用户名: 密码: 验证码:
拟南芥RETARDED ROOT GROWTH基因的图位克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物根中各组织的形成和生长均由根顶端分生组织的细胞增殖、分化而来。正确调控植物根分生组织的细胞分裂对维持根部正常生长是必需的。近些年来,在模式植物拟南芥中已经鉴定了一些重要的细胞分裂调控因子,但目前仍不清楚细胞分裂如何调控植物根的形态和生长。因此,利用相应突变体,研究其在分生组织细胞分裂中的功能有利于在发育水平上揭示细胞分裂调控的分子机制。本研究筛选并鉴定了一个根顶端分生组织有缺陷的突变体retarded root growth-1(rrg-1),克隆了RRG基因,并对其分子调控机制进行了研究,主要结果如下:
     1.用EMS诱变拟南芥哥伦比亚野生型(Col-0)种子,构建了含15000个株系的突变体库。从中筛选到一些有明显突变表型且能稳定遗传的突变体。将其中一个根部生长迟缓突变体命名为rrg-1,其表型特征为根短、根毛少而长、地上部分生长慢、种子畸形。
     2.遗传分析表明rrg-1突变为单基因隐性突变。用分布于拟南芥五条染色体上的22个SSLP标记对60个极端短根F2植株进行分析,把突变基因初定位在第一染色体nga280和ngal11两标记之间。进一步利用这两个标记之间的8个IND或SNP标记对721个F2短根单株进行分析,将突变基因界定到分子标记CER473407和CER481032之间约25.3kb的区域。通过比较测序,发现rrg-1突变体的Atlg69380有一个G-A的碱基突变,氨基酸则从谷氨酸变成了赖氨酸。
     3.构建互补载体并转化rrg-1,转基因植株的表型和野生型无异,证明rrg-1的短根表型是由Atlg69380突变引起的。从拟南芥数据库又鉴定出一个T-DNA插入突变体,表型和rrg-1相似,命名为rrg-2。RT-PCR分析表明,RRG在rrg-1中表达量降低,在rrg-2中不表达。观察发现,两突变体的胚根和野生型的没有明显差异,表明RRG对胚后根发育起调控作用。
     4.RRG由7个外显子和6个内含子组成,编码了一个具有373个氨基酸的未知功能蛋白。RRG包含一个N端线粒体信号肽、一个保守的DUF155结构域以及一个C端跨膜结构域。BLAST分析发现在植物、细菌、真菌和其它真核生物中都有RRG的同源基因,所有的同源基因都包含DUF155结构域,但其功能还不清楚。在推测的RRG同源基因中,酵母中的SIF2和RMND1与细胞分裂有关,这暗示RRG可能在拟南芥根分生区的细胞分裂中起作用。
     5.构建35S::RRG-GFP载体,转化野生型拟南芥。用共聚焦激光显微境观察拟南芥转化株的根尖,发现RRG-GFP的表达在根细胞中呈点状,表明RRG定位在某细胞器中。再利用线粒体染料MitoTracker Orange对拟南芥转基因植株根尖进行染色,发现MitoTracker Orange和RRG-GFP融合蛋白的荧光重合,证明荧光点就是线粒体。为进一步证明RRG-GFP定位于线粒体,我们用RRG-GFP和线粒体标记载体mt-rk CD3-991共转化烟草叶片表皮细胞,也观察到两载体的荧光在线粒体上共定位,因此确定RRG定位在线粒体。
     6.构建pRRG::GUS载体,转化拟南芥植株。GUS组织化学染色发现RRG基因主要在根分生组织的静止中心、皮层/内皮层干细胞及其子细胞、内皮层和中柱细胞表达,表明RRG在这些细胞中起作用。RRG在侧根中的表达模式和主根相同。此外,RRG在叶片和花粉中也有表达。
     7.测量WT和rrg突变体根部细胞,发现突变体的根分生组织明显减小,而成熟区皮层细胞长度没有明显变化,表明RRG主要在分生区起作用并正调控分生区大小。同时还发现突变体分生区细胞数目变少、皮层细胞变长。生长动力学研究也表明rrg根分生组织的皮层细胞增加总是比WT慢,rrg突变体的细胞增殖速度降低;在分生区皮层细胞数目变少的同时还发现皮层细胞变长,表明rrg突变体的分生区细胞延长加速。
     8.透射电镜观察根分生区细胞中线粒体的数量和结构,发现WT和rrg-2中单位细胞面积中线粒体的数量没有明显差异,但在结构上,与正常的线粒体相比,rrg-2中约82%的线粒体有空泡化现象,表明RRG是维持线粒体正常结构所需的。
     9.分析发现,rrg突变体根分生区细胞周期持续时间明显延长。用qRT-PCR分析了一些细胞周期相关基因在rrg-2中的表达量,其中CYCD4;1, E2Fa, DPa, DELI的表达量在rrg-2中没有明显变化,而HISTONE H4, CYCB1;1, CDKB1;1, WEE1在rrg-2中的表达量明显下降。同时,我们还分析了CycB1;1::GFP在根分生区的表达,rrg突变体处于G2-M期的细胞数目明显少于WT。这些实验表明细胞周期过程在突变体中受到影响。另外,细胞倍性分析表明突变体中4C,8C,16C细胞的比例比野生型低,2C细胞比例比WT高,表明突变体核内复制下降,进一步证明细胞分裂受到损害。
     10.将SHR::SHR-GFP,SCR::H2B-YFP和WOX5::ERGFP株系和rrg-2杂交,分析这些标记基因在rrg突变体背景下的表达情况。发现这些标记基因在突变体根分生组织中的表达水平和模式都没有改变,表明RRG没有参与调控静止中心(QC)及邻近干细胞的特性,其功能与这些根形态建成基因相独立。
     11.观察生长素反应标记载体DR5rev::GFP在rrg-2中的表达,发现RRG的突变并不影响该标记载体的表达;而且施加外源生长素NAA, IAA, IBA,或2,4-D,rrg-2突变体和WT根生长反应是一致的,表明rrg-2突变体对生长素的反应和敏感性没有缺陷。
     综上所述,RRG基因主要在根分生区表达,参与调控拟南芥胚后根的细胞分裂活动,但RRG与生长素信号和根的形态建成无关。RRG基因编码一个线粒体蛋白,rrg突变体中根分生区细胞中线粒体呈现大量的空泡化,表明植物线粒体在细胞分裂调控中起重要作用。我们的研究第一次揭示了拟南芥RRG基因调控根分生区细胞分裂活动,并为植物线粒体参与细胞分裂调控提供了新的证据。
In plants, the formation and growth of all root organizations are derived from cell proliferation and differentiation of root meristem. Accurate regulation of meristem cell division is important for normal root growth. In recent years, a number of important major regulatory factors in cell division have been identified, but how cell division progression regulates the morphology and growth of root meristem is still not clear. Therefore, identification and characterization of mutants that show defects in cell division will be helpful to reveal how cell division regulates the development of root meristem. In our study, we screened an EMS-mutagenized Arabidopsis thaliana mutant library and identified a mutant that displayed retarded root growth-1(rrg-1). We identified the RRG gene using the approach of map-based cloning and characterized its function in regulating root growth. The main results are presented as follows:
     1. We eatablished an ethylmethane sulfonate (EMS)-mutagenized Columbia-0(Col-0) pool containing15000lines and identified a number of mutants. One of the mutants displayed retarded root growth and was named as rrg-1. rrg-1has short root, sparse and long root hairs, slowly growth and wrinkle seeds.
