用户名: 密码: 验证码:
普罗布考对糖尿病兔心房重构及心房颤动发生的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:糖尿病是心房颤动(房颤)发生的独立危险因素之一,糖尿病引起房颤发生的机制尚不明确。研究表明,炎症和氧化应激在糖尿病及房颤的发生发展过程中都发挥了重要作用。由此推测,炎症和氧化应激可能是糖尿病引起房颤的作用通路。
     目的:为了探讨糖尿病房颤发生的机制,以及抗炎抗氧化药物普罗布考对糖尿病房颤发生的作用,本研究从整体水平、细胞离子通道水平及分子生物学水平探讨糖尿病引起的心房结构性重构和电重构,评价普罗布考的干预作用及其可能机制。
     方法:共三部分实验,每部分应用健康成年日本大耳白兔40只,随机分为四组:对照组(Control, C组),糖尿病组(Diabetes mellitus, DM组),普罗布考组(Control+probucol, CPR组)和糖尿病普罗布考组(DM+probucol, DPR),每组10只。四氧嘧啶兔耳缘静脉以120mg/kg注射建立糖尿病模型,DPR及CPR组予普罗布考(1000mg/d),饲养8周。8周后完成以下三部分实验:1.建立Langendorff灌流的离体兔心脏模型,测量心房间传导时间(IACT)、心房各点有效不应期(AERP)、AERP的离散度(AERPD)、应用Burst刺激观察房颤诱发情况,应用天狼猩红染色评价左房纤维化情况,检测血清中过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、丙二醛(MDA)、肿瘤坏死因子-a(TNF-α)和髓过氧化物酶(MPO)水平。2.采用酶解的方法分离单个心房肌细胞,采用全细胞膜片钳技术记录L型钙电流(ICa,L),钠电流(INa)及动作电位。3.左心房肌组织行RT-PCR及Western Blotting研究,比较四组TNF-α和TLR4的基因表达以及Cav1.2、NF-κB、ERK、P-ERK,TGF-β和HSP70的蛋白表达的不同。
     结果:与C组相比,DM组IACT延长(36.55±6.4ms vs25.75±2.7ms,P<0.05),AERPD增大(28.37±7.52ms vs11.62±5.60ms,P<0.05)房颤诱发率升高(8/10vs1/10,P<0.05);病理检查提示DM组心房肌细胞横截而积增大(131.51±14.69μm2vs105.90±15.67μm2,P<0.05),左房心肌间质明显纤维化(6.86±1.71%vs2.13±0.75%,P<0.05),MDA(22.17±4.15nmo1/ml vs17.69±3.59nmol/ml,P<0.05),TNF-α水平增高(334.15±84.94pg/ml vs226.48±46.01pg/ml,P<0.05);DM组ICa,L最大电流密度增大(8.94±3.81pA/pF vs5.16±1.10pA/pF,P<0.05),INa最大电流密度减小(86.75±17.55pA/pF vs120.00±13.11pA/p F,P<0.05),动作电位时程(APD)90及APD50延长。糖尿病组Cav1.2,TNF-α,TLR4基因表达增多,NF-κB,ERK, P-ERK,TGF-β,HSP70蛋白表达增加。与DM组相比,DPR组IACT缩短(23.87±1.64ms vs36.55±6.4ms,P<0.05),AERPD减小(?)(15.62±7.65vs28.37±7.52,P<0.05),房颤诱发率明显减低(3/10vs8/10,P<0.05),心肌细胞横截面积减小(120.85±8.27μm2vs131.51±14.69μm2,P<0.05),心肌纤维化减轻,胶原容积分数减小(?)(3.41±1.27%vs6.86±1.71%,P<0.05),MDA,TNF-α水平减低,ICa,L最大电流密度减小(6.51±1.25pA/pF vs8.94±3.81pA/pF,P<0.05),INa最大电流密度增大(137.0±28.59pA/pF vs86.75±17.55pA/pF,P<0.01),APD90及APD50缩短。TNF-α,TLR4的基因表达及NF-κB,TGF-p,HSP70的蛋白表达下调。而CPR与C组比较组未发现离子通道特性和蛋白表达的明显改变。
     结论:糖尿病引起心房重构机制为NF-κB活化,NF-κB活化过程的介质和产物(如TGF-β,TLR4等)是引起糖尿病炎症、心肌细胞肥大以及心房纤维化的原因,构成房颤发生的基质。糖尿病引起的氧化应激可能是心肌细胞离子通道电流改变ICa,L电流密度增大,INa电流密度减小的主要原因。离子通道改变,导致电活动的不稳定,房颤诱发率增高。普罗布考通过抗炎抗氧化作用减轻糖尿病引起的电重构和结构重构,减少房颤发生。
Objective Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation (AF) and has been recognized as a low-grade inflammation disease. Inflammation has also been shown to have a direct role in the initiation, maintenance, and recurrence of AF. On the other hand, oxidative stress play critical role in the pathophysiology of DM and the development of vascular complications, which may also relate to the development of AF. So we hypotheses that inflammation and oxidative stress may be important mechanisms for the increased propensity for AF in DM. The purpose of this study was to elucidate the underlying mechanisms of AF and to evaluate the effects of probucol on atrial electrophysiological changes and AF promotion in alloxan-induced diabetic rabbits.
     Methods The experiment was divided into three parts. In each part,40Japanese rabbits were randomly assigned to a normal control group (C, n=10), a alloxan-induced diabetic group (DM, n=10), probucol-treated group (CPR, n=10) and probucol-treated diabetic group (DPR, n=10). In the DM and DPR group, alloxan monohydrate was immediately administered intravenously via the marginal ear vein. Rabbits in the DPR and CPR groups were orally administered Probucol (1000mg/day) for8weeks. The animals in four groups were housed in cages and a standard laboratory pellet diet for8weeks. In part one, isolated Langendorff perfused rabbit hearts were prepared to evaluate atrial refractory effective period (AERP) and its dispersion (AERPD), interatrial conduction time (IACT) and vulnerability to AF. Plasma malonaldehyde (MDA), superoxide dismutase (SOD), TNF-a, myeloperoxidase(MPO) and catalase (CAT) levels were measured by chemical colourimetric methods. Sirius-Red staining was used to evaluate atrial fibrosis. In part two, using whole-cell voltage-clamp techniques,Ica,L,INa and action potential(AP) were measured in left atrial myocytes isolated from the rabbits of four groups. In part three, the expression levels of Cavl.2, NF-κB, ERK, P-ERK, TGF-β and HSP70in left atrial tissue were analysed by western blot, the expression levels of TNF-a and TLR4were analysed by RT-PCR methods.
     Results IACT and AERPD were prolonged in diabetic rabbits compared with controls. Inducibility of AF in diabetic group was significant higher than controls (8/10vs1/10, P<0.05). Extensive interstitial fibrosis was observed in the DM group (P<0.05). Plasma MDA and TNF-a were increased significantly in the DM group (P<0.05). The density of Ica,L current in diabetic myocytes was significantly higher than that in the control, the density of INA current was significantly decreased in diabetic myocytes. APD90and APD50were also prolonged in diabetic myocytes. NF-κB, ERK, P-ERK, TGF-β and HSP70protein and the levels of Cavl.2, TNF-a mRNA and TLR4mRNA expression were significantly upregulated in DM group. The DPR rabbits exhibited significant alleviation of oxidative stress displayed as decreased plasma MDA and TNF-a compared with diabetic rabbits (P<0.05), probucol administration increases stability of vulnerable atrial fibrillation in diabetic rabbits (P<0.05). Histological analysis revealed suppression of DM-related histological changes (interstitial fibrosis) by probucol. The density of iCa,L current was significantly decreased and the density of INa current was significantly increased in DPR myocytes. Probucol significantly downregulated atrial NF-κB, TGF-β and HSP70protein expression and TNF-a mRNA and TLR4mRNA expression in DPR left atrial tissue.
     Conclusion There is an increased NF-κB activity in diabetes mellitus. Some of target cytokines NF-κB controls and stimulus of NF-κB like TGF-β, TLR4are responsible for inflammation, atrial fibrosis and hypertrophy of atrial tissue, which may serve as an important substrate for the development of AF. Alterations of atrial Ica,L and INa were due to the increased oxidative stress, which lead to the unstablity of electrical activity and subsequent occurrence of AF. Probucol through its powerful anti-inflammatory and antioxidant activity preserves the structural integrity of atrial tissues and increases stability of vulnerable atrial fibrillation in alloxan-induced diabetic rabbits.
