用户名: 密码: 验证码:
农作物籽粒的图像处理和识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用计算机视觉技术检测农作物籽粒外观特征并识别其品种,对提高农业生产自动化水平和农产品增值效益、加强我国农业在国际市场上的竞争优势具有重要意义。基于这样的背景,本文选择我国广泛种植的大米、玉米等作物籽粒的静态图像作为研究对象,重点研究了这些作物籽粒的图像分割技术、形态结构特征提取和分类方法,设计和开发了基于机器视觉的作物籽粒外观特征检测和识别系统。主要工作包括:
     (1)采用迭代阈值法将玉米和大米籽粒从背景中提取,对籽粒内部的孔洞进行了区域填充,在此基础上对粘连籽粒的图像分割方法进行了研究。
     (2)为解决分水岭算法对一个米粒经距离变换后常存在多个局部极小值而产生的过分割问题,提出了一种基于极小值合并的分水岭分割连接籽粒算法。应用形态学膨胀将邻近的局部极小值合并成一个区域,使每个米粒内部只有一个局部极小值,再用分水岭算法进行分割.对长江米、圆江米、粳米和黑米4个大米品种籽粒,提出的算法分割正确率分别为87%、93%、92%和89%。提出的方法应用于连接玉米籽粒的分割,也取得了较好的结果。
     (3)提出了一种基于主动轮廓模型的分割算法。以距离变换合并后的局部极小值区域边界为初始曲线,在主动轮廓模型的指导下,曲线向籽粒的边界演化,最终将图像中各个作物籽粒分割。对长江米、圆江米、粳米和黑米4个大米品种籽粒的试验表明,该算法分割连接米粒图像的正确率分别达到88.0%、93.4%、92.4%和90.4%。
     (4)为了对籽粒进行破损检测、品种识别等工作,提取了反映籽粒形态结构特征的一组参数来衡量籽粒的尺寸、形状和颜色。并依据大米国家标准,提出利用计算机视觉方法,对长江米、圆江米、粳米、红香米、泰国香米和黑米等6个品种的大米平均长度进行测算。
     (5)尖端是许多农作物籽粒一个重要的外观特征。提出了一种基于Harris角点检测的尖端识别方法。Harris算子在一个局部区域中检测角特征,作为籽粒最明显的角结构,尖端在Harris角点检测中具有最大的响应值,并且对尖端不明显的籽粒也有着良好的响应。通过对玉米、南瓜和西葫芦等具有尖端特征的750粒籽粒的测试结果表明,提出算法的尖端检测综合准确率为95.6%。
     (6)提出了玉米冠顶和胚部的分离算法。首先在定位玉米尖端的基础上,从尖端处沿着籽粒的轮廓延伸出圆形区域用来逼近果柄区域,并将该区域去掉。其次利用单通道的线性组合R+B-G和G+B-R,将彩色多通道图像转成2幅新的特征图像,再通过迭代阈值法得到它们的二值图像,并取其交集,在经过形态学优化后,分离出玉米胚部。
     (7)在分析完整大米和破损大米粒形区别的基础上,选取面积、偏心率、圆形度、长短轴比和3个不变矩作为特征,利用支持向量机方法,检测破损大米。对长江米、圆江米和粳米的检测准确率分别达到100%、94%和92%。利用提取的玉米籽粒特征,基于支持向量机,检测破损玉米,综合准确率达92.5%。
     (8)提出了一种基于稀疏表示的大米品种识别方法。以6种大米籽粒图像和4种玉米籽粒图像作为研究对象,采用颜色和形态结构参数表示单个籽粒。由训练样本组成稀疏表示方法的数据词典,对每一个测试样本,计算其在数据词典上的投影,将具有最小投影误差的类作为测试样本所属的品种。对于13种特征参数表示的大米品种和16种特征参数表示的玉米品种的识别结果表明,提出的方法的综合准确率分别为99.6%和88%,获得了良好的分类效果。
     (9)基于MATLAB语言设计并开发了基于机器视觉的籽粒品质检测及分类系统。系统软件包括文件管理、图像预处理、粘连籽粒分割、特征参数提取、尖端识别、玉米胚部提取和品种识别等内容。
Detecting the appearance characters and identifying the breed for the crop’s grain withcomputer vision is important to improve the agricultural automation, increase theeffectiveness of agricultural production and strengthen the competitive advantage of Chineseagriculture. Based on these reasons, this thesis selects the static images of the kernels of rice,corn and so on as the research objects. The research designs and develops a system based oncomputer vision which could detect the kernels’ appearance characters and recognize them,and the research emphasis includes the image segmentation technology, the extraction ofmorphological features and the identification methods. The major work is as follow:
     (1) Extracting the kernels of corn and rice from the background by using the iterativethreshold method and Filling the hole in the kernel. On these base,some segmentationmethods for the occluded kernels are studied.