     2. Genetic analysis indicated that the rrg-1mutation is single recessive. Sixty homozygous mutant plants were selected from the F2population and analyzed with22simple sequence length polymorphism (SSLP) markers evenly distributed on the five Arabidopsis chromosomes. The RRG was firstly located between the markers nga280and ngalll on chromosome1. For fine mapping,721plants conferring the rrg phenotypes were identified from the F2population and genotyped with eight INDEL and SNP markers between nga280and ngalll. The RRG locus was delimited to a25.3-kb region flanked by markers CER473407and CER481032on BAC clones F23O10and F10D13, respectively. Sequencing of the genomic DNA amplified from this region revealed a single G-to-A base change in the rrg-1mutant background, which led to a missense mutation from glutamic (Glu) to lysine (Lys) at the346th amino acid of the encoded protein of the At1g69380gene.
     3. Complementation test was carried out and all transgenic plants obtained were phenotypically indistinguishable from WT plants, confirming that the root growth phenotype observed in rrg-1were caused by the disruption of Atlg69380. In agreement with this result, a T-DNA insertion mutant in which the T-DNA fragment is located in the seventh exon of Atlg69380showed a similar short root phenotype as rrg-1. We thus renamed Atlg69380as RRG and designated the T-DNA mutant rrg-2. Notably, reverse transcription (RT)-PCR analysis of mRNA transcript levels of RRG in rrg-1, rrg-2and WT plants revealed that RRG transcript was absent in rrg-2but still present in rrg-1, although lower than that in WT, suggesting that rrg-1is a knock-down allele whereas rrg-2is null for the RRG gene. No obvious phenotypic abnormality was observed in the embryonic RAM of both mutant alleles when compared with the WT control, indicating that the role of RRG is confined to post-embryonic root development.
     4. The RRG gene consists of seven exons and six introns, and encodes a novel protein with373amino acids. More detailed protein sequence analysis revealed a mitochondria signal sequence at the amino terminus of the RRG protein, a conserved DUF155domain and a carboxy terminus transmembrane domain. Sequence search against NCBI protein database with the RRG protein identified putative orthologs of RRG in plant and non-plant organisms such as bacteria, fungi and other eukaryotes. All of these orthologs contain the DUF155domain whose function is not yet known. Two putative yeast orthologs of RRG, Sad1-interacting factor2(SIF2) and Required for Meiotic Nuclear Division1(RMND1), have been associated with cell division. This suggests a role for RRG in meristematic cell division in the Arabidopsis root.
     5. To examine the subcellular localization of RRG in living Arabidopsis cells, we generated transgenic Arabidopsis plants with the35S::RRG-GFP construct and analyzed the expression of RRG-GFP in vivo with confocal laser scanning microscope. We found that RRG-GFP expression was confined to small punctuate structures in root cells, indicating that RRG is localized to certain organelles, possibly mitochondria as suggested by protein sequence analysis. Indeed, we confirmed this possibility by showing that the mitochondria-specific dye MitoTracker Orange and the RRG-GFP fusion protein colocalize in the mitochondria. To further reveal the nature of the structures marked by RRG-GFP, we performed in tobacco leaf epidermal cells co-localization experiments of RRG-GFP with mt-rk CD3-991, a well-known mitochondria marker generated with a red fluorescent protein mcherry. We observed that RRG-GFP co-localized with mt-rk CD3-991at mitochondria and thus conclude that RRG is localized to mitochondria.