引文
[1]Movahed MR, Hashemzadeh M, Jamal MM. Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease[J]. Int J Cardiol,2005,105(3):315-318.
    [2]uxley RR, Alonso A, Lopez FL, Filion KB, Agarwal SK, Loehr LR et al. Type 2 diabetes, glucose homeostasis and incident atrial fibrillation: the Atherosclerosis Risk in Communities study[J]. Heart,2012,98(2):133-138.
    [3]Van Wagoner DR. Oxidative stress and inflammation in atrial fibrillation:role in pathogenesis and potential as a therapeutic target[J]. J Cardiovasc Pharmacol,2008, 52(4):306-313.
    [4]Morgera T, Di Lenarda A, Dreas L, PINamonti B, Humar F, Bussani R. Electrocardiography of myocarditis revisited:clinical and prognostic significance of electrocardiographic changes [J]. Am Heart J,1992,124(2):455-467.
    [5]Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A. Histological substrate of atrial biopsies in patients with lone atrial fibril lati on [J]. Circulation,1997,96(4):1180-1184.
    [6]Psychari SN, Apostolou TS, Sinos L, Hamodraka E, Liakos G, Kremastinos DT. Relation of elevated C-reactive protein and interleukin-6 levels to left atrial size and duration of episodes in patients with atrial fibrillation[J]. Am J Cardiol,2005,95(6): 764-767.
    [7]Ozaydin M. Atrial fibrillation and inflammation[J]. World J Cardiol,2010,2(8): 243-50.
    [8]Aviles RJ, Martin DO, Apperson-Hansen C, Houghtaling PL, Rautaharju P, Kronmal RA et al. Inflammation as a risk factor for atrial fibrillation[J]. Circulation, 2003,108(24):3006-3010.
    [9]Watanabe T, Takeishi Y, Hirono O, Itoh M, Matsui M, Nakamura K et al. C-reactive protein elevation predicts the occurrence of atrial structural remodeling in patients with paroxysmal atrial fibrillation[J]. Heart Vessels,2005,20(2):45-49.
    [10]Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system[J]? Diabetologia,1998,41(10):1241-1248.
    [11]Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications[J]. J Clin Endocrinol Metab,2009,94(9):3171-3182.
    [12]Ballantyne CM, Nambi V. Markers of inflammation and their clinical significance[J]. Atheroscler Suppl,2005,6(2):21-29.
    [13]Cardozo AK, Kruhφffer M, Leeman R, Orntoft T, Eizirik DL. Identification of novel cytokine-induced genes in pancreatic beta-cells by high-density oligonucleotide arrays[J]. Diabetes,2001,50(5):909-920.
    [14]Christiansen T, Richelsen B, Bruun JM. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects[J]. Int J Obes (Lond),2005,29(1):146-150.
    [15]Libby P. Inflammation in atherosclerosis[J]. Nature,2002,420(6917):868-874.
    [16]Ehses JA, Boni-Schnetzler M, Faulenbach M, Donath MY. Macrophages, cytokines and beta-cell death in Type 2 diabetes[J]. Biochem Soc Trans,2008,36(Pt 3):340-342.
    [17]Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS[J]. Circulation,2003,108(16): 1912-1916.
    [18]Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited[J]. Arterioscler Thromb Vasc Biol,2004,4(5):816-823.
    [19]Festa A, D'Agostino R Jr, Tracy RP, Haffner SM; Insulin Resistance Atherosclerosis Study. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes:the insulin resistance atherosclerosis study[J]. Diabetes,2002,51(4):1131-1137.
    [20]Liu S, Tinker L, Song Y, Rifai N, Bonds DE, Cook NR et al. A prospective study of inflammatory cytokines and diabetes mellitus in a multiethnic cohort of postmenopausal women[J]. Arch Intern Med,2007,167(15):1676-1685.
    [21]Lee CC, Adler AI, Sandhu MS, Sharp SJ, Forouhi NG, Erqou S et al. Association of C-reactive protein with type 2 diabetes:prospective analysis and meta-analysis[J]. Diabetologia,2009,52(6):1040-1047.
    [22]Herder C, Baumert J, Thorand B, Koenig W, de Jager W, Meisinger C et al. Chemokines as risk factors for type 2 diabetes:results from the MONICA/KORA Augsburg study,1984-2002[J]. Diabetologia,2006,49(5):921-929.
    [23]Dandona P, Chaudhuri A, Ghanim H, Mohanty P et al. Proinflammatory effects of glucose and anti-inflammatory effect of insulin:relevance to cardiovascular disease[J]. Am J Cardiol,2007,99(4A):15B-26B.
    [24]Korantzopoulos P, Kolettis TM, Galaris D, Goudevenos JA. The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation[J]. Int J Cardiol,2007,115(2):135-43.
    [25]Huang CX, Liu Y, Xia WF, Tang YH, Huang H. Oxidative stress:a possible pathogenesis of atrial fibrillation[J]. Med Hypotheses,2009,72(4):466-467.
    [26]Crandall MA, Home BD, Day JD, Anderson JL, Muhlestein JB, Crandall BG et al. Atrial fibrillation and CHADS2 risk factors are associated with highly sensitive C-reactive protein incrementally and independently [J]. Pacing Clin Electrophysiol, 2009,32(5):648-652.
    [27]Korantzopoulos P, Kolettis TM, Galaris D, Goudevenos JA. The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation[J].Int J Cardiol.2007,115(2):135-143.
    [28]Bukowska A, Rocken C, Erxleben M, Roh1 FW, Hammwohner M, Huth C et al. Atrial expression of endothelial nitric oxide synthase in patients with and without atrial fibrillation[J]. Cardiovasc Pathol.2010,19(3):e51-60.
    [29]Gu WJ, Wu ZJ, Wang PF, Aung LH, Yin RX. N-acetylcysteine supplementation for the prevention of atrial fibrillation after cardiac surgery: a meta-analysis of eight randomized controlled trials[J]. BMC Cardiovasc Disord,2012,12(1):10. [Epub ahead of print]
    [30]Ferro D, Franciosa P, Cangemi R, Carnevale R, Pignatelli P, Loffredo L et al. Serum Levels of Vitamin E Are Associated with Early Recurrence of Atrial Fibrillation After Electrical Cardioversion[J]. Circ Arrhythm Electrophysiol,2012,23. [Epub ahead of print]
    [31]Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi et al. Oxidative stress, nitric oxide, and diabetes[J]. Rev Diabet Stud,2010,7(1):15-25.
    [32]Brownlee M. The pathobiology of diabetic complications:a unifying mechanism[J]. Diabetes,2005,54(6):1615-1625.
    [33]Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010,107(9):1058-1070.
    [34]Trumpower BL.The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bcl complex[J]. J Biol Chem,1990,265(20):11409-11412.
    [35]Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J]. Nature,2000,404(6779):787-790.
    [36]Liu M, Sanyal S, Gao G, Gurung IS, Zhu X, Gaconnet G et al. Cardiac Na+ current regulation by pyridine nucleotides[J]. Circ Res,2009,105(8):737-745.
    [37]Valdivia CR, Ueda K, Ackerman MJ, Makielski JC. GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A[J]. Am J Physiol Heart Circ Physiol,2009,297(4):H1446-1452.
    [38]Liu M, Liu H, Dudley SC Jr. Reactive oxygen species origINating from mitochondria regulate the cardiac sodium channel[J]. Circ Res,2010,107(8): 967-974.
    [39]Ducharme A, Swedberg K, Pfeffer MA, Cohen-Solal A, Granger CB, Maggioni AP et al. Prevention of atrial fibrillation in patients with symptomatic chronic heart failure by candesartan in the Candesartan in Heart failure:Assessment of Reduction in Mortality and morbidity (CHARM) program[J]. Am Heart J,2006,152(1):86-92.
    [40]Liu T, Li G. Thiazolidinediones as novel upstream therapy for atrial fibrillation in diabetic patients:A review of current evidence[J]. Int J Cardiol.2012,156(2): 215-216.
    [41]Ku G, Doherty NS, Schmidt LF, Jackson RL, Dinerstein RJ. Ex vivo lipopolysaccharide-induced interleukin-1 secretion from murine peritoneal macrophages inhibited by probucol, a hypocholesterolemic agent with antioxidant properties[J]. FASEB J,1990,4(6):1645-1653.
    [42]Li T, Chen W, An F, Tian H, Zhang J, Peng J, Zhang Y, Guo Y. Probucol attenuates inflammation and increases stability of vulnerable atherosclerotic plaques in rabbits[J]. Tohoku J Exp Med,2011,225(1):23-34.