     (2) In order to solve the problem of the over-segmentation of the rice kernel induced byseveral local minima after distance transform by watershed algorithm, an improved methodbased on the result of distance transform is proposed. The proposed method merges theadjacent local minima points into one region by morphological dilation operator, which makeseach rice kernel only has one local minimum as possible. Then watershed algorithm segmentsthe preprocessed image. The experimental results show that the proposed algorithm getsrespectively accurate segmentation ratio of87%,93and92%and89%for four types of rice.
     (3) A segmentation method based on active contour model is proposed. The regionboundary of local minima after distance transform is taken as the initial curve. Under theguidance of active contour model, the curve converges to the edge of the kernel, and eachkernel in the images is segmented finally. The segmentation accuracy for long glutinous rice,round glutinous rice, non-glutinous rice and black rice reached88.0%,93.4%,92.4%and90.4%respectively.
     (4) In order to detect the broken kernels and identify the kernels’ breeds, a set ofmorphological parameters of kernels are extracted to measure their size, shape and color.Besides, according to the national standard of rice, the average lengths of long glutinous rice,round glutinous rice, non-glutinous rice, red aromatic rice, Thailand aromatic rice and blackrice are estimated.
     (5) The tipcap is an important appearance character of many crop kernels. A tipcapidentification algorithm based on Harris corner detector is developed. Harris algorithm detectsthe corner within a local region. As the most obvious corner structure, the tipcap has the maximal response of Harris corner detector, which makes it can also detect the kernelswithout the obvious tipcap accurately. The kernels with tipcap of corn, pumpkin and summersquash are selected for test. The experimental results on750kernels show that the proposedmethod gets overall accuracy of95.6%for tipcap of these kernels.
     (6) An algorithm of departing the embryo part and non-embryo part of the corn kernelis proposed. Firstly, on the base of location of the tipcap of the corn kernel, a triangle regionextended from the tipcap is used to approximate the fruit stalk, and this region is deletedconsequently. Then linear combinations of single color channel R+B-G and G+B-R are usedto change the color image of multi-channels to two new feature image, and their binaryimages are get with the iterative threshold method. The embryo part of corn kernel isextracted from intersection set of the two binary images after morphological optimizing.
     (7) On the base of distinguishing analysis of whole kernels and broken kernels, theparameters of area, eccentricity, circularity, the proportion between the longer axis and theshorter and three invariant moments are selected as characters to detect broken rice by usingSVM. The detected accuracies about long glutinous rice, round glurinous rice andnon-glutinous rice are100%,94%and92%respectively. The broken corn kernels are detectedbased on SVM, and the overall accuracy is92.5%.
     (8) An identification method based on sparse representation was proposed fordiscriminating varieties of rice and corn precisely. The rice images of six varieties and thecorn images of four varietes were taken as the research objects. To represent single rice kernel,its color and morphological characters were extracted. All training samples make up the datadictionary of the sparse representation. For each variety, the projection of the testing sampleon the data dictionary is calculated. The breed, which had the minimum projection error,would be regarded as the right kind of rice which the testing sample belonged to.Experimental results demonstrated that the overall identification accuracy of the proposedalgorithm for the six rice breeds expressed with13features and the four corn breedsexpressed with16features were99.6%and88%respectively.
     (9) A system based on machine vision is designed and developed by using MATLABlanguage, which could detect the kernels’ appearance quality and classify them. The softwares of this system is composed of file managing, image preprocessing, segmenting theoccluding kernels, tipcap recognizing, extracting the embryo part of the corn kernel, breedidentification and so on.
引文
标准网. http://www.standardcn.com [2010-6-1].
    蔡鸿昌,崔海信,宋卫堂等.黄瓜初花期叶片光合色素含量与颜色特征的初步研究.农业工程学报,2006,22(9):34-38.