     6. We investigated the expression pattern of RRG gene in the Arabidopsis root and found that the RRG gene is preferentially expressed in quiescent center (QC) cells, cortex/endodermis stem cells and their daughter cells, endodermal and stele cells in the root meristem, suggesting a role for RRG in these cells. Moreover, we found that the expression pattern of pRRG::GUS in lateral roots was identical to that observed in primary roots, and that GUS staining could also be seen in leaves and pollen.
     7. The sizes of root meristem of WT and rrg mutants were compared. The average size of the root meristem was significant reduced and the average cortex cell length in the differentiation zone, however, was unchanged between WT and rrg mutants, suggesting that RRG functions specifically in the root meristem and RRG positively regulates the root meristem size. We thus analyzed the average cortex cell number and cell length in the root meristem of WT and rrg mutants. The average cortex cell number in the root meristem of rrg were significantly reduced and the kinematic analysis also showed that the increasing of cortex cells in rrg root meristem was always slower than that in the WT control, suggesting that the rate of cell proliferation was decreased in rrg mutants. In contrast, the cortex cell length in root meristem of rrg mutants was significantly increased compared to the WT control, suggesting that cell elongation in the meristematic cells was accelerated in the rrg mutant background.
     8. We examined the number and structure of mitochondria in the root meristem cells of WT and mutant plants by using transmission electron microscope. We analyzed the section plane of mitochondria in multiple sections and found that the number of mitochondria per unit cell area in rrg-2was comparable with that of WT, but a vast majority of mitochondria (82%) in mutant cells displayed internal vacuolization compared to WT controls. The results suggest that RRG is required for the maintenance of mitochondrial structure.
     9. To further dissect the role of RRG on cell proliferation, we estimated the average cell cycle duration in the root meristem of rrg mutants and WT and found that the rrg mutations led to increased cell cycle duration in the root mersitem. We then examined the expression level of some cell cycle progression related genes in WT and rrg-2by qRT-PCR, the results showed that the expression of CYCD4;1and E2Fa, DPa and DELI did not change significantly, but HISTONE H4, CYCB1;1, CDKB1;1and WEE1were significantly down-regulated in rrg-2mutant compared to the WT controls. In agreement with this indication, we found that the number of root meristem cells at the G2-M phase, revealed by the CycB1;1::GFP marker, was strongly reduced in rrg mutants than in WT. The experiments indicated that cell cycle progression was impaired in rrg-2mutant. Because mutants affecting cell division always display altered endoreduplication levels, we compared the ploidy levels of WT and rrg mutant roots. We found that, at9days after germination, the proportions of root cells with nuclear contents of4C,8C and16C were lower in rrg mutants than in WT, indicating that endoreduplication was seriously compromised in rrg mutants. By contrast, the proportion of2C cells was increased in rrg-2null mutants, further confirming that cell division was impaired.
     10. We analyzed the expression levels and patterns of pSHR::SHR-GFP, pSCR::H2B-YFP and pWOX5::ERGFP in the rrg mutant background and found that the expression levels and patterns of these markers in the root meristem were not obviously affected by the rrg mutations, suggesting that RRG is not involved in the regulation of QC and proximal root stem cell identity and functions independently of the key patterning genes.
     11. To learn whether the phenotypes observed in rrg mutants were caused by changes in auxin level and response, we examined the expression of the auxin-responsive marker DR5rev::GFP in rrg mutants. No obvious differences between rrg mutants and WT seedlings were detected with regard to the expression level and pattern of DR5rev::GFP in the root tip, suggesting that the RRG mutations did not cause changes in auxin level and response. Consistently, we found that rrg-2mutants exhibited a WT-like root growth response to NAA, IAA, IBA, or2,4-D at all concentration examined, indicating that rrg-2mutants are not defective in auxin response or sensitivity.
     Taken together, RRG is preferentially expressed in the root meristem and required for the cell division activity of postembryonic root meristem in Arabidopsis. The function of RRG is independent of auxin signalling and root patterning. RRG encodes a mitochondrial protein, and the mitochondria in root meristem cells of rrg mutants display extensive vocalization, implicating plant mitochondria has an important role in the regulation of cell division. Our data reveal for the first time the role of the Arabidopsis RRG gene in regulating cell division in the root meristem, and provide a new evidence for the involvement of plant mitochondria in cell division.