    [43]Matsuzawa Y, Kawashima T, Yamazaki R, Yamaura E, Makiyama T, Fujino H, Murayama T. Inhibitory effects of clinical reagents having anti-oxidative activity on transforming growth factor-(β1-induced expression of a-smooth muscle actin in human fetal lung fibroblasts[J]. J Toxicol Sci,2011,36(6):733-740.
    [44]Li Y, Sheng L, Li W, Liu W, Gong Y, Xue H et al. Probucol attenuates atrial structural remodeling in prolonged pacing-induced atrial fibrillation in dogs[J]. Biochem Biophys Res Commun,2009,381(2):198-203.
    [45]Wang J, Wan R, Mo Y, Zhang Q, Sherwood LC, Chien S. Creating a long-term diabetic rabbit model[J]. Exp Diabetes Res,2010,2010:289614.
    [46]Gumieniczek A, Hopkala H, Wojtowicz Z, Nikolajuk J. Changes in antioxidant status of heart muscle tissue in experimental diabetes in rabbits[J]. Acta Biochim Pol, 2002,49(2):529-535.
    [47]Grodsky GM, Anderson CE, Coleman DL, Craighead JE, Gerritsen GC, Hansen CT et al. Metabolic and underlying causes of diabetes mellitus[J]. Diabetes, 1982,31(Suppl 1 Pt 2):45-53.
    [48]Mir SH, Darzi MM.Histopathological abnormalities of prolonged alloxan-induced diabetes mellitus in rabbits[J]. Int J Exp Pathol,2009,90(1):66-73.
    [49]Swanston-Flatt SK, Flatt PR, Day C, Bailey CJ. Traditional dietary adjuncts for the treatment of diabetes mellitus[J]. Proc Nutr Soc,1991,50(3):641-51.
    [50]Maciejewski R, Rucinski P, Burski K, Figura T. Changes in glucose, cholesterol and serum lipid fraction levels in experimental diabetes[J]. Ann Univ Mariae Curie Sklodowska Med,2001,56:363-368.
    [51]Arisue K, Uchida K, Takeuchi N. Jikken Dobutsu. Changes in serum lipid and lipoproteins in alloxan-diabetic rats--studies for one year[J].1994,43(2):217-226.
    [52]Rosenbaum MA, Miyazaki K, Colles SM, Graham LM. Antioxidant therapy reverses impaired graft healing in hypercholesterolemic rabbits[J]. J Vasc Surg,2010, 51(1):184-193.
    [53]Zhong JK, Guo ZG, Li C, Wang ZK, Lai WY, Tu Y.Probucol alleviates atherosclerosis and improves high density lipoprotein function[J]. Lipids Health Dis, 2011,10:210.
    [54]赵水平,洪绍彩,邓平.普罗布考对高脂兔动脉粥样斑块及血栓调节蛋白的影响[J],中华心血管病杂志,2005,33(10):915
    [55]Heeg JF, Tachizawa H.Plasma levels of probucol in man after single and repeated oral doses (author's transl)[J]. Nouv Presse Med,1980,9(40):2990-2994.
    [56]吕守磊,靳文仙,王成港,王春龙.普罗布考纳米混悬液的制备及其家兔体内药动学研究[J].中国药学杂志,2010,45(21):1634-1638.
    [57]Movahed MR, Hashemzadeh M, Jamal MM. Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease[J]. Int J Cardiol,2005,105(3):315-318.
    [58]Nichols GA, Reinier K, Chugh SS. Independent contribution of diabetes to increased prevalence and incidence of atrial fibrillation[J]. Diabetes Care,2009, 32(10):1851-1856.
    [59]Dublin S, Glazer NL, Smith NL, Psaty BM, Lumley T, Wiggins KL et al. Diabetes mellitus, glycemic control, and risk of atrial fibrillation[J]. J Gen Intern Med, 2010,25(8):853-858.
    [60]Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi C et al. Oxidative stress, nitric oxide, and diabetes[J]. Rev Diabet Stud,2010,7(1):15-25.
    [61]Brownlee M. The pathobiology of diabetic complications:a unifying mechanism[J]. Diabetes,2005,54(6):1615-1625.
    [62]Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010,107(9):1058-1070.
    [63]Trumpower BL. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bcl complex[J]. J Biol Chem,1990,265(20):11409-11412.
    [64]Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[j]. Nature,2000,404(6779):787-790.
    [65]Mihm MJ, Yu F, Carnes CA, Reiser PJ, McCarthy PM, Van Wagoner DR et al. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation[J]. Circulation,2001,104(2):174-180.
    [66]Dudley SC Jr, Hoch NE, McCann LA, Honeycutt C, Diamandopoulos L, Fukai T et al. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage:role of the NADPH and xanthine oxidases[J]. Circulation,2005, 112(9):1266-1273.
    [67]Kim YM, Guzik TJ, Zhang YH, Zhang MH, Kattach H, Ratnatunga C et al. A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation[J]. Circ Res,2005,97(7):629-636.
    [68]Wang X, Takeda S, Mochizuki S, Jindal R, Dhalla NS. Mechanisms of Hydrogen Peroxide-Induced Increase in Intracellular Calcium in Cardiomyocytes[J]. J Cardiovasc Pharmacol Ther,1999,4(1):41-48.
    [69]Van Wagoner DR. Electrophysiological remodeling in human atrial fibrillation[J]. Pacing Clin Electrophysiol,2003,26(7 Pt 2):1572-1575.
    [70]Liu T, Li G. Probucol and succinobucol in atrial fibrillation:pros and cons[J]. Int J Cardiol,2010,144(2):295-296.
    [71]Mihm MJ, Yu F, Carnes CA, Reiser PJ, McCarthy PM, Van Wagoner DR et al. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation[J]. Circulation,2001,104(2):174-180.
    [72]Walden AP, Dibb KM, Trafford AW. Differences in intracellular calcium homeostasis between atrial and ventricular myocytes[J]. J Mol Cell Cardiol,2009, 46(4):463-473.
    [73]Koh YS, Jung HO, Park MW, Baek JY, Yoon SG, Kim PJ et al. Comparison of Left Ventricular Hypertrophy, Fibrosis and Dysfunction According to Various Disease Mechanisms such as Hypertension, Diabetes Mellitus and Chronic Renal Failure[J]. J Cardiovasc Ultrasound,2009,17(4):127-134.
    [74]Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes[J]. Circ Res,2003,92(7):785-792.
    [75]Nicoletti A, Michel JB. Cardiac fibrosis and inflammation:interaction with hemodynamic and hormonal factors[J]. Cardiovasc Res,1999,41(3):532-543.
    [76]Ashihara T, Haraguchi R, Nakazawa K, Namba T, Ikeda T, Nakazawa Y et al. The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: implications for electrogram-based catheter ablation[J]. Circ Res,2012,110(2):275-284.
    [77]Platonov PG, Mitrofanova LB, Orshanskaya V, Ho SY. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age[J]. J Am Coll Cardiol,2011,58(21):2225-2232.
    [78]Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation[J]. Circ Res,1997, 81(4):512-525.
    [79]Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM. Atrial L-type Ca2+ currents and human atrial fibrillation[J]. Circ Res,1999, 85(5):428-436.
    [80]Balke CW, Shorofsky SR. Alterations in calcium handling in cardiac hypertrophy and heart failure[J]. Cardiovasc Res,1998,37(2):290-299.
    [81]Richard S, Leclercq F, Lemaire S, Piot C, Nargeot J. Ca2+ currents in compensated hypertrophy and heart failure[J]. Cardiovasc Res,1998,37(2):300-311.
    [82]Mukherjee R, SpINale FG. L-type calcium channel abundance and function with cardiac hypertrophy and failure:a review[J]. J Mol Cell Cardiol,1998,30(10): 1899-1916.
    [83]He J, Conklin MW, Foell JD, Wolff MR, Haworth RA, Coronado R et al. Reduction in density of transverse tubules and L-type Ca(2+) channels in canine tachycardia-induced heart failure[J]. Cardiovasc Res,2001,49(2):298-307.
    [84]Aggarwal R, Boyden PA. Diminished Ca2+ and Ba2+ currents in myocytes surviving in the epicardial border zone of the 5-day infarcted canine heart[J]. Circ Res, 1995,77(6):1180-1191.
    [85]Klugbauer N, Dai S, Specht V, Lacinova L, Marais E, Bohn G et al. A family of gamma-like calcium channel subunits[J]. FEBS Lett,2000,470(2):189-197.