    蔡健荣,许月明.基于主动形状模型的苹果果形分级研究.农业工程学报,2006(6):123-126.
    蔡健荣,周小军,李玉良等.基于机器视觉自然场景下成熟柑橘识别.农业工程学报,2008,24(1):175-178.
    曹健,高春晓,刘琼昕等.基于角点特征的目标识别方法.华中科技大学学报(自然科学版).2010,38(6):84-87.
    曹乐平.基于周长面积分形维数的柑橘品种机器识别.农业工程学报,2010,26(2):351-355
    陈兵旗,高振江,宋同珍等.棉种图像精选方案与算法研究.农业机械学报,2010,41(1):167-172.
    陈红,熊利荣,胡筱波等.基于神经网络与图像处理的花生仁霉变识别方法.农业工程学报,2007,23(4):158-161.
    陈佳娟,纪寿文,李娟等.采用计算机视觉进行棉花虫害程度的自动测定.农业工程学报,2001,17(2):157-160.
    苏谦,邬文锦,王红武等.基于近红外光谱和仿生模式识别玉米品种快速鉴别方法.光谱学与光谱分析,20009,29(9):2413-2417
    陈鲤江,刘铁根,王磊等.用平板扫描仪及图像处理方法检测大米粒型.红外与激光工程,2006,35(10增刊):402-407.
    陈全胜,赵杰文,张海东等.基于支持向量机的近红外光谱鉴别茶叶的真伪.光学学报,2006,26(6):933-937.
    陈月华,胡晓光,张长利.基于机器视觉的小麦害虫分割算法研究.农业工程学报,2007,23(12):187-191.
    成芳,应义斌.机器视觉技术在农作物种子质量检验中的应用研究进展.农业工程学报,2001,17(6):175-178.
    成芳,应义斌.基于轮廓特征的稻种芽谷检测方法.农业工程学报,2004,20(5):178-181.
    韩立群.人工神经网络教程.北京邮电大学出版社,2007第2版.
    韩仲志,赵友刚,杨锦忠.基于籽粒RGB图像独立分量的玉米胚部特征检测.农业工程学报,2010,26(3):222-226.
    何东健.数字图像处理(第二版),西安电子科技大学出版社,2003.
    何东健,耿楠,党革荣等.用活动边界模型精确检测果实表面缺陷.农业工程学报,2001,17(5):159-162.
    黄庆畅,毛磊.2010-8-27.我国粮食自给率保持在95%以上.人民日报,10.
    黄星奕,吴守一,方如明等.遗传神经网络在稻米垩白度检测中的应用研究.农业工程学报,2003,19(3):137-139.
    黄永林,叶玉堂,乔闹生等.基于边缘方向角的自适应尺度角点检测.光电子.激光,2010,10(8):1237-1240.
    李革,李斌,王莹等.基于HIS颜色模型的珍珠颜色分选方法.农业工程学报,2008,24(8):284-287.
    李培华,张田文.主动轮廓线模型(蛇模型)综述.软件学报,2000,11(6):751-757.
    李伟,于振东,陈涛;荀一.基于形态学的棉花种子破损检测.农业机械学报,2009,40(4):169-172.
    练秋生,张俊军,陈书贞.基于Harris角点检测器的指纹细节点提取算法.光学技术,2008,34(3):383-387.
    凌云.基于机器视觉的谷物外观品质检测的研究技术.中国农业大学博士学位论文.2004.
    刘木华,赵杰文,张海东.基于模糊C均值聚类的牛肉图像中脂肪和肌肉区域分割技术.农业工程学报,2004,20(2):161-163.
    刘双喜,王金星,郑文秀等.基于自适应域值分割与力矩的棉花异性纤维分类方法.农业工程学报,2007,23(9):154-158.2009,25(13):320-324.
    刘海启,裴志远,张松岭等.资源一号卫星CCD图像在作物面积监测中的应用.农业工程学报,2001,17(4):140-143.
    刘美莹,汶德胜,曹红杏.基于角点特征的图像自动拼接算法.电子器件,2009,32(2):254-257.
    刘韶军,王库.基于机器视觉的棉种破损检测技术.农业机械学报,2009,40(12):186-189.
    刘小英.基于图像分析的葡萄干分级技术研究.西北农林科技大学硕士学位论文.2006年.