引文
1. Ach R A, Durfee T, Miller A B, Taranto P, Hanley-Bowdoin L, Zambryski P C, Gruissem W. RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol Cell Bio, 1997,17:5077-5086
    2. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y-S, Amasino R, Scheres B. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell,2004,119:109-120
    3. Atamna H, Frey Ⅱ W H. Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer's disease. Mitochondrion,2007,7:297-310
    4. Baurle I, Laux T. Apical meristems:the plant's fountain of youth. BioEssays,2003, 25:961-970
    5. Beal M F, Ferrante R J, Swartz K J, Kowall N W. Chronic quinolinic acid lesions in rats closely resemble Huntington's disease. JNeurosci,1991,11:1649-1659
    6. Berleth T, Jiirgens G. The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development,1993,118:575-587
    7. Benfey P N, Linstead P J, Roberts K, Schiefelbein J W, Hauser M-T, Aeschbacher R A. Root development in Arabidopsis:four mutants with dramatically altered root morphogenesis. Development,1993,119:57-70
    8. Bennett T, Scheres B. Root development-two meristems for the price of one? Curr Top Dev Biol,2010,91:67-102
    9. Blank H M, Li C, Mueller J E, Bogomolnaya L M, Bryk M, Polymenis M. An increase in mitochondrial DNA promotes nuclear DNA replication in yeast. PLoS Genet,2008,4:e1000047
    10. Blilou I, Frugier F, Folmer S, Serralbo O, Willemsen V, Wolkenfelt H, Eloy N B, Ferreira P C G, Weisbeek P, Scheres B. The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Genes Dev,2002,16:2566-2575
    11. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature,2005,433:39-44
    12. Boniotti M B, Gutierrez C. A cell-cycle-regulated kinase activity phosphorylates plant retinoblastoma protein and contains, in Arabidopsis, a CDKA/cyclin D complex. Plant J,2001,28:341-350
    13. Boudolf V, Rombauts S, Naudts M, Inze D, De Veylder L. Identification of novel cyclin-dependent kinases interacting with the CKS1 protein of Arabidopsis. J Exp Bot,2001,52:1381-1382
    14. Boudolf V, Vlieghe K, Beemster G T S, Magyar Z, Acosta J A T, Maes S, Van Der Schueren E, Inze D, De Veylder L. The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell,2004,16:2683-2692
    15. Bowman J L, Eshed Y. Formation and maintenance of the shoot apical meristem. Trends in Plant Sciences,2000,5:110-115
    16. Breuer C, Kawamura A, Ichikawa T, Tominaga-Wada R, Wada T, Kondou Y, Muto S, Matsui M, Sugimoto K. The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome. Plant Cell,2009, 21:2307-2322
    17. Brocard-Gifford I, Lynch T J, Garcia M E, Malhotra B, Finkelstein R R. The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell,2004, 16:406-421
    18. Casamitjana-Martinez E, Hofhuis H F, Xu J, Liu C-M, Heidstra R, Scheres B. Root-specific CLE19 overexpression and the soll/2:suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Current Biology,2003,13:1435-1441
    19. Cebolla A, Vinardell J M, Kiss E, Olah B, Roudier F, Kondorosi A, Kondorosi E. The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. EMBO J,1999,18:4476-4484
    20. Chaubet-Gigot N. Plant A-type cyclins. Plant Mol Biol,2000,43:659-675
    21. Cheng J-C, Lertpiriyapong K, Wang S, Sung Z R. The role of the Arabidopsis ELD1 gene in cell development and photomorphogenesis in darkness. Plant Physiol,2000, 123:509-520
    22. Cheng J-C, Seeley K A, Sung Z R. RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol,1995,107:365-376
    23. Churchman M L, Brown M L, Kato N, Kirik V, Hulskamp M, Inze D, De Veylder L, Walker J D, Zheng Z, Oppenheimer D G, Gwin T, Churchman J, Larkin J C. SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell,2006,18:3145-3157
    24. Clough S J, Bent A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J,1998,16:735-743
    25. Clowes F A L. The promeristem and the minimal constructional centre in grass root apices. New Phytol,1954,52:48-57
    26. Cnops G, Jover-Gil S, Peters J L, Neyt P, De Block S, Robles P, Ponce M R, Gerats T, Micol J L, Lijsebettens M V. The rotunda2 mutants identify a role for the LEUNIG gene in vegetative leaf morphogenesis. J Exp Bot,2004,55:1529-1539
    27. Coelho C M, Dante R A, Sabelli P A, Sun Y, Dilkes B P, Gordon-Kamm W J, Larkins B A. Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication. Plant Physiol,2005,138:2323-2336
    28. Colon-Carmona A, You R, Haimovitch-Gal T, Doerner P. Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J,1999,20:503-508
    29. Criqui M C, Parmentier Y, Derevier A, Shen W-H, Dong A, Genschik P. Cell cycle-dependent proteolysis and ectopic overexpression of cyclin Bl in tobacco BY2 cells. Plant J,2000,24:763-773
    30. Curtis M D, Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol,2003,133:462-469
    31. Dahl M, Meskiene I, Bogre L, Ha D T, Swoboda I, Hubmann R, Hirt H, Heberle-Bors E. The D-type alfalfa cyclin gene cycMs4 complements G1 cyclin-deficient yeast and is induced in the G1 phase of the cell cycle. Plant Cell,1995, 7:1847-1857
    32. de Jager S M, Maughan S, Dewitte W, Scofield S, Murray J A. The developmental context of cell-cycle control in plants. Semin Cell Dev Biol,2005,16:385-396
    33. de Jager S M, Menges M, Bauer U-M, Murray J A H. Arabidopsis E2F1 binds a sequence present in the promoter of S-phase-regulated gene AtCDC6 and is a member of a multigene family with differential activities. Plant Mol Biol,2001, 47:555-568