    [86]Birnbaumer L, Qin N, Olcese R, Tareilus E, Platano D, Costantin J et al. Structures and functions of calcium channel beta subunits[J]. J Bioenerg Biomembr, 1998,30(4):357-375.
    [87]Kamp TJ, Hell JW. Regulation of cardiac L-type calcium channels by protein kINase A and protein kINase C[J]. Circ Res,2000,87(12):1095-1102.
    [88]Oh S, Kim KB, Ahn H, Cho HJ, Choi YS. Remodeling of ion channel expression in patients with chronic atrial fibrillation and mitral valvular heart disease[J]. Korean J Intern Med,2010,25(4):377-385.
    [89]Greiser M, Lederer WJ, Schotten U. Alterations of atrial Ca(2+) handling as cause and consequence of atrial fibrillation[J]. Cardiovasc Res,2011,89(4):722-733.
    [90]Teshima Y, Takahashi N, Saikawa T, Hara M, Yasunaga S, Hidaka S et al. Diminished expression of sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine sensitive Ca(2+)Channel mRNA in streptozotocin-induced diabetic rat heart[J]. J Mol Cell Cardiol,2000,32(4):655-664.
    [91]Navedo MF, Takeda Y, Nieves-Cintron M, Molkentin JD, Santana LF. Elevated Ca2+ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells[J]. Am J Physiol Cell Physiol,2010,298(2):C211-220.
    [92]Ungvari Z, Pacher P, Kecskemeti V, Papp G, Szollar L, Koller A. Increased myogenic tone in skeletal muscle arterioles of diabetic rats. Possible role of increased activity of smooth muscle Ca2+ channels and protein kinase C[J]. Cardiovasc Res, 1999,43(4):1018-1028.
    [93]White RE, Carrier GO. Vascular contraction induced by activation of membrane calcium ion channels is enhanced in streptozotocin-diabetes[J]. J Pharmacol Exp Ther, 1990,253(3):1057-1062.
    [94]Jourdon P, Feuvray D. Calcium and potassium currents in ventricular myocytes isolated from diabetic rats[J]. J Physiol,1993,470:411-429.
    [95]Arikawa M, Takahashi N, Kira T, Hara M, Saikawa T, Sakata T. Enhanced inhibition of L-type calcium currents by troglitazone in streptozotocin-induced diabetic rat cardiac ventricular myocytes[J]. Br J Pharmacol,2002,136(6):803-810.
    [96]Wang DW, Kiyosue T, Shigematsu S, Arita M. Abnormalities of K+ and Ca2+ currents in ventricular myocytes from rats with chronic diabetes[J]. Am J Physiol, 1995,269(4 Pt 2):H1288-1296.
    [97]Yuill KH, Tosh D, Hancox JC. Streptozotocin-induced diabetes modulates action potentials and ion channel currents from the rat atrioventricular node. Exp Physiol, 2010,95(4):508-517.
    [98]Barrington PL. Interactions of H2O2, EGTA and patch pipette recording methods in feline ventricular myocytes[J]. J Mol Cell Cardiol,1994,26(5):557-68.
    [99]Thomas GP, Sims SM, Cook MA, Karmazyn M. Hydrogen peroxide-induced stimulation of L-type calcium current in guinea pig ventricular myocytes and its inhibition by adenosine Al receptor activation[J]. J Pharmacol Exp Ther,1998, 286(3):1208-1214.
    [100]Amin AS, Asghari-Roodsari A, Tan HL. Cardiac sodium channelopathies[J]. Pflugers Arch,2010,460(2):223-37. [101] Ramos-Mondragon R, Vega AV, Avila G. Long-term modulation of Na+ and K+ channels by TGF-(31 in neonatal rat cardiac myocytes[J]. Pflugers Arch,2011, 461(2):235-247.
    [102]Liu M, Sanyal S, Gao G, Gurung IS, Zhu X, Gaconnet G et al. Cardiac Na+ current regulation by pyridine nucleotides[J]. Circ Res,2009,105(8):737-745.
    [103]Valdivia CR, Ueda K, Ackerman MJ, Makielski JC. GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A[J]. Am J Physiol Heart Circ Physiol,2009,297(4):H1446-1452.
    [104]Liu M, Liu H, Dudley SC Jr. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel[J]. Circ Res,2010,107(8): 967-974.
    [105]Yanagita T, Kobayashi H, Yamamoto R, Kataoka H, Yokoo H, Shiraishi S et al. Protein kinase C-alpha and -epsilon down-regulate cell surface sodium channels via differential mechanisms in adrenal chromaffin cells[J]. J Neurochem,2000,74(4): 1674-1684.
    [106]Zhou LZ, Johnson AP, Rando TA. NF kappa B and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells[J]. Free Radic Biol Med,2001,31(11):1405-1416.
    [107]Shang LL, Dudley SC Jr. Tandem promoters and developmentally regulated 5'-and 3'-mRNA untranslated regions of the mouse Scn5a cardiac sodium channel[J]. J Biol Chem,2005,280(2):933-940.
    [108]Shang LL, Sanyal S, Pfahnl AE, Jiao Z, Allen J, Liu H et al. NF-kappaB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II[J]. Am J Physiol Cell Physiol,2008,294(1):C372-379.
    [109]徐云,单其俊,陈明龙,曹克将.心房颤动患者心房肌动作电位时程频率 适应性研究.中华心血管病杂志,2003,31(7):491-493.
    [110]Bode F, Kilborn M, Karasik P, Franz MR. The repolarization-excitability relationship in the human right atrium is unaffected by cycle length, recording site and prior arrhythmias[J]. J Am Coll Cardiol,2001,37(3):920-925.
    [111]Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart[J]. J Am Coll Cardiol,2001,38(2):307-314.
    [112]Brown KD, Claudio E, Siebenlist U.The roles of the classical and alternative nuclear factor-kappaB pathways:potential implications for autoimmunity and rheumatoid arthritis[J]. Arthritis Res Ther,2008,10(4):212.
    [113]Lorenzo O, Picatoste B, Ares-Carrasco S, Ramirez E, Egido J, Tunon J. Potential role of nuclear factor κB in diabetic cardiomyopathy[J]. Mediators Inflamm, 2011,2011:652097.
    [114]Maziere C, Maziere JC.Activation of transcription factors and gene expression by oxidized low-density lipoprotein[J]. Free Radic Biol Med,2009 Jan 15,46(2): 127-137.
    [115]Min W, Bin ZW, Quan ZB, Hui ZJ, Sheng FG. The signal transduction pathway of PKC/NF-kappa B/c-fos may be involved in the influence of high glucose on the cardiomyocytes of neonatal rats[J]. Cardiovasc Diabetol,2009,8:8.
    [116]Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy:evidence, mechanisms, and therapeutic implications[J]. Endocr Rev,2004,25(4):543-567.
    [117]Li H, Malhotra S, Kumar A. Nuclear factor-kappa B signaling in skeletal muscle atrophy[J]. J Mol Med (Berl),2008,86(10):1113-1126.
    [118]Chen S, Khan ZA, Cukiernik M, Chakrabarti S. Differential activation of NF-kappa B and AP-1 in increased fibronectin synthesis in target organs of diabetic complications. Am J Physiol Endocrinol Metab,2003,284(6):E1089-1097.
    [119]A1-Maghrebi M, Benter IF, Diz DI. Endogenous angiotensin-(1-7) reduces cardiac ischemia-induced dysfunction in diabetic hypertensive rats[J]. Pharmacol Res, 2009,59(4):263-268.
    [120]Hall G, Hasday JD, Rogers TB.Regulating the regulator: NF-kappaB signaling in heart[J], J Mol Cell Cardiol,2006,41(4):580-591.
    [121]Younce CW, Wang K, Kolattukudy PE.Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP[J]. Cardiovasc Res,2010,87(4):665-674.
    [122]Wang J, Song Y, Wang Q, Kralik PM, Epstein PN. Causes and characteristics of diabetic cardiomyopathy[J]. Rev Diabet Stud,2006,3(3):108-117.
    [123]Westermann D, Van Linthout S, Dhayat S, Dhayat N, Escher F, Bucker-Gartner C et al. Cardioprotective and anti-inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy[J]. Diabetes,2007,56(7): 1834-1841.
    [124]Ares-Carrasco S, Picatoste B, Benito-Martin A, Zubiri I, Sanz AB, Sanchez-Nino MD et al. Myocardial fibrosis and apoptosis, but not inflammation, are present in long-term experimental diabetes[J]. Am J Physiol Heart Circ Physiol,2009, 297(6):H2109-2119.
    [125]Kostin S, Hein S, Arnon E, Scholz D, Schaper J. The cytoskeleton and related proteins in the human failing heart[J]. Heart Fail Rev,2000,5(3):271-280.
