-209.
    [46]Irie, K., Yamashita, O. Egg-specific protein in the silkworm, Bombyx mori:Purification, properties, localization and titer changes during oogenesis and embryogenesis. [J]. Insect Biochem 1983, (13):71-80.
    [47]Indrasith, L. S., Sasaki, T., Yamashita, O. A unique protease responsible for selective degradation of a yolk protein in Bombyx mori. Purification, characterization, and cleavage profile[J]. J Biol Chem,1988,263(2):1045-1051.
    [48]Yamamoto, Y., Takahashi, S. Y. Cysteine proteinase from Bombyx eggs:role in programmed degradation of yolk proteins during embryogenesis[J]. Comp Biochem Physiol B,1993,106(1): 35-45.
    [49]Indrasith, L. S., Furusawa, T., Shikata, M. et al. Limited degradation of vitellin and egg-specific protein in Bombyx eggs during embryogenesis.[J]. Insect Biochemistry,1987,17:539-545.
    [50]Ikeda, M., Sakai, T., Yamashita, O. Purification and characterization of proteases responsible for vitellin degradation of the silkworm, Bombyx mori[J]. Insect Biochem,1990,20(7):725-734.
    [51]Ikeda, M., Yaginuma, T., Kobayashi, M. et al. cDNA cloning, sequencing and temporal expression of the protease responsible for vitellin degradation in the silkworm, Bombyx mori[J]. Comp Biochem Physiol B,1991,99(2):405-411.
    [52]Maki, N., Yamashita, O. Purification and characterization of a protease degrading 30 kDa yolk proteins of the silkworm, Bombyx mori[J]. Insect Biochem Mol Biol,1997,27(8-9):721-728.
    [53]Maki, N., Yamashita, O. The 30kP protease A responsible for 30-kDa yolk protein degradation of the silkworm, Bombyx mori:cDNA structure, developmental change and regulation by feeding[J]. Insect Biochem Mol Biol,2001,31(4-5):407-413.
    [54]Kawooya, J. K., Osir, E. O., Law, J. H. Physical and chemical properties of microvitellogenin. A protein from the egg of the tobacco hornworm moth, Manduca sexta[J]. J Biol Chem,1986, 261(23):10844-10849.
    [55]Van Antwerpen, R., Conway, R., Law, J. H. Protein and Hpoprotein uptake by developing oocytes of the hawkmoth Manduca sexta. An ultrastructural and immunocytochemical study[J]. Tissue Cell,1993,25(2):205-218.
    [56]Telfer, W. H. Egg formation in lepidoptera[J]. J Insect Sci,2009,9:1-21.
    [57]Matsumoto, Y, Oda, Y, Uryu, M. et al. Insect cytokine growth-blocking peptide triggers a termination system of cellular immunity by inducing its binding protein[J]. J Biol Chem,2003, 278(40):38579-38585.
    [58]Hu, Z. G., Chen, K. P., Yao, Q. et al. Cloning and characterization of Bombyx mori PP-BP a gene induced by viral infection[J]. Biochemica et Biophysica Acta,2006,33(11):975-983.
    [59]Aizawa, T., Hayakawa, Y., Nitta, K. et al. Structure and activity of insect cytokine GBP which stimulates the EGF receptor[J]. Mol Cells,2002,14(1):1-8.
    [60]Yang, J. P., Ma, X. X., He, Y. X. et al. Crystal structure of the 30K protein from the silkworm Bombyx mori reveals a new member of the beta-trefoil superfamily[J]. J Struct Biol,2011, 175(1):97-103.
    [61]Lerche, M. H., Poulsen, F. M. Solution structure of barley lipid transfer protein complexed with palmitate. Two different binding modes of palmitate in the homologous maize and barley nonspecific lipid transfer proteins[J]. Protein Sci,1998,7(12):2490-2498.
    [62]Murzin, A. G., Lesk, A. M., Chothia, C. beta-Trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukins-1 beta and 1 alpha and fibroblast growth factors[J]. J Mol Biol, 1992,223(2):531-543.