    34. De Schutter K, Joubes J, Cools T, Verkest A, Corellou F, Babiychuk E, Van Der Schueren E, Beeckman T, Kushnir S, Inze D, De Veylder L. Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell,2007,19:211-225
    35. De Smet I, Vassileva V, De Rybel B, Levesque M P, Grunewald W, Van Damme D, Van Noorden G, Naudts M, Van Isterdael G, De Clercq R, Wang J Y, Meuli N, Vanneste S, Friml J, Hilson P, Jurgens G, Ingram G C, Inze D, Benfey P N, BeeckmanT. Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science,2008,322:594-597
    36. De Veylder L, Beeckman T, Beemster G T S, Krols L, Terras F, Landrieu I, Van Der Schueren E, Maes S, Naudts M, Inze D. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell,2001,13:1653-1668
    37. De Veylder L, Beeckman T, Inze D. The ins and outs of the plant cell cycle. Nat Rev Mol Cell Biol,2007,8:655-665
    38. De Veylder L, Beemster G T S, Beeckman T, Inze D. CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression. Plant J,2001,25:617-626
    39. Dello Ioio R, Linhares Scaglia F, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Current Biology,2007,17:678-682
    40. Depuydt S, De Veylder L, Holsters M, Vereecke D. Eternal youth, the fate of developing Arabidopsis leaves upon Rhodococcus fascians infection. Plant Physiol, 2009,149:1387-1398
    41. Dewitte W, Riou-Khamlichi C, Scofield S, Healy J M S, Jacqmard A, Kilby N J, Murray J A H. Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. Plant Cell,2003, 15:79-92
    42. Dewitte W, Murray J A. The plant cell cycle. Annu Rev Plant Biol,2003,54:235-264
    43. Dewitte W, Scofield S, Alcasabas A A, Maughan S C, Menges M, Braun N, Collins C, Nieuwland J, Prinsen E, Sundaresan V, Murray J A H. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. PNAS,2007,104:14537-14542
    44. Dhondt S, Coppens F, De Winter F, Swarup K, Merks R M H, Inze D, Bennett M J, Beemster G T S. SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. Plant physiol,2010, 154:1183-1195
    45. Di Laurenzio L, Wysocka-Diller J, Malamy J E, Pysh L, Helariutta Y, Freshour G, Hahn M G, Feldmann K A, Benfey P N. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell,1996,86:423-433
    46. Doerner P, J(?)rgensen J-E, You R, Steppuhn J, Lamb C. Control of root growth and development by cyclin expression. Nature,1996,380:520-523
    47. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development,1993,119:71-84
    48. Dolezel J, Binarova P, Lucretti S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plantarum,1989,31:113-120
    49. Donnelly P M, Bonetta D, Tsukaya H, Dengler R E, Dengler N G Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol,1999,215:407-419
    50. Dorantes-Acosta A E, Vielle-Calzada J-P. The male gametophytic mutant tepitzinl indicates a requirement of the homeobox gene WOX5 for pollen tube growth in Arabidopsis. Sex Plant Reprod,2006,19:163-173
    51. Elorza A, Leon G, Gomez I, Mouras A, Holuigue L, Araya A, Jordana X. Nuclear SDH2-1 and SDH2-2 genes, encoding the iron-sulfur subunit of mitochondrial complex Ⅱ in Arabidopsis, have distinct cell-specific expression patterns and promoter activities. Plant Physiol,2004,136:4072-4087
    52. Enyenihi A H, Saunders W S. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics,2003,163:47-54
    53. Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, Stiekema W, Liu C-M. The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell,2005, 17:2542-2553
    54. Fleming A J. The co-ordination of cell division, differentiation and morphogenesis in the shoot apical meristem:a perspective. JExp Bot,2006,57:25-32
    55. Fleury D, Himanen K, Cnops G, Nelissen H, Boccardi T M, Maere S, Beemster G T S, Neyt P, Anami S, Robles P, Micol J L, Inze D, Van Lijsebettens M. The Arabidopsis thaliana homolog of yeast BREl has a function in cell cycle regulation during early leaf and root growth. Plant Cell,2007,19:417-432
    56. Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G, Palme K. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell,2002,108:661-673
    57. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature,2003,426:147-153
    58. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature,2002,415:806-809
    59. Fulop K, Tarayre S, Kelemen Z, Horvath G, Kevei Z, Nikovics K, Bako L, Brown S, Kondorosi A, Kondorosi E. Arabidopsis anaphase-promoting complexes:multiple activators and wide range of substrates might keep APC perpetually busy. Cell Cycle, 2005,4:1084-1092
    60. Galbraith D W, Harkins K R, Knapp S. Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol,1991,96:985-989
    61. Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature,2007,449:1053-1057
    62. Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science,1998,282:2226-2230
    63. Genschik P, Criqui M C, Parmentier Y, Derevier A, Fleck J. Cell cycle-dependent proteolysis in plants. Identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell,1998,10:2063-2076
    64. Glotzer M, Murray A W, Kirschner M W. Cyclin is degraded by the ubiquitin pathway. Nature,1991,349:132-138
    65. Grafi G, Avivi Y. Stem cells:a lesson from dedifferentiation. Trends Biotechnol,2004, 22:388-389
    66. Grafi G, Burnett R J, Helentjaris T, Larkins B A, DeCaprio J A, Sellers W R, Kaelin W G Jr. A maize cDNA encoding a member of the retinoblastoma protein family: involvement in endoreduplication. Proc Natl Acad Sci USA,1996,93:8962-8967
    67. Grieneisen V A, Xu J, Maree A F M, Hogeweg P, Scheres B. Auxin transport is sufficient to generate a maximumand gradient guiding root growth. Nature,2007, 449:1008-1013