    [126]Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A. Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes[J]. Proc Natl Acad Sci U S A,2001,98(12):6668-6673.
    [127]Ha T, Li Y, Hua F, Ma J, Gao X, Kelley J et al. Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload[J]. Cardiovasc Res, 2005,68(2):224-234.
    [128]Sugden PH, Clerk A. "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium[J]. Circ Res,1998,83(4):345-352.
    [129]Cheng YC, Chen LM, Chang MH, Chen WK, Tsai FJ, Tsai CH et al. Lipopolysaccharide upregulates uPA, MMP-2 and MMP-9 via ERK1/2 signaling in H9c2 cardiomyoblast cells[J]. Y Mol Cell Biochem,2009,325:15-23.
    [130]Chang SH, Liu CJ, Kuo CH, Chen H, Lin WY, Teng KY et al. Garlic Oil Alleviates MAPKs- and IL-6-mediated Diabetes-related Cardiac Hypertrophy in STZ-induced DM Rats[J]. Evid Based Complement Alternat Med,2011,2011: 950150.
    [131]Campbell M, Allen WE, Sawyer C, Vanhaesebroeck B, Trimble ER. Glucose-potentiated chemotaxis in human vascular smooth muscle is dependent on cross-talk between the PI3K and MAPK signaling pathways[J]. Circ Res,2004,95: 380-388.
    [132]Olson ER, Shamhart PE, Naugle JE, Meszaros JG. Angiotensin Ⅱ-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase Cdelta and intracellular calcium in adult rat cardiac fibroblasts[J]. Hypertension, 2008,51(3):704-711.
    [133]Smani T, Calderon-Sanchez E, Gomez-Hurtado N, Fernandez-Velasco M, Cachofeiro V, Lahera V et al. Mechanisms underlying the activation of L-type calcium channels by urocortin in rat ventricular myocytes[J]. Cardiovasc Res,2010, 87(3):459-466.
    [134]Tschope C, Walther T, Escher F, Spillmann F, Du J, Altmann C et al. Transgenic activation of the kallikrein-kinin system inhibits intramyocardial inflammation, endothelial dysfunction and oxidative stress in experimental diabetic cardiomyopathy[J]. FASEB J,2005,19(14):2057-2059.
    [135]Kralik PM, Ye G, Metreveli NS, Shem X, Epstein PN. Cardiomyocyte dysfunction in models of type 1 and type 2 diabetes [J]. Cardiovasc Toxicol,2005,5(3): 285-292.
    [136]Westermann D, Rutschow S, Van Linthout S, Linderer A, B Bicker-Gartner C, Sobirey M et al. Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia,2006,49(10):2507-2513.
    [137]Jesmin S, Sakuma I, Hattori Y, Fujii S, Kitabatake A. Long-acting calcium channel blocker benidipine suppresses expression of angiogenic growth factors and prevents cardiac remodelling in a Type II diabetic rat model[J]. Diabetologia,2002, 45(3):402-415.
    [138]Twigg SM, Cao Z, MCLennan SV, Burns WC, Brammar G, Forbes JM, Cooper ME. Renal connective tissue growth factor induction in experimental diabetes is prevented by aminoguanidine[J]. Endocrinology,2002,143(12):4907-4915.
    [139]Nakhjavani M, Morteza A, Khajeali L, Esteghamati A, Khalilzadeh O, Asgarani F et al. Increased serum HSP70 levels are associated with the duration of diabetes [J]. Cell Stress Chaperones,2010,15(6):959-964.
    [140]Hunter-Lavin C, Hudson PR, Mukherjee S, Davies GK, Williams CP, Harvey JN et al. Folate supplementation reduces serum hsp70 levels in patients with type 2 diabetes[J]. Cell Stress Chaperones,2004,9(4):344-349.
    [141]Calabrese V, Cornelius C, Leso V, Trovato-SalINaro A, Ventimiglia B, Cavallaro M et al. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes[J]. Biochim Biophys Acta,2012,1822(5):729-736.
    [142]Jialal Ⅰ, Kaur H.The Role of Toll-Like Receptors in Diabetes-Induced Inflammation:Implications for Vascular Complications[J]. Curr Diab Rep,2012 Feb 8. [Epub ahead of print]
    [143]Vitseva OI, Tanriverdi K, Tchkonia TT, Kirkland JL, McDonnell ME, Apovian CM et al. Inducible Toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue[J]. Obesity (Silver Spring),2008,16(5):932-937.
    [144]Xu XH, Shah PK, Faure E, Equils O, Thomas L, Fishbein MC et al.Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL[J]. Circulation,2001, 104(25):3103-3108.
    [145]McCartney-Francis N, Jin W, Wahl SM. Aberrant Toll receptor expression and endotoxin hypersensitivity in mice lacking a functional TGF-beta 1 signaling pathway[J]. J Immunol,2004,172(6):3814-3821.
    [146]Avlas O, Fallach R, Shainberg A, Porat E, Hochhauser E. Toll-like receptor 4 stimulation initiates an inflammatory response that decreases cardiomyocyte contractility[J].Antioxid Redox Signal,2011,15(7):1895-1909.
    [147]Chao W. Toll-like receptor signaling:a critical modulator of cell survival and ischemic injury in the heart[J]. Am J Physiol Heart Circ Physiol,2009,296(1): H1-12.
    [148]Arun KH, Kaul CL, Ramarao P. AT1 receptors and L-type calcium channels: functional coupling in supersensitivity to angiotensin Ⅱ in diabetic rats[J]. Cardiovasc Res,2005,65(2):374-386.
    [149]Nilsson J, Nilsson LM, Chen YW, Molkentin JD, Erlinge D, Gomez MF High glucose activates nuclear factor of activated T cells in native vascular smooth muscle[J].Arterioscler Thromb Vase Biol,2006,26(4):794-800.
    [150]Ungvari Z, Pacher P, Kecskemeti V, Papp G, Szollar L, Koller A.Increased myogenic tone in skeletal muscle arterioles of diabetic rats. Possible role of increased activity of smooth muscle Ca2+channels and protein kinase C[J]. Cardiovasc Res, 1999,43(4):1018-1028.
    [151]White RE, Carrier GO. Vascular contraction induced by activation of membrane calcium ion channels is enhanced in streptozotocin-diabetes[J]. J Pharmacol Exp Ther,1990,253(3):1057-1062.
    [152]Tabet F, Savoia C, Schiffrin EL, Touyz RM. Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats[J]. J Cardiovasc Pharmacol,2004,44(2):200-208.
    [153]Sun H, Chartier D, Leblanc N, Nattel S. Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocytes[J]. Cardiovasc, 2001,49(4):751-761.
    [154]Cheng H, Lederer WJ. Calcium sparks[J]. Physiol Rev,2008,88(4): 1491-1545.
    [155]Ma Q, Kinneer K, Ye J, Chen BJ. Inhibition of nuclear factor kappaB by phenolic antioxidants:interplay between antioxidant signaling and inflammatory cytokine expression[J], Mol Pharmacol,2003,64(2):211-219.
    [156]Rice TW, Lumsden AB. Optimal medical management of peripheral arterial disease[J]. Vase Endovascular Surg,2006,40(4):312-327.
    [1]Hanks SK, Hunter T. Protein kINases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification[J]. FASEB J,1995,9(8): 576-596.
    [2]Balendran A, Hare GR, Kieloch A, Williams MR, Alessi DR. Further evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is required for the stability and phosphorylation of protein kinase C (PKC) isoforms[J]. FEBS Lett,2000, 484(3):217-223.
    [3]Newton AC. Regulation of the ABC kinase by phosphorylation: protein kinase C as a paradigm[J]. Biochem J,2003,370(Pt 2):361-371.
    [4]Chou WH, Messing RO. Protein kinase C isozymes in stroke[J]. Trends Cardiovasc Med,2005,15(2):47-51.
    [5]Giorgione JR, Lin JH, McCammon JA, Newton AC. Increased membrane affinity of the C1 domain of protein kinase Cdelta compensates for the lack of involvement of its C2 domain in membrane recruitment[J]. J Biol Chem,2006,281(3):1660-1669.
    [6]Kohout TA, Rogers TB. Use of a PCR-based method to characterize protein kinase C isoform expression in cardiac cells[J]. Am J Physiol,1993,64(5Pt1): C1350-1359.
    [7]Erdbrugger W, Keffel J, Knocks M, Otto T, Philipp T, Michel MC. Protein kinase C isoenzymes in rat and human cardiovascular tissues[J]. Br J Pharmacol,1997, 120(2):177-186.