    [63]Fujimoto, Z., Kuno, A., Kaneko, S. et al. Crystal structures of the sugar complexes of Streptomyces olivaceoviridis E-86 xylanase:sugar binding structure of the family 13 carbohydrate binding module[J]. J Mol Biol,2002,316(1):65-78.
    [64]Grahn, E., Askarieh, G., Holmner, A. et al. Crystal structure of the Marasmius oreades mushroom lectin in complex with a xenotransplantation epitope[J]. J Mol Biol,2007,369(3): 710-721.
    [65]Mancheno, J. M., Tateno, H., Goldstein, I. J. et al. Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars[J]. J Biol Chem,2005,280(17): 17251-17259.
    [66]Maveyraud, L., Niwa, H., Guillet, V. et al. Structural basis for sugar recognition, including the Tn carcinoma antigen, by the lectin SNA-Ⅱ from Sambucus nigra[J]. Proteins,2009,75(1): 89-103.
    [67]Nakamura, T., Tonozuka, T., Ide, A. et al. Sugar-binding sites of the HA1 subcomponent of Clostridium botulinum type C progenitor toxin[J]. J Mol Biol,2008,376(3):854-867.
    [68]Notenboom, V., Boraston, A. B., Williams, S. J. et al. High-resolution crystal structures of the lectin-like xylan binding domain from Streptomyces lividans xylanase 10A with bound substrates reveal a novel mode of xylan binding[J]. Biochemistry,2002,41(13):4246-4254.
    [69]Suzuki, R., Kuno, A., Hasegawa, T. et al. Sugar-complex structures of the C-half domain of the galactose-binding lectin EW29 from the earthworm Lumbricus terrestris[J]. Acta Crystallogr D Biol Crystallogr,2009,65(Pt 1):49-57.
    [70]Hazes, B., Read, R. J. A mosquitocidal toxin with a ricin-like cell-binding domain[J]. Nat Struct Biol,1995,2(5):358-359.
    [71]Treiber, N., Reinert, D. J., Carpusca, I. et al. Structure and mode of action of a mosquitocidal holotoxin[J]. J Mol Biol,2008,381(1):150-159.
    [72]钟伯雄.家蚕胚胎发育时期的蛋白质变化及构造分析[J].遗传学报,1999,26(6):627-633.
    [73]Fujikawa, K., Kawaguchi, Y., Banno, Y. et al. Yolk of a "scanty vitellin" mutant, vit, of Bombyx mori is lacking in vitellin and 30 kDa proteins [J]. Camp Biochem Physiol 1995,112A:585-589.
    [74]Takeda, H., Kawaguchi, Y, Oshiki, T. et al. Impaired Yolk Protein Uptake by Oocytes of a Bombyx mori Mutant [J]. Insect Biochem Mol Biol,1996,26(6):607-616.
    [75]林英,赵萍,侯勇等.家蚕突变矮小卵血液蛋白及卵黄蛋白的研究[J].2003,29(4):355-358.
    [76]Zhong, B. X., Li, J. K., Lin, J. R. et al. Possible effect of 30K proteins in embryonic development of silkworm Bombyx mori[J]. Acta Biochim Biophys Sin (Shanghai),2005,37(5): 355-361.
    [77]Kim, E. J., Rhee, W. J., Park, T. H. Isolation and characterization of an apoptosis-inhibiting component from the hemolymph of Bombyx mori[J]. Biochem Biophys Res Commun,2001, 285(2):224-228.
    [78]Park, H. J., Kim, E. J., Koo, T. Y. et al. Purification of recombinant 30K protein produced in Escherichia coli and its anti-apoptotic effect in mammalian and insect cell systems[J]. Enzyme and Microbial Technology 2003, (33):466-471.
    [79]Kim, E. J., Park, H. J., Park, T. H. Inhibition of apoptosis by recombinant 30K protein originating from silkworm hemolymph[J]. Biochem Biophys Res Commun,2003,308(3): 523-528.
    [80]Kim, E. J., Park, H. J. Increase of host cell longevity by the expression of 30K protein originating from silkworm hemolymph in an insect cell-baculovirus system[J]. Enzyme and Microbial Technology,2004, (35):581-586.