    68. Gutierrez C. Coupling cell proliferation and development in plants. Nat Cell Biol, 2005,7:535-541
    69. Gutierrez C, Ramirez-Parra E, Castellano M M, del Pozo J C. G(1) to S transition: more than a cell cycle engine switch. Curr Opin Plant Biol,2002,5:480-486
    70. Hardtke C S, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J,1998,17:1405-1411
    71. Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev,2002,16:1610-1615
    72. Hamann T, Mayer U, Jurgens G. The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development,1999,126:1387-1395
    73. Heidstra R, Welch D, Scheres B. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev,2004,18:1964-1969
    74. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena Q Hauser M T, Benfey P N. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell,2000,101:555-567
    75. Hemerly A, de Almeida Engler J, Bergounioux C, van Montagu M, Engler G, Inze D, Ferreira P. Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO J,1995,14:3925-3936
    76. Hemerly A, Engler J de A, Bergounioux C, Van Montagu M, Engler G, Inze D, Ferreira P. Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO J,1995,14:3925-3936
    77. Hemerly A S, Ferreira P, de Almeida Engler J, Van Montagu M, Engler G, Inze D. cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell,1993,5:1711-1723
    78. Hobe M, Muller R, Grunewald M, Brand U, Simon R. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Dev Genes Evol,2003,213:71-81
    79. Holmuhamedov E, Lewis L, Bienengraeber M, Holmuhamedova M, Jahangir A, Terzic A. Suppression of human tumor cell proliferation through mitochondrial targeting. FASEB J,2002,16:1010-1016
    80. Howard A, Pelc S R. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity,1953,6(suppl):216-273
    81. Inagaki S, Suzuki T, Ohto M-a, Urawa H, Horiuchi T, Nakamura K, Morikami A. Arabidopsis TEBICHI, with helicase and DNA polymerase domains, is required for regulated cell division and differentiation in meristems. Plant Cell,2006,18:879-892
    82. Inze D, De Veylder L. Cell cycle regulation in plant development. Annu Rev Genet, 2006,40:77-105
    83. Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M, Last R L. Arabidopsis map-based cloning in the post-genome era. Plant Physiol,2002,129:440-450
    84. Jasinski S, Riou-Khamlichi C, Roche O, Perennes C, Bergounioux C, Glab N. The CDK inhibitor NtKIS1a is involved in plant development, endoreduplication and restores normal development of cyclin D3; 1-overexpressing plants. J Cell Sci,2002, 115:973-982
    85. Jiang K, Ballinger T, Li D, Zhang S, Feldman L. A role for mitochondria in the establishment and maintenance of the maize root quiescent center. Plant Physiol, 2006,140:1118-1125
    86. Joubes J, Chevalier C, Dudits D, Heberle-Bors E, Inze D, Umeda M, Renaudin J P. CDK-related protein kinases in plants. Plant Mol Biol,2000,43:607-620
    87. Jiirgens G. Axis formation in plant embryo genesis:cues and clues. Cell,1995, 81:467-470
    88. Jiirgens G. Cytokinesis in higher plants. Annu Rev Plant Biol,2005,56:281-299
    89. Kaya H, Shibahara K-i, Taoka K-i, Iwabuchi M, Stillman B, Araki T. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell,2001,104:131-142
    90. Kitsios G, Alexiou K G, Bush M, Shaw P, Doonan J H. A cyclin-dependent protein kinase, CDKC2, colocalizes with and modulates the distribution of spliceosomal components in Arabidopsis. Plant J,2008,54:220-235
    91. Kosma D K, Bourdenx B, Bernard A, Parsons E P, Lii S, Joubes J, Jenks M A. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol,2009, 151:1918-1929
    92. Lechner E, Xie D, Grava S, Pigaglio E, Planchais S, Murray J A, Parmentier Y, Mutterer J, Dubreucq B, Shen W H, Genschik P. The AtRbxl protein is part of plant SCF complexes, and its down-regulation causes severe growth and developmental defects. J Biol Chem,2002,277:50069-50080
    93. Lee M-H, Kim B, Song S-K, Heo J-O, Yu N-I, Lee S A, Kim M, Kim D G, Sohn S O, Lim C E, Chang K S, Lee M M, Lim J. Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol Biol,2008,67:659-670
    94. Lertpiriyapong K, Sung Z R. The elongation defectivel mutant of Arabidopsis is impaired in the gene encoding a serine-rich secreted protein. Plant Mol Biol,2003, 53:581-595
    95. Liang Y, Mitchell D M, Harris J M. Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant. Dev Biol,2007,304:297-307
    96. Lui H, Wang H, Delong C, Fowke L C, Crosby W L, Fobert P R. The Arabidopsis Cdc2a-interacting protein ICK2 is structurally related to ICK1 and is a potent inhibitor of cyclin-dependent kinase activity in vitro. Plant J,2000,21:379-385
    97. Lyndon R F, Cunninghame M E. Control of shoot apical development via cell division. Symp Soc Exp Biol,1986,40:233-255
    98. Mackenzie S, McIntosh L. Higher plant mitochondria. Plant Cell,1999,11:571-586
    99. Magyar Z, Atanassova A, De Veylder L, Rombauts S, Inze D. Characterization of two distinct DP-related genes from Arabidopsis thaliana. FEBS Lett,2000,486:79-87
    100.Masubelele N H, Dewitte W, Menges M, Maughan S, Collins C, Huntley R, Nieuwland J, Scofield S, Murray J A H. D-type cyclins activate division in the root apex to promote seed germination in Arabidopsis. PNAS,2005,102:15694-15699
    101.McBride HM, Neuspiel M, Wasiak S. Mitochondria:more than just a powerhouse. Curr Biol,2006,16:R551-R560