    吕菲,刘建立,何娟.利用CT数字图像和网络模型预测近饱和土壤水力学性质.农业工程学报,2008,24(5):10-14.
    毛罕平,胡波,张艳诚等.杂草识别中颜色特征和阈值分割算法的优化.农业工程学报,2007,23(9):154-158.
    毛文华,王辉,赵博等.基于株心颜色的玉米田间杂草识别方法.农业工程学报,2009,25(13):161-164.
    宁纪锋,何东健,杨蜀秦.玉米籽粒的尖端和胚部的计算机视觉识别.农业工程学报,2004,20(3):117-119.
    权龙哲,祝荣欣,雷溥等.基于K-L变换与LS-SVM的玉米品种识别方法.农业机械学报,2010,41(4):168-172.
    钱永兰,杨邦杰,张松岭等.四种用于雷达遥感图像融合的空间分量提取方法.农业工程学报,2005,21(12):98-102.
    任宪忠,马小愚.农产品粒形识别研究进展及其在工程中应用现状.农业工程学报,2004,20(3):276-280.
    尚艳芬.稻米品质评价系统的研究与开发.北京:中国农业大学,2004.
    史峰,王小川,郁磊,李洋.MATLAB神经网络30个案例分析.北京航空航天大学出版社.2010.
    史智兴,程洪,李江涛等图像处理识别玉米品种的特征参数研究.农业工程学报,2008,2(6):193-195.
    孙丹峰,杨冀红,刘顺喜.高分辨率遥感卫星影像在土地利用分类及其变化监测的应用研究.农业工程学报,2002,18(2):160-164.\
    孙光明,杨凯盛,张传清等.基于多光谱成像技术的大麦赤霉病识别.农业工程学报,2009,25(13):204-207.
    孙明,王一鸣,凌云等.基于色调的黄粒米检测方法.农业机械学报,2005,36(8):78-81.
    孙莎,洪英,邓继忠.计算机视觉在种子品质检测和分级中的应用.农机化研究,2008,7:175-178.
    田景文,高美娟.人工神经网络算法研究及应用.北京:北京理工大学出版社.2006.
    万鹏,大米品质检测系统研究.吉林大学博士论文.2005.
    王润涛,张长利,房俊龙等.基于机器视觉的大豆籽粒精选技术.农业工程学报,2011,27(8):355-359.
    王玉亮,刘贤喜,苏庆堂.多对象特征提取和优化神经网络的玉米种子品种识别.农业工程学报,2010,26(6):199-204.
    王志军,丛培盛,周佳璐等.基于图像处理与人工神经网络的小麦颗粒外观品质评价方法.农业工程学报,2007,23(1):158-161.
    吴彦红,刘木华,杨军等.基于计算机视觉的大米外观品质检测.农业机械学报,2007,38(7):107-111.
    徐贵力,毛罕平,胡永光.基于计算机视觉技术参考物法测量叶片面积.农业工程学报,2002,18(1):154-157.
    荀一,鲍官军,杨庆华等.粘连玉米籽粒图像的自动分割方法.农业机械学报,2010,41(4):163-167.
    杨劲峰,陈清,韩晓日等.数字图像处理技术在蔬菜叶面积测量中的应用.农业工程学报,2002,18(4):155-158.
    杨蜀秦,何东健.连接大米籽粒图像的自动分割算法研究.农机化研究,2005,3:62-65.
    杨蜀秦,宁纪锋,何东健.BP人工神经网络识别玉米品种的研究.西北农林科技大学学报,2004,32:162-164.
    杨燕,聂鹏程,杨海清等.基于可见-近红外光谱技术的蜜源快速识别方法.农业工程学报,2010,26(3):238-242.
    尹建军,毛罕平,王新忠等.自然条件下番茄成熟度机器人判别模型.农业机械学报,2009,40(10):146-151.
    应义斌,饶秀勤,赵匀等.机器视觉技术在农产品品质自动识别中的应用研究进展.农业工程学报,2000,16(3):4-8.
    应义斌,王剑平,蒋焕煜.水果直径和缺陷面积的机器视觉检测.农业工程学报,2002,18(5):216-220.
    喻擎苍,严红滨.一种基于图像轮廓线的稻种模糊模式识别方法.农业工程学报,2002,18(1):150-153.