    [81]Kim, E. J., Rhee, W. J., Park, T. H. Inhibition of apoptosis by a Bombyx mori gene[J]. Biotechnol Prog,2004,20(1):324-329.
    [82]Choi, S. S., Rhee, W. J., Kim, E. J. et al. Enhancement of recombinant protein production in Chinese hamster ovary cells through anti-apoptosis engineering using 30Kc6 gene[J]. Biotechnol Bioeng,2006,95(3):459-467.
    [83]Wang, Z., Park, J. H., Park, H. H. et al. Enhancement of recombinant human EPO production and sialylation in Chinese hamster ovary cells through Bombyx mori 30Kc19 gene expression[J]. Biotechnol Bioeng,2011,108(7):1634-1642.
    [84]Kim, M. Y, Song, H. Y, Kim, J. H. et al. Silkworm 30K protein inhibits ecdysone-induced apoptosis by blocking the binding of ultraspiracle to ecdysone receptor-B1 in cultured Bm5 cells[J]. Biochem Biophys Res Commun,2012.
    [85]Ujita, M., Kimura, A., Nishino, D. et al. Specific binding of silkworm Bombyx mori 30-kDa lipoproteins to carbohydrates containing glucose[J]. Biosci Biotechnol Biochem,2002,66(10): 2264-2266.
    [86]Ujita, M., Katsuno, Y, Kawachi, I. et al. Glucan-binding activity of silkworm 30-kDa apolipoprotein and its involvement in defense against fungal infection[J]. Biosci Biotechnol Biochem,2005,69(6):1178-1185.
    [87]Ueno, Y., He, N., Ujita, M. et al. Silkworm midgut proteins interacting with a hemolymph protease inhibitor, CI-8[J]. Biosci Biotechnol Biochem,2006,70(7):1557-1563.
    [88]Sawada, H., Yamahama, Y, Mase, K. et al. Molecular properties and tissue distribution of 30K proteins as ommin-binding proteins from diapause eggs of the silkworm, Bombyx mori[J]. Comp Biochem Physiol B Biochem Mol Biol,2007,146(2):172-179.
    [89]Sun, Q., Zhao, P., Lin, Y et al. Analysis of the structure and expression of the 30 K protein genes in silkworm, Bombyx mori[J]. Insect Sci,2007,14:5-14.
    [90]孙全.家蚕30K蛋白基因组分析及蛋白鉴定[J].西南大学硕士论文,2006.
    [91]刘鸿丽.家蚕30K蛋白LP7的分离纯化及功能初探[J].西南大学硕士论文,2008.
    [92]杨强.家蚕血液中30K蛋白的分离纯化及鉴定分析[J].西南大学硕士论文,2011.
    [93]International Silkworm Genome, C. The genome of a lepidopteran model insect, the silkworm Bombyx mori[J]. Insect Biochem Mol Biol,2008,38(12):1036-1045.
    [94]Xia, Q., Zhou, Z., Lu, C. et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori)[J]. Science,2004,306(5703):1937-1940.
    [95]Altschul, S. F., Madden, T. L., Schaffer, A. A. et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic Acids Res,1997,25(17):3389-3402.
    [96]Arunkumar, K. P., Tomar, A., Daimon, T. et al. WildSilkbase:an EST database of wild silkmoths[J]. BMC Genomics,2008,9:338.
    [97]Papanicolaou, A., Gebauer-Jung, S., Blaxter, M. L. et al. ButterflyBase:a platform for lepidopteran genomics[J]. Nucleic Acids Res,2008,36(Database issue):D582-587.
    [98]Negre, V., Hotelier, T., Volkoff, A. N. et al. SPODOBASE:an EST database for the lepidopteran crop pest Spodoptera[J]. BMC Bio informatics,2006,7:322.
    [99]Thompson, J. D., Gibson, T. J., Plewniak, F. et al. The CLUSTAL_X windows interface:flexible strategies for mutiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res, 1997,25:4876-4882.
    [100]Tamura, K., Dudley, J., Nei, M. et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Mol Biol Evol,2007,24(8):1596-1599.
    [101]Kumar, S., Tamura, K., Nei, M. MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment[J]. Brief Bioinform,2004,5(2):150-163.