    [8]Bowling N, Walsh RA, Song G, Estridge T, Sandusky GE, Fouts RL et al. Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart[J]. Circulation,1999,99(3):384-391.
    [9]Simonis G, Briem SK, Schoen SP, Bock M, Marquetant R, Strasser RH. Protein kINase C in the human heart: differential regulation of the isoforms in aortic stenosis or dilated cardiomyopathy[J]. Mol Cell Biochem,2007,305(1-2):103-111.
    [10]Shin HG, Barnett JV, Chang P, Reddy S, Drinkwater DC, Pierson RN et al. Molecular heterogeneity of protein kinase C expression in human ventricle[J]. Cardiovasc Res,2000,48(2):285-299.
    [11]Disatnik MH, Buraggi G, Mochly-Rosen D. Localization of protein kinase C isozymes in cardiac myocytes[J]. Exp Cell Res,1994,210(2):287-97.
    [12]Schreiber KL, Paquet L, Allen BG, Rindt H. Protein kinase C isoform expression and activity in the mouse heart[J]. Am J Physiol Heart Circ Physiol,2001,281(5): H2062-2071.
    [13]Evans VG. Multiple pathways to apoptosis[J]. Cell Biol Int,1993,17(5):461-76.
    [14]Puceat M, Hilal-Dandan R, Strulovici B, Brunton LL, Brown JH. Differential regulation of protein kinase C isoforms in isolated neonatal and adult rat cardiomyocytes[J]. J Biol Chem,1994,269(24):16938-16944.
    [15]Obrosova IG, Minchenko AG, Vasupuram R, White L, Abatan OI, Kumagai AK et al. Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats[J]. Diabetes,2003,52(3):864-871.
    [16]Wendt T, Harja E, Bucciarelli L, Qu W, Lu Y, Rong LL et al. RAGE modulates vascular inflammation and atherosclerosis in a murine model of type 2 diabetes[J]. Atherosclerosis,2006,185(1):70-77.
    [17]Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature,2001,414(6865):813-820.
    [18]Koya D, King GL. Protein kinase C activation and the development of diabetic complications[J]. Diabetes,1998,47(6):859-866.
    [19]King GL, Brownlee M. The cellular and molecular mechanisms of diabetic complications [J]. Endocrinol Metab Clin North Am,1996,25(2):255-270.
    [20]Hiramatsu Y, Sekiguchi N, Hayashi M, Isshiki K, Yokota T, King GL et al. Diacylglycerol production and protein kinase C activity are increased in a mouse model of diabetic embryopathy[J]. Diabetes,2002,51(9):2804-2810.
    [21]Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia[J]. Diabetes,1994,43(9):1122-1129.
    [22]Yasunari K, Kohno M, Kano H, Yokokawa K, Horio T, Yoshikawa J. Possible involvement of phospholipase D and protein kinase C in vascular growth induced by elevated glucose concentration[J]. Hypertension,1996,28(2):159-168.
    [23]Ido Y, McHowat J, Chang KC, Arrigoni-Martelli E, Orfalian Z, Kilo C et al. Neural dysfunction and metabolic imbalances in diabetic rats. Prevention by acetyl-L-carnitine[J]. Diabetes,1994,43(12):1469-1477.
    [24]Kunisaki M, Bursell SE, Umeda F, Nawata H, King GL. Normalization of diacylglycerol-protein kinase C activation by vitamin E in aorta of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose levels[J]. Diabetes, 1994,43(11):1372-1377.
    [25]左祥生,罗敏.DAG-PKC信号传导通路与糖尿病血管并发症[J].国外医学内分泌学分册,2000,20(3):126-128.
    [26]Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ. Protein kINase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1[J]. Science,1998,281(5385):2042-2045.
    [27]Braun MU, Mochly-Rosen D. Opposing effects of delta- and zeta-protein kinase C isozymes on cardiac fibroblast proliferation:use of isozyme-selective inhibitors[J]. J Mol Cell Cardiol,2003,35(8):895-903.
    [28]Lee HS, Park SY, Lee HW, Choi HS. Secretions of MMP-9 by soluble glucocorticoid-induced tumor necrosis factor receptor (sGITR) mediated by protein kinase C (PKC)delta and phospholipase D (PLD) in murine macrophage[J]. J Cell Biochem,2004,92(3):481-490.
    [29]Park MJ, Park IC, Lee HC, Woo SH, Lee JY, Hong YJ et al. Protein kinase C-alpha activation by phorbol ester induces secretion of gelatINase B/MMP-9 through ERK 1/2 pathway in capillary endothelial cells[J]. Int J Oncol,2003,22(1):137-143.
    [30]Reuben PM, Cheung HS. Regulation of matrix metalloproteinase (MMP) gene expression by protein kINases[J]. Front Biosci,2006,11:1199-1215.
    [31]Xie B, Laouar A, Huberman E. Fibronectin-mediated cell adhesion is required for induction of 92-kDa type IV collagenase/gelatINase (MMP-9) gene expression during macrophage differentiation. The signaling role of protein kinase C-beta. J Biol Chem,1998,273(19):11576-11582.
    [32]Xie Z, Singh M, Singh K. Differential regulation of matrix metalloproteinase-2 and -9 expression and activity in adult rat cardiac fibroblasts in response to interleukin-1beta[J]. J Biol Chem,2004,279(38):39513-39519.
    [33]Stawowy P, Margeta C, Blaschke F, Lindschau C, Spencer-Hansch C, Leitges M et al. Protein kINase C epsilon mediates angiotensin II-induced activation of betal-integrins in cardiac fibroblasts[J]. Cardiovasc Res,2005,67(1):50-59.
    [34]Boyle AJ, Kelly DJ, Zhang Y, Cox AJ, Gow RM, Way K et al. Inhibition of protein kinase C reduces left ventricular fibrosis and dysfunction following myocardial infarction[J]. J Mol Cell Cardiol,2005,39(2):213-221.
    [35]Palaniyandi SS, Ferreira JC, Brum PC, Mochly-Rosen D. PKCβⅡ inhibition attenuates myocardial infarction induced heart failure and is associated with a reduction of fibrosis and pro-inflammatory responses[J]. J Cell Mol Med,2011,15(8): 1769-1777.
    [36]Klein G, Schaefer A, Hilfiker-Kleiner D, Oppermann D, Shukla P, Quint A et al. Increased collagen deposition and diastolic dysfunction but preserved myocardial hypertrophy after pressure overload in mice lacking PKCepsilon[J]. Circ Res,2005, 96(7):748-755.
    [37]Tanaka M, Gunawan F, Terry RD, INagaki K, Caffarelli AD, Hoyt G et al. Inhibition of heart transplant injury and graft coronary artery disease after prolonged organ ischemia by selective protein kinase C regulators[J]. J Thorac Cardiovasc Surg, 2005,129(5):1160-1167.
    [38]Koyanagi T, Noguchi K, Ootani A, Inagaki K, Robbins RC, Mochly-Rosen D. Pharmacological inhibition of epsilon PKC suppresses chronic inflammation in murine cardiac transplantation model[J]. J Mol Cell Cardiol,2007,43(4):517-522.
    [39]Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS. Angiotensin Ⅱ stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts[J]. Cardiovasc Res,1998,40(2):352-363.
    [40]INagaki K, Koyanagi T, Berry NC, Sun L, Mochly-Rosen D. Pharmacological inhibition of epsilon-protein kINase C attenuates cardiac fibrosis and dysfunction in hypertension-induced heart failure[J]. Hypertension,2008,51(6):1565-1569.
    [41]Ashihara T, Haraguchi R, Nakazawa K, Namba T, Ikeda T, Nakazawa Y et al. The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: implications for electrogram-based catheter ablation[J]. Circ Res,2012,110(2):275-284.
    [42]Platonov PG, Mitrofanova LB, Orshanskaya V, Ho SY Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age[J]. J Am Coll Cardiol,2011,58(21):2225-2232.
    [43]Kostin S, Klein G, Szalay Z, Hein S, Bauer EP, Schaper J. Structural correlate of atrial fibrillation in human patients[J]. Cardiovasc Res,2002,54(2):361-379.
    [44]Boldt A, Wetzel U, Lausclike J, Weigl J, Gummert J, Hindricks G et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease[J]. Heart,2004,90(4):400-405.
    [45]Luo MH, Li YS, Yang KP. Fibrosis of collagen I and remodeling of connexin 43 in atrial myocardium of patients with atrial fibrillation[J]. Cardiology,2007,107(4): 248-253.