    闸建文,孙玉峰,陈永艳.利用扫描仪获取种子图像的研究.农机化研究,2003(2):93—94.
    展慧,李小昱,王为等.基于机器视觉的板栗分级检测方法.农业工程学报,2010,26(4):327-331.
    张聪,管庶安.基于图像分析的大米形状识别.粮食与饲料工程,2006(6):5-7.
    张弓,D.S.Jayas,蒋德云等.谷物纹理特征的识别.农业工程学报,2001,17(1):149-153.
    张合,唐章林,李加纳等.利用数字图像分析法评价油菜种子颜色.西南大学学报(自然科学版),2008,30(4):67-72
    张红涛,毛罕平,邱道尹.储粮害虫图像识别中的特征提取.农业工程学报,2009,25(2):126-130
    张俊雄,荀一,李伟.基于形态特征的玉米种子表面裂纹检测方法.光学精密工程,2007,15(6):951-956.
    张贤坤.人工神经网络及其在盐田水体遥感图像分类中的研究.盐业与化工,2006,35(4):40-43.
    张小琳.图像边缘检测技术综述.高能量密度物理,2007.1:37-40.
    章毓晋.图像理解与计算机视觉.清华大学出版社,2000.
    赵建伟,王朋,刘重庆.基于小波变换的分水岭图像分割方法.光子学报,2005,32(5):601-60
    赵杰文,刘木华,张海东.基于数学形态学的牛肉图像中背长肌分割和大理石纹提取技术研究.农业工程学报,2004,20(1):144-146.
    郑华东,刘木华,吴彦红.基于计算机视觉的大米裂纹检测研究.农业工程学报,2006,22(7):129-134.
    中国农产品加工网.2008.粮食外贸历程:中国粮食进出口贸易的回顾和分析http://www.csh.gov.cn/article.asp?id=217793&ArPage=1[2010-5-3].
    中华人民共和国国家标准.大米.1354-2009.2009-03-28发布.2009-10-01实施.中华人民共和国国家质量
    监督检验检疫总局、中国国家标准化管理委员会发布.
    中华人民共和国国家标准.玉米.1353-2009.2009-03-28发布.2009-9-01实施.中华人民共和国国家质量
    监督检验检疫总局、中国国家标准化管理委员会发布.
    周军妮,曹剑中,刘波等.一种基于局部最小代价分水岭变换的图像分割新方法.光子学报,2005,34(1):142-145.
    周天娟,张铁中,杨丽等.基于数学形态学的相接触草莓果实的分割方法及比较研究.农业工程学报,2007,23(9):164-168.
    周云山,李强,李红英等.计算机视觉在蘑菇采摘机器人上的应用.农业工程学报,1995,11(4):27-32.
    周子立,张瑜,何勇等.基于近红外光谱技术的大米品种快速鉴别方法.农业工程学报,2009,25(8):131-135.
    Abdullah MZ, Guan LC, Mohd-Azemi BMN. Stepwise discriminant analysis for color grading of oil palmusing machine vision system. Transactions of IChemE, Part C,2001,57:223-231.
    Abdullah MZ, Fathinel-Syahir AS, Mohd-Azemi BMN. Automated inspection system for color and shapegrading of starfruit (Averrhoa carambola L.) using machine vision sensor. Transactions of the Institute ofMeasurement and Control,2005,27(2):65-87.
    Borompichaichartkul C, Moran G, Srzednicki G, et al. Nuclear magnetic resonance (NMR) and magneticresonance imaging (MRI) studies of corn at subzero temperatures. Journal of Food Engineering,2005,69(2):199-205.
    Bruckstein A, Donoho D, Elad M. From sparse solutions of systems of equations to sparse modeling ofsignals and images. SIAM Review,2009,51(1):34-81.
    Caselles V,Kimmel R,Sapiro G.Geodesic active contours.International Journal of Computer
    Vision,1997,10(1):61-79.
    C. Cortes and V. Vapnik. Support-vector network. Machine Learning,20:273-297,1995.
    Chao K, Chen Y-R, Hruschka WR, et al. On-line inspection of poultry carcasses by a dual-camera system.Journal of Food Engineering,2002,51(3):185-192.
    Chen Quan-sheng, Zhao Jie-wen, Fang C.H., et al. Feasibility study on identification of green, black andOolong teas using near-infrared reflectance spectroscopy based on support vector machine.Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy,2007,66(3):568-574.
    Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines,2001. Softwareavailable at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    David G.Lowe.Distinctive Image Features from Scale-Invariant Keypoints.International Journal ofComputer Vision.2004,60(2):91-110.
    Da-Wen Sun. Computer Vision Technology for Food Quality Evaluation. USA: Elsevier Inc,2008
    Du CJ, Sun D-W. Recent development in the applications of image processing techniques for qualityevaluation. Trends in Food Science&Technology,2004,15:230-249.
    Du C-J, Sun D-W. Automatic measurement of pores and porosity in pork ham and their correlations withprocessing time, water content and texture. Meat Science,2006,72(2):294-302.
    Elhamifar E, Vidal R. Sparse subspace clustering. IEEE Conference on Computer Vision and PatternRecognition,2009,2790-2797.
    F Meyer, S Beucher. Morphology segmentation.J Visual Comm and Image Representation,1990,1(1):21-26.
    Ginesu G, Guisto DG, Margner V, et al. Detection of foreign bodies in food by thermal image processing.IEEE Transactions of Industrial Electronics,2004,51(2):480-490.
    Gong Zhang, Digvir S.Jayas, Noel D.G. White. Seperation of Touching Grain Kernels in an Image byEllipse Fitting Algorithm. Biosytems Engineering,2005,92(2):135-142.
    Gomez AH, He Y, Pereira AG.Non-destructive measurement of acidity, soluble solids and firmness ofSatsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering,2005,77(2):313-319.
    Heinemann PH, Hughes R, Morrow CT, et al. Gradin of mushrooms using machine vision system.Transactions of the ASAE,1994,37(5):1671-1677.
    Jahns G, Nielsen HM, Paul W. Measuring image analysis attributes and modeling fuzzy consumer aspectsfor tomato quality grading. Computers and Electronics in Agriculture,2001,31:17-29.
    Jianchao Yang, John Wright,Yi Ma, et al. Image Super-Resolution as Sparse Representation of Raw ImagePatches. CVPR2008.
    Julien Mairal, Michael Elad, Guillermo Sapiro. Sparse learned representations for image restoration. IEEE
    TRANSACTIONS ON IMAGE PROCESSING,2008,17(1):53-69.
    Kavdir I, Guyer DE. Apple sorting using artificial neural networks and spectral imaging. Transactions ofthe ASAE,2002,45(6):1995-2005.
    Kaizer H. A quantification of texture on aerial photographs. Technology Note121, AD69484, BostonUniversity Research Laboratory, Boston, MA,USA.1955.
    Krystian Mikolajczyk,Cordelia Schmid.A Performance Evaluation of Local Descriptors.IEEE Transactionson Pattern Analysis and Machine Intelligence.2005,27(10):1615-1630.
    Krystian Mikolajczyk, Cordelia Schmid.Scale&Affine Invariant Interest Point Detectors. InternationalJournal of Computer Vision.2004,60(1):63-86.
    Kwangmoo Koh, Seung-Jean Kim, Stephen Boyd. Simple Matlav Solver for l1-regularized Least SquaresProblems, http://www.stanford.edu/~boyd/l1_ls/,2008-5-15.
    L. D. Cohen,I. Cohen, Finite-element methods for active contour models and balloons for2-D and3-Dimages. IEEE Trans.Pattern Anal. Machine Intell,1993,vol.15,1131-1147.
    L.D.Cohen,I.Cohen,1993.Finite-element methods for active contour models and balloons for2-D and3-Dimages. IEEE Trans.Pattern Anal. Machine Intell., vol.15,1131-1147.
    Li Yongming, Zeng Xiaoping. A new strategy for urinary sediment segmentation based on wavelet,morphology and combination method. Computer Methods and Programs in Biomedicine,2006,84(2-3):162-173.
    Lim MC, Lim KC, Abdullah MZ. Rice Moisture imaging using electromagnetic measurement technique.Transactions of IChemE, Part C,2003,81:159-169.
    Luo X, Jayas DS,Symons SJ. Comparison of statistical and neural network methods for classifying cerealgrains using machine vision. Transactions of the ASAE,1999,42(2):413-419.
    Majumdar S,Jayas DS. Classification of cereal grains using machine vision: I. Morphology models.Transactions of the ASAE,2000,43(6):1669-1675.