    [102]Yuan, Z. H., Lan, X. Q., Yang, T. et al. Investigation and analysis of the bacteria community in silkworm intestine[J]. Acta Microbiologica Sinica,2006,46(2):285-291.
    [103]Adams, M. D., Celniker, S. E., Holt, R. A. et al. The genome sequence of Drosophila melanogaster[J]. Science,2000,287(5461):2185-2195.
    [104]Holt, R. A., Subramanian, G. M., Halpern, A. et al. The genome sequence of the malaria mosquito Anopheles gambiae[J]. Science,2002,298(5591):129-149.
    [105]Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera[J]. Nature 2006,443(7114):931-949.
    [106]Tribolium Genome Sequencing Consortium. The genome of the model beetle and pest Tribolium castaneum[J]. Nature,2008,452(7190):949-955.
    [107]Xia, Q., Cheng, D., Duan, J. et al. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori[J]. Genome Biol,2007,8(8):R162.
    [108]Golub, T. R., Slonim, D. K., Tamayo, P. et al. Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J]. Science,1999,286(5439):531-537.
    [109]Xue, Y., Ren, J., Gao, X. et al. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy[J]. Mol Cell Proteomics,2008,7(9):1598-1608.
    [110]Gao, X., Jin, C., Ren, J. et al. Proteome-wide prediction of PKA phosphorylation sites in eukaryotic kingdom[J]. Genomics,2008,92(6):457-463.
    [111]Wang, Y., Jiang, H., Kanost, M. R. Biological activity of Manduca sexta paralytic and plasmatocyte spreading peptide and primary structure of its hemolymph precursor[J]. Insect Biochem Mol Biol,1999,29(12):1075-1086.
    [112]Kamimura, M., Nakahara, Y., Kanamori, Y. et al. Molecular cloning of silkworm paralytic peptide and its developmental regulation[J]. Biochem Biophys Res Commun,2001,286(1): 67-73.
    [113]Gaunt, M. W., Miles, M. A. An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks[J]. Mol Biol Evol,2002,19(5):748-761.
    [114]Fujiwara, Y., Yamashita, O. Gene structure of Bombyx mori larval serum protein (BmLSP)[J]. Insect Mol Biol,1992,1(2):63-69.
    [115]Xu, Y., Fu, Q., Li, S. et al. Silkworm egg proteins at the germ-band formation stage and a functional analysis of BmEP80 protein[J]. Insect Biochem Mol Biol,2011,41(8):572-581.
    [116]Wang, X. Y., Cole, K. D., Law, J. H. The nucleotide sequence of a microvitellogenin encoding gene from the tobacco hornworm, Manduca sexta[J]. Gene,1989,80(2):259-268.
    [117]Andjelkovic, M., Jakubowicz, T., Cron, P. et al. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors[J]. Proc Natl Acad Sci USA,1996,93(12):5699-5704.
    [118]Espinosa, L., Ingles-Esteve, J., Aguilera, C. et al. Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways[J]. J Biol Chem,2003, 278(34):32227-32235.
    [119]Landberg, E., Pahlsson, P., Krotkiewski, H. et al. Glycosylation of bile-salt-stimulated lipase from human milk:comparison of native and recombinant forms[J]. Arch Biochem Biophys,1997, 344(1):94-102.
    [120]Lim, K., Chang, H. I. O-GlcNAcylation of Spl interrupts Spl interaction with NF-Y[J]. Biochem Biophys Res Commun,2009,382(3):593-597.
    [121]Peacock, S. L., Bates, M. P., Russell, D. W. et al. Human low density lipoprotein receptor expressed in Xenopus oocytes. Conserved signals for O-linked glycosylation and receptor-mediated endocytosis[J]. J Biol Chem,1988,263(16):7838-7845.
    [122]Tsujimura, A., Shida, K., Kitamura, M. et al. Molecular cloning of a murine homologue of membrane cofactor protein (CD46):preferential expression in testicular germ cells[J]. Biochem J, 1998,330 (Pt1):163-168.
    [123]Zeng, H., Di, L., Fu, G. et al. Phosphorylation of Bc110 negatively regulates T-cell receptor-mediated NF-kappaB activation[J]. Mol Cell Biol,2007,27(14):5235-5245.