    [46]Swartz MF, Fink GW, Lutz CJ, Taffet SM, Berenfeld O, Vikstrom KL et al. Left versus right atrial difference in domINant frequency, K(+) channel transcripts, and fibrosis in patients developing atrial fibrillation after cardiac surgery. Heart Rhythm, 2009,6(10):1415-1422.
    [47]Goette A, Juenemann G, Peters B, Klein HU, Roessner A, Huth C et al. Determinants and consequences of atrial fibrosis in patients undergoing open heart surgery[J]. Cardiovasc Res,2002,54(2):390-396.
    [48]Tan AY, Zimetbaum P. Atrial fibrillation and atrial fibrosis. J Cardiovasc Pharmacol,2011,57(6):625-629.
    [49]Kim SJ, Choisy SC, Barman P, Zhang H, Hancox JC, Jones SA et al. Atrial remodeling and the substrate for atrial fibrillation in rat hearts with elevated afterload [J]. Circ Arrhythm Electrophysio,2011,4(5):761-769.
    [50]Pellman J, Lyon RC, Sheikh F. Extracellular matrix remodeling in atrial fibrosis: mechanisms and implications in atrial fibrillation[J]. J Mol Cell Cardiol,2010,48(3): 461-467.
    [51]Verheule S, Sato T, Everett T 4th, Engle SK, Of ten D, Rubart-von der Lohe M et al.Circ Res. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-betal[J].2004,94(11): 1458-1465.
    [52]Shapira L, Sylvia VL, Halabi A, Soskolne WA, Van Dyke TE, Dean DD etal. Bacterial lipopolysaccharide induces early and late activation of protein kinase C in inflammatory macrophages by selective activation of PKC-epsilon[J]. Biochem Biophys Res Commun,1997,240(3):629-634.
    [53]Paul A, Doherty K, Plevin R. Differential regulation by protein kinase C isoforms of nitric oxide synthase induction in RAW 264.7 macrophages and rat aortic smooth muscle cells[J]. Br J Pharmacol,1997,120(5):940-946.
    [54]West MA, LeMieur T, Clair L, Bellingham J, Rodriguez JL. Protein kinase C regulates macrophage tumor necrosis factor secretion:direct protein kinase C activation restores tumor necrosis factor production in endotoxin tolerance[J]. Surgery, 1997,122(2):204-212.
    [55]Devaraj S, Venugopal SK, Singh U, Jialal I. Hyperglycemia induces monocytic release of interleukin-6 via induction of protein kinase c-{alpha} and -{beta}[J]. Diabetes,2005,54(1):85-91.
    [56]Nechushtan H, Leitges M, Cohen C, Kay G, Razin E. Inhibition of degranulation and interleukin-6 production in mast cells derived from mice deficient in protein kinase Cbeta[J]. Blood,2000,95(5):1752-1757.
    [57]Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID. Minocycline down-regulates MHC Ⅱ expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC)alpha/betaII[J]. J Biol Chem,2007,282(20): 15208-15216.
    [58]Li D, Yang B, Mehta JL. Tumor necrosis factor-alpha enhances hypoxia-reoxygenation-mediated apoptosis in cultured human coronary artery endothelial cells:critical role of protein kinase C[J]. Cardiovasc Res,1999,42(3): 805-813.
    [59]Palaniyandi SS, Inagaki K, Mochly-Rosen D. Mast cells and epsilonPKC:a role in cardiac remodeling in hypertension-induced heart failure[J]. J Mol Cell Cardiol, 2008,45(6):779-786.
    [60]Palaniyandi SS, Ferreira JC, Brum PC, Mochly-Rosen D. PKCβⅡ inhibition attenuates myocardial infarction induced heart failure and is associated with a reduction of fibrosis and pro-inflammatory responses[J]. J Cell Mol Med,2011,15(8): 1769-1777.
    [61]Meldrum DR, Meng X, Sheridan BC, McIntyre RC Jr, Harken AH, Banerjee A. Tissue-specific protein kinase C isoforms differentially mediate macrophage TNFalpha and IL-lbeta production[J]. Shock,1998,9(4):256-260.
    [62]Zhou X, Yang W, Li J. Ca2+- and protein krNase C-dependent signaling pathway for nuclear factor-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha production in lipopolysaccharide-stimulated rat peritoneal macrophages[J]. J Biol Chem,2006,281(42):31337-31347.
    [63]Diaz-Guerra MJ, Bodelon OG, Velasco M, Whelan R, Parker PJ, Bosca L. Up-regulation of protein kinase C-epsilon promotes the expression of cytokine-inducible nitric oxide synthase in RAW 264.7 cells[J]. J Biol Chem,1996, 271(50):32028-32033.
    [64]Waki K, Inanami O, Yamamori T, Nagahata H, Kuwabara M. Involvement of protein kinase Cdelta in the activation of NADPH oxidase and the phagocytosis of neutrophils[J]. Free Radic Res,2006,40(4):359-367.
    [65]Karima M, Kantarci A, Ohira T, Hasturk H, Jones VL, Nam BH et al. Enhanced superoxide release and elevated protein kinase C activity in neutrophils from diabetic patients:association with periodontitis[J]. J Leukoc Biol,2005,78(4):862-870.
    [66]Kelly DJ, Chanty A, Gow RM, Zhang Y, Gilbert RE. Protein kinase Cbeta inhibition attenuates osteopontin expression, macrophage recruitment, and tubulointerstitial injury in advanced experimental diabetic nephropathy[J]. J Am Soc Nephrol,2005,16(6):1654-1660.
    [67]Van Wagoner DR.Oxidative stress and inflammation in atrial fibrillation:role in pathogenesis and potential as a therapeutic target[J]. J Cardiovasc Pharmacol,2008, 52(4):306-313.
    [68]Morgera T, Di Lenarda A, Dreas L, PINamonti B, Humar F, Bussani R. Electrocardiography of myocarditis revisited: clinical and prognostic significance of electrocardiographic changes[J]. Am Heart J,1992,124(2):455-467.
    [69]Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation[J]. Circulation,1997,96(4):1180-1184.
    [70]Maixent JM, Paganelli F, Scaglione J, Levy S. Antibodies against myosin in sera of patients with idiopathic paroxysmal atrial fibrillation[J]. J Cardiovasc Electrophysiol,1998,9(6):612-617.
    [71]Aviles RJ, Martin DO, Apperson-Hansen C, Houghtaling PL, Rautaharju P, Kronmal RA et al. Inflammation as a risk factor for atrial fibrillation[J]. Circulation, 2003,108(24):3006-3010.
    [72]Chung MK, Martin DO, Sprecher D, Wazni O, Kanderian A, Carnes CA et al.C-reactive protein elevation in patients with atrial arrhythmias:inflammatory mechanisms and persistence of atrial fibrillation[J]. Circulation,2001,104 (24):2886-2891.
    [73]Demellis J, Panaretou M. C-reactive protein and paroxysmal atrial fibrillation: evidence of the implication of an inflammatory process in paroxysmal atrial fibrillation[J]. Acta Cardiol,2001,56(6):375-380.
    [74]Blake GJ, Ridker PM. C-reactive protein and other inflammatory risk markers in acute coronary syndromes[J]. J Am Coll Cardiol,2003,41(4 Suppl S):37S-42S.
    [75]Conway DS, Buggins P, Hughes E, Lip GY. Predictive value of indexes of inflammation and hypercoagulability on success of cardioversion of persistent atrial fibrillation[J]. Am J Cardiol,2004,94(4):508-510.
    [76]Conway DS, Buggins P, Hughes E, Lip GY. Relationship of interleukin-6 and C-reactive protein to the prothrombotic state in chronic atrial fibrillation[J]. J Am Coll Cardiol,2004,43(11):2075-2082.
    [77]Sata N, Hamada N, Horinouchi T, Amitani S, Yamashita T, Moriyama Y et al. C-reactive protein and atrial fibrillation. Is inflammation a consequence or a cause of atrial fibrillation[J]? Jpn Heart J,2004,45(3):441-445.
    [78]Psychari SN, Apostolou TS, Sinos L, Hamodraka E, Liakos G, Kremastinos DT. Relation of elevated C-reactive protein and interleukin-6 levels to left atrial size and duration of episodes in patients with atrial fibrillation[J]. Am J Cardiol,2005,95(6): 764-767.
    [79]Ozaydin M. Atrial fibrillation and inflammation[J]. World J Cardiol,2010,2(8): 243-50.