    102.Meijer M, Murray J A. Cell cycle controls and the development of plant form. Curr Opin Plant Biol,2001,4:44-49
    103.Menges M, de Jager S M, Gruissem W, Murray J A H. Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J,2005,41:546-566
    104.Miki F, Kurabayashi A, Tange Y, Okazaki K, Shimanuki M, Niwa O. Two-hybrid search for proteins that interact with Sad1 and Kms1, two membrane-bound components of the spindle pole body in fission yeast. Mol Genet Genomics,2004, 270:449-461
    105.Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J,1998,17:6903-6911
    106.Murray A W, Kirschner M W. What Controls the Cell-Cycle.Sci Am,1991, 264:56-63
    107.Nakagami H, Kawamura K, Sugisaka K, Sekine M, Shinmyo A. Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco. Plant Cell,2002,14:1847-1857
    108.Nakagami H, Sekine M, Murakami H, Shinmyo A. Tobacco retinoblastoma-related protein phosphorylated by a distinct cyclin-dependent kinase complex with Cdc2/cyclin D in vitro. Plant J,1999,18:243-252
    109.Nakajima K, Sena G, Nawy T, Benfey P N. Intercellular movement of the putative transcription factor SHR in root patterning. Nature,2001,413:307-311
    110.Nelson B K, Cai X, Nebenfuhr A. A multi-color set of in vivo organelle markers for colocalization studies in Arabidopsis and other plants. Plant J,2007,51:1126-1136
    111.Nugent J H, Alfa C E, Young T, Hyams J S. Conserved structural motifs in cyclins identified by sequence analysis. J Cell Sci,1991,99:669-674
    112.Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T, McCann M, Lerouge P, Vernhettes S, Hofte H. KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell,2002,14:2001-2013
    113.Peres A, Churchman M L, Hariharan S, Himanen K, Verkest A, Vandepoele K, Magyar Z, Hatzfeld Y, Van Der Schueren E, Beemster G T, Frankard V, Larkin J C, Inze D, De Veylder L. Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses. JBiol Chem,2007,282:25588-25596
    114.Planchais S, Samland A K, Murray J A. Differential stability of Arabidopsis D-type cyclins:CYCD3;1 is a highly unstable protein degraded by a proteasome-dependent mechanism. Plant J,2004,38:616-625
    115.Porceddu A, Stals H, Reichheld J P, Segers G, De Veylder L, Barroco R P, Casteels P, Van Montagu M, Inze D, Mironov V. A plant-specific cyclin-dependent kinase is involved in the control of G2/M progression in plants. J Biol Chem,2001,276, 36354-36360
    116.Ramirez-Parra E, Frundt C, Gutierrez C. A genome-wide identification of E2F-regulated genes in Arabidopsis. Plant J,2003,33:801-811
    117.Ramirez-Parra E, Gutierrez C. Characterization of wheat D P. A heterodimerization partner of the plant E2F transcription factor which stimulates E2F-DNA binding. FEBS Lett,2000,486:73-78
    118.Ramirez-Parra E, Gutierrez C. E2F regulates FASCIATA1, a chromatin assembly gene whose loss switches on the endocycle and activates gene expression by changing the epigenetic status. Plant Physiol,2007,144:105-120
    119.Ramirez-Parra E, Xie Q, Boniotti M B, Gutierrez C. The cloning of plant E2F, a retinoblastoma-binding protein, reveals unique and conserved features with animal G(1)/S regulators. Nucleic Acids Res,1999,27:3527-3533
    120.Renaudin J P, Doonan J H, Freeman D, Hashimoto J, Hirt H, Inze D, Jacobs T, Kouchi H, Rouze P, Sauter M, Savoure A, Sorrell D A, Sundaresan V, Murray J A H. Plant cyclins:A unified nomenclature for plant A-, B-and D-type cyclins based on sequence organization. Plant Mol Biol,1996,32:1003-1018
    121.Rossignol P, Stevens R, Perennes C, Jasinski S, Cella R, Tremousaygue D, Bergounioux C. AtE2F-a and AtDP-a, members of the E2F family of transcription factors, induce Arabidopsis leaf cells to re-enter S phase. Mol Genet Genom,2002, 266:995-1003
    122.Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B. An Auxin-Dependent Distal Organizer of Pattern and Polarity in the Arabidopsis Root. Cell,1999,99:463-472
    123.Sabatini S, Heidstra R, Wildwater M, Scheres B. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev,2003, 17:354-358
    124.Sabelli P A, Dante R A, Leiva-Neto J T, Jung R, Gordon-Kamm W J, Larkins B A. RBR3, a member of the retinoblastoma-related family from maize, is regulated by the RBR1/E2F pathway. Proc Natl Acad Sci USA,2005,102:13005-13012
    125.Sarkar A K, Luijten M, Miyashima S, Lenhard M, HashimotoT, Nakajima K, Scheres B, Heidstra R, Laux T. Conserved factors regulate signaling in Arabidopsis thaliana shoot and root stem cell organizers. Nature,2007,446:811-814
    126.Scheres B. Stem-cell niches:nursery rhymes across kingdoms. Nat Rev Mol Cell Biol, 2007,8:345-354
    127.Scheres B, Laurenzio L D, Willemsen V, Hauser M-T, Janmaat K, Weisbeek P, Benfey P N. Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the embryonic axis. Development,1995, 121:53-62
    128.Scheres B, McKhann H I, van den Berg C. Roots redefined:anatomical and genetic analysis of root development. Plant Physiol,1996,111:959-964
    129.Scheres B, Wolkenfelt H. The Arabidopsis root as a model to study plant development. Plant Physiol Biochem,1998,36:21-32
    130.Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development,1994,120:2475-2487
    131.Schnittger A, Schobinger U, Stierhof Y-D, Hulskamp M. Ectopic B-type cyclin expression induces mitotic cycles in endoreduplicating Arabidopsis trichomes. Curr Biol,2002,12:415-420
    132.Schnittger A, Weinl C, Bouyer D, Schobinger U, Hulskamp M. Misexpression of the cyclin-dependent kinase inhibitor ICK1/KRP1 in single-celled Arabidopsis trichomes reduces endoreduplication and cell size and induces cell death. Plant Cell,2003, 15:303-315