    M. Kass, A. Witkin, and D. Terzopoulos. Snake: active contour models. International Journal of ComputerVision,1(4):321-331,1987.
    M. K. Hu.Visual pattern recognition by moment invariants.IEEEtrans Information Theory,1962,8:179-187.
    Pang B,Zhang D,Wang K Q.The bi-elliptical deformable contour and its application to automated tonguesegmentation in Chinese medicine.IEEE Trans Med Imaging,2005,24(8):946-956.
    Paliwal J, Shashidhar N S, Jayas D S. Grain kernel identification using kernel signature. Transaction of theASAE,1999,42(6):1921-1924.
    Parliwar J,Visen NS, Jayas DS, et al. Cereal grain and dockage identification using machine vision.Biosystems Engineering,2003,85:51-57.
    Paulsen M. Using machine vision to inspect oilseeds. INFROM,1990,1(1):50-55.
    Pedreschi F, Leon J, Mery D, et al. Development of a computer vision system to measure the color ofpotato chips. Food Research International,2006,39:1092-1098.
    Russ JC. Image Processing Handbook.3rdedn. Boca Raton: CRC Press,1999.
    Shahin MA, Tollner EW, Gitaitis RD, et al. Classification of sweet onions based on internal defects usingimage processing and neural network techniques. Transactions of the ASAE,2002,45(5):1613-1618.
    Shashidhar, N.S., D. S. Jayas, T. G. Crowe and N.R. Bulley. Processing of digital image of touching kernelsby ellipse fitting. Canadian Agricultural Engineering,1997,39(2):139-142.
    Shatadal, P., D., S. Jayas and N.R. Bulley. Digital Image analysis for software separation and classificationof touching grains: I. Disconnect algorithm. Transactions of the ASAE,1995,38(2):635-643.
    Steinmetz V, Crochon M, Bellon-Maurel V, et al. Sensors for fruit firmness assessment: comparison andfusion. Journal of Agricultural Engineering Research,1996,64(1):15-28.
    Stephen M.,Smith and J.,Michael Brady.SUSAN—A New Approach to Low Level Image Processing.International Journal of Computer Vision.1997,23(1):45-78.
    Storbeck F, Daan B. Fish species recognition using computer vision and a neural network. Fisheries
    Research,2001,51(1):11-15.
    Tao Y, Heinemann PH, Varghese Z, et al. Machine vision for color inspection of potatoes and apples.Transactions of ASAE,1995,38(5):1555-1561.
    T.F.Cohen. On active contour models and balloons. Comput.Vision Graph. Image Process.(ImageUnderstanging),1991,53(2):211-218.
    Theodoros M, Roberts SJ. Robust cell nuclei segmentation using statistical modeling. New York:McGraw2Hill,2004.
    Tobias OJ, Seara R. Image segmentation by histogram thresholding using fuzzy sets. IEEE Transactions onImage Processing,2002,11(12):1457-1465.
    Vapnik V.The Nature of Statistical Learning Theory. New York:Springer-Verlag,1995[10]
    Vicent L,Soille P.Watershed in digital spaces:An efficient algorithm based on immersion simulations.IEEETransactions of Pattern Analysis and Machine Intelligence,1991,13(6):583-598.
    Visen,.N. S., N.S. Shashidhar, et al.Identification and segmentation of occluding groups of grain kernels ina grain sample image. Journal of Agriculture Engineering Research,2001,79(2):159-166.
    Wan Y N, Lin C M, Chiou J-F. Rice quality classification using an automatic grain quality inspectionsystem. Transaction of the ASAE,2002,45(2):379-387.
    W.Wang, J.Paliwal. Separation and identification of touching kernels and dockage components in digitalimages. Canadian Biosystems Engineering,2006,48:7.1-7.7
    Wright J., Yang A.Y., Ganesh A. Robust Face Recognition via Sparse Representation. Pattern Analysis andMachine Intelligence,2008,31(2):210-227.
    Y. Karimi, S. O. Prasher, R. M. Pate, et al. Application of support vector machine technology for weed andnitrogen stress detection in corn. Transactions of the ASABE,2006,51(1-2):99-109.
    Zion B, Shklyar A, Karplus. In-vivo fish sorting by computer vision. Aquaculture Engineering.2000,22:165-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700