    [124]Kueng, P., Nikolova, Z., Djonov, V. et al. A novel family of serine/threonine kinases participating inspermiogenesis[J].J Cell Biol,1997,139(7):1851-1859.
    [125]Casasnovas, J. M., Larvie, M., Stehle, T. Crystal structure of two CD46 domains reveals an extended measles virus-binding surface[[J]. EMBO J,1999,18(11):2911-2922.
    [126]Maisner, A., Alvarez, J., Liszewski, M. K. et al. The N-glycan of the SCR 2 region is essential for membrane cofactor protein (CD46) to function as a measles virus receptor[J]. J Virol,1996, 70(8):4973-4977.
    [127]Sharifmoghadam, M. R., Bustos-Sanmamed, P., Valdivieso, M. H. The fission yeast Map4 protein is a novel adhesin required for mating[J]. FEBS Lett,2006,580(18):4457-4462.
    [128]Miwa, T., Nonaka, M., Okada, N. et al. Molecular cloning of rat and mouse membrane cofactor protein (MCP, CD46):preferential expression in testis and close linkage between the mouse Mcp and Cr2 genes on distal chromosome 1[J]. Immunogenetics,1998,48(6):363-371.
    [129]Inoue, N., Ikawa, M., Nakanishi, T. et al. Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm[J]. Mol Cell Biol,2003,23(7):2614-2622.
    [130]Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248-254.
    [131]Tsuchida, K., Nagata, M., Suzuki, A. Hormonal control of ovarian development in the silkworm, Bombyx mori[J]. Archives of insect Biochemistry and Physiology 1987, (5):167-177.
    [132]Harper, S. M., Crenshaw, R. W., Mullins, M. A. et al. Lectin Binding to Insect Brush Border Membranes [J]. Journal of Economic Entomology,1995,88(5):1197-1202.
    [133]Zhu, K., Huesing, J. E., Shade, R. E. et al. An insecticidal N-acetylglucosamine-specific lectin gene from Griffonia simplicifolia (Leguminosae)[J]. Plant Physiol,1996,110(1):195-202.
    [134]Stoeva, S., Franz, M., Wacker, R. et al. Primary structure, isoforms, and molecular modeling of a chitin-binding mistletoe lectin[J]. Arch Biochem Biophys,2001,392(1):23-31.
    [135]Tang, L., Liang, J., Zhan, Z. et al. Identification of the chitin-binding proteins from the larval proteins of silkworm, Bombyx mori[J]. Insect Biochem Mol Biol,2010,40(3):228-234.
    [136]王艳霞.家蚕卵黄原蛋白受体(BmVgR)的全长克隆及功能分析[J].西南大学硕士论文,2010.
    [137]Zhao, P., Wang, G. H., Dong, Z. M. et al. Genome-wide identification and expression analysis of serine proteases and homologs in the silkworm Bombyx mori[J]. BMC Genomics,2010,11:405.
    [138]徐伟.基于石蜡切片技术的家蚕胚胎发育与Mago蛋白定位研究[J].西南大学硕士论文,2007.
    [139]Dorn, A., Bishoff, S. T., Gilbert, L. I. An incremental analysis of the embryonic development of the tobacco hornworm, Manduca sexta [J]. Int J Invert Reprod Develop,1987,11:137-158.
    [140]Yamashita, O., Yaginuma, T. Silkworm eggs at low temperatures:implications for sericulture. In "Insects at Low Temperature" Ed by RE Lee, DL Denlinger, Chapman and Hall, New Yolk.[J]. 1991:424-445.
    [141]Truman, J. W., Riddiford, L. M. The origins of insect metamorphosis[J]. Nature,1999, 401(6752):447-452.
    [142]宁丹谛,龚伟,俞正荣.应用硅胶G作人血清脂类薄层层析[J].南京医学院学报,1985,5(4).
    [143]Yamahama, Y., Seno, K., Hariyama, T. Changes in lipid droplet localization during embryogenesis of the silkworm, Bombyx mori[J]. Zoolog Sci,2008,25(6):580-586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700