    133.Segers G, Gadisseur I, Bergounioux C, de Almeida Engler J, Jacqmard A, Van Montagu M, Inze D. The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle. Plant J,1996, 10:601-612
    134.Sekine M, Ito M, Uemukai K, Maeda Y, Nakagami H, Shinmyo A. Isolation and characterization of the E2F-like gene in plants. FEBS Lett,1999,460:117-122
    135.Shaner N C, Steinbach P A, Tsien R Y. A guide to choosing fluorescent proteins. Nature,2005,2:905-909
    136.Shevell D E, Leu W M, Gillmor C S, Xia G, Feldmann K A, Chua N H. EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell,1994,77:1051-1062
    137.Soni R, Carmichael J P, Shah Z H, Murray J A. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell,1995,7:85-103
    138.Sorrell D A, Menges M, Healy J M S, Deveaux Y, Amano C, Su Y, Nakagami H, Shinmyo A, Doonan J H, Sekine M, Murray J A H. Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar bright yellow-2 cells. Plant Physiol, 2001,126:1214-1223
    139.Sozzani R, Cui H, Moreno-Risueno M A, Busch W, Van Norman J M, Vernoux T, Brady S M, Dewitte W, Murray J A H, Benfey P N. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature,2010, 466:128-132
    140.Sozzani R, Maggio C, Varotto S, Canova S, Bergounioux C, Albani D, Cella R. Interplay between Arabidopsis activating factors E2Fb and E2Fa in cell cycle progression and development. Plant Physiol,2006,140:1355-1366
    141.Sparkes I A, Runions J, Kearnes A, Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature 2006,1:2019-2025
    142.Tarayre S, Vinardell J M, Cebolla A, Kondorosi A, Kondorosi E. Two classes of the CDhl-type activators of the anaphasepromoting complex in plants:novel functional domains and distinct regulation. Plant Cell,2004,16:422-434
    143.Traas J, Bohn-Courseau I. Cell proliferation patterns at the shoot apical meristem. Curr Opin Plant Biol,2005,8:587-592
    144.Ueda M, Matsui K, Ishiguro S, Sano R, Wada T, Paponov I, Palme K, Okada K. The HALTED ROOT gene encoding the 26S proteasome subunit RPT2a is essential for the maintenance of Arabidopsis meristems. Development,2004,131:2101-2111
    145.Van Aken O, Pecenkova T, van de Cotte B, De Rycke R, Eeckhout D, Fromm H, De Jaeger G, Witters E, Beemster G T S, Inze D, Van Breusegem F. Mitochondrial type-I prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development. Plant J,2007,52:850-864
    146.van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature,1997, 390:287-289
    147.Vandepoele K, Raes J, De Veylder L, Rouze P, Rombauts S, Inze D. Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell,2002,14:903-916
    148.Vanlerberghe G C, McIntosh L. Alternative oxidase:from gene to function. Annu Rev Plant Physiol Plant Mol Biol,1997,48:703-734
    149.Vernoux T, Wilson R C, Seeley K A, Reichheld J-P, Muroy S, Brown S, Maughan S C, Cobbett C S, Van Montagu M, Inze D, May M J, Sung Z R. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell,2000,12:97-109
    150.von Blacha A. Investigating the role of regulatory genes in heterosis for superior growth and biomass production in Arabidopsis thaliana. PhD thesis.2009, University of Potsdam. Potsdam
    151.Wallace D C. The mitochondrial genome in human adaptive radiation and disease:on the road to therapeutics and performance enhancement. Gene,2005,354:169-180
    152.Wallace D C, Ruiz-Pesini E, Mishmar D. mtDNA variation, climatic adaptation, degenerative diseases, and longevity. Cold Spring Harb Symp Quant Biol,2003,68: 479-486
    153.Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, DePamphilis C W, Ma H. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol,2004, 135:1084-1099
    154.Wang H, Fowke L C, Crosby W L. A plant cyclin-dependent kinase inhibitor gene. Nature,1997,386:451-452
    155.Wang H, Qi Q, Schorr P, Cutler A J, Crosby W L, Fowke L C. ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J,1998, 15:501-510
    156.Weigel D, Glazebrook J. Arabidopsis:a laboratory manual. New York, Cold Spring Harbor Laboratory Press,2002
    157.Weijers D, Schlereth A, Ehrismann J S, Schwank G, Kientz M, Jurgens G. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell,2006,10:265-270
    158.Weingartner M, Pelayo H R, Binarova P, Zwerger K, Melikant B, de la Torre C, Heberle-Bors E, Bogre L. A plant cyclin B2 is degraded early in mitosis and its ectopic expression shortens G2-phase and alleviates the DNA-damage checkpoint. J Cell Sci,2003,116:487-498
    159.Wildwater M, Campilho A, Perez-Perez J M, Heidstra R, Blilou I, Korthout H, Chatteriee J, Mariconti L, Gruissem W, Scheres B. The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell,2005,123:1337-1349
    160.Willemsen V, Wolkenfelt H, de Vrieze G, Weisbeek P, Scheres B. The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development,1998,125:521-531
    161.Wysocka-Diller J W, Helariutta Y, Fukaki H, Malamy J E, Benfey P N. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development,2000,127:595-603
    162.Xu J, Scheres B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR function in epidermal cell polarity. Plant Cell,2005,17:525-536
    163.Zhou Y, Wang H, Gilmer S, Whitwill S, Fowke L C. Effects of co-expressing the plant CDK inhibitor ICK1 and D-type cyclin genes on plant growth, cell size and ploidy in Arabidopsis thaliana. Planta,2003,216:604-613

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700