    [80]Watanabe T, Takeishi Y, Hirono O, Itoh M, Matsui M, Nakamura K et al. C-reactive protein elevation predicts the occurrence of atrial structural remodeling in patients with paroxysmal atrial fibrillation[J]. Heart Vessels,2005,20(2):45-49.
    [81]Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications[J]. J Clin Endocrinol Metab,2009,94(9):3171-3182.
    [82]Ballantyne CM, Nambi V. Markers of inflammation and their clinical significance[J]. Atheroscler Suppl,2005,6(2):21-29.
    [83]Cardozo AK, Kruhφffer M, Leeman R, Orntoft T, Eizirik DL. Identification of novel cytokine-induced genes in pancreatic beta-cells by high-density oligonucleotide arrays[J]. Diabetes,2001,50(5):909-920.
    [84]Christiansen T, Richelsen B, Bruun JM. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects[J]. Int J Obes (Lond),2005,29(1):146-150.
    [85]Libby P. Inflammation in atherosclerosis[J]. Nature,2002,420(6917):868-874.
    [86]Ehses JA, Boni-Schnetzler M, Faulenbach M, Donath MY. Macrophages, cytokines and beta-cell death in Type 2 diabetes[J]. Biochem Soc Trans,2008,36(Pt 3):340-342.
    [87]Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS[J]. Circulation,2003,108(16): 1912-1916.
    [88]Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited[J]. Arterioscler Thromb Vase Biol,2004,4(5):816-823.
    [89]Festa A, D'Agostino R Jr, Tracy RP, Haffner SM; Insulin Resistance Atherosclerosis Study. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes:the insulin resistance atherosclerosis study[J]. Diabetes,2002,51(4):1131-1137.
    [90]Liu S, Tinker L, Song Y, Rifai N, Bonds DE, Cook NR et al. A prospective study of inflammatory cytokines and diabetes mellitus in a multiethnic cohort of postmenopausal women[J]. Arch Intern Med,2007,167(15):1676-1685.
    [91]Lee CC, Adler AI, Sandhu MS, Sharp SJ, Forouhi NG, Erqou S et al. Association of C-reactive protein with type 2 diabetes:prospective analysis and meta-analysis[J]. Diabetologia,2009,52(6):1040-1047.
    [92]Herder C, Baumert J, Thorand B, Koenig W, de Jager W, Meisinger C et al. Chemokines as risk factors for type 2 diabetes:results from the MONICA/KORA Augsburg study,1984-2002[J]. Diabetologia,2006,49(5):921-929.
    [93]Dandona P, Chaudhuri A, Ghanim H, Mohanty P et al. Proinflammatory effects of glucose and anti-inflammatory effect of insulin: relevance to cardiovascular disease[J]. Am J Cardiol,2007,99(4A):15B-26B.
    [94]Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation[J]. Circ Res,1997, 81(4):512-525.
    [95]Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM. Atrial L-type Ca2+ currents and human atrial fibrillation[J]. Circ Res,1999, 85(5):428-436.
    [96]Balke CW, Shorofsky SR. Alterations in calcium handling in cardiac hypertrophy and heart failure[J]. Cardiovasc Res,1998,37(2):290-299.
    [97]Richard S, Leclercq F, Lemaire S, Piot C, Nargeot J. Ca2+ currents in compensated hypertrophy and heart failure[J]. Cardiovasc Res,1998,37(2):300-311.
    [98]Mukherjee R, SpINale FG. L-type calcium channel abundance and function with cardiac hypertrophy and failure:a review[J]. J Mol Cell Cardiol,1998,30(10): 1899-1916.
    [99]He J, Conklin MW, Foell JD, Wolff MR, Haworth RA, Coronado R et al. Reduction in density of transverse tubules and L-type Ca(2+) channels in canine tachycardia-induced heart failure[J]. Cardiovasc Res,2001,49(2):298-307.
    [100]Aggarwal R, Boyden PA. Diminished Ca2+ and Ba2+ currents in myocytes surviving in the epicardial border zone of the 5-day infarcted canine heart[J]. Circ Res, 1995,77(6):1180-1191.
    [101]Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels[J]. Cell,2000,102(1):89-97.
    [102]Klugbauer N, Dai S, Specht V, Lacinova L, Marais E, Bohn G et al. A family of gamma-like calcium channel subunits[J]. FEBS Lett,2000,470(2):189-197.
    [103]Birnbaumer L, Qin N, Olcese R, Tareilus E, Platano D, Costantin J et al. Structures and functions of calcium channel beta subunits[J]. J Bioenerg Biomembr, 1998,30(4):357-375.
    [104]Kamp TJ, Hell JW. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C[J]. Circ Res,2000,87(12):1095-1102.
    [105]Smani T, Calderon-Sanchez E, Gomez-Hurtado N, Fernandez-Velasco M, Cachofeiro V, Lahera V et al. Mechanisms underlying the activation of L-type calcium channels by urocortin in rat ventricular myocytes[J]. Cardiovasc Res,2010, 87(3):459-466.
    [106]Alden KJ, Goldspink PH, Ruch SW, Buttrick PM, Garcia J. Enhancement of L-type Ca(2+) current from neonatal mouse ventricular myocytes by constitutively active PKC-betaII[J]. Am J Physiol Cell Physiol,2002,282(4):C768-774.
    [107]Yue Y, Qu Y, Boutjdir M. Beta-and alpha-adrenergic cross-signaling for L-type Ca current is impaired in transgenic mice with constitutive activation of epsilonPKC[J]. Biochem Biophys Res Commun,2004,314(3):749-754.
    [108]Weiss S, Doan T, Bernstein KE, Dascal N. Modulation of cardiac Ca2+ channel by Gq-activating neurotransmitters reconstituted in Xenopus oocytes[J]. J Biol Chem, 2004,279(13):12503-12510.
    [109]McHugh D, Sharp EM, Scheuer T, Catterall WA. Inhibition of cardiac L-type calcium channels by protein kinase C phosphorylation of two sites in the N-terminal domain[J]. Proc Natl Acad Sci U S A,2000,97(22):12334-12338.
    [110]Keef KD, Hume JR, Zhong J. Regulation of cardiac and smooth muscle Ca(2+) channels (Ca(V) 1.2a,b) by protein kinase [J]. Am J Physiol Cell Physiol,2001,281 (6): C1743-C1756.
    [111]Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E et al. Nomenclature of voltage-gated calcium channels[J]. Neuron,2000,25(3):533-535.
    [112]Oh S, Kim KB, Ahn H, Cho HJ, Choi YS. Remodeling of ion channel expression in patients with chronic atrial fibrillation and mitral valvular heart disease[J]. Korean J Intern Med,2010,25(4):377-385.
    [113]Greiser M, Lederer WJ, Schotten U. Alterations of atrial Ca(2+) handling as cause and consequence of atrial fibrillation[J]. Cardiovasc Res,2011,89(4):722-33.
    [114]Eisner DA, Kashimura T, Venetucci LA, Trafford AW. From the ryanodine receptor to cardiac arrhythmias[J]. Circ J,2009,73(9):1561-1567.
    [115]Trafford AW, Diaz ME, Eisner DA. Coordinated control of cell Ca(2+) loading and triggered release from the sarcoplasmic reticulum underlies the rapid inotropic response to increased L-type Ca(2+) current[J]. Circ Res,2001,88(2):195-201.
    [116]Dobrev D, Voigt N, Wehrens XH. The ryanodine receptor channel as a molecular motif in atrial fibrillation: pathophysiological and therapeutic implications[J]. Cardiovasc Res,2011,89(4):734-743.
    [117]Greiser M, Lederer WJ, Schotten U. Alterations of atrial Ca(2+) handling as cause and consequence of atrial fibrillation[J]. Cardiovasc Res,2011,89(4):722-733.
    [118]刘刚,郭继鸿.心脏钠离子通道疾病研究进展[J].临床心血管病杂志,2009,25(3):166-169.
    [119]Hallaq H, Wang DW, Kunic JD, George AL Jr, Wells KS, Murray KT. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels[J]. Am J Physiol Heart Circ Physiol,2012,302(3):H782-89.
    [120]Xiao GQ, Qu Y, Sun ZQ, Mochly-Rosen D, Boutjdir M. Evidence for functional role of epsilonPKC isozyme in the regulation of cardiac Na(+) channels[J]. Am J Physiol Cell Physiol,2001,281(5):C1477-1486.
    [121]Chen LY, Ballew JD, Herron KJ, Rodeheffer RJ, Olson TM. A common polymorphism in SCN5A is associated with lone atrial fibrillation[J].Clin Pharmacol Ther,2007,81(1):35-41.
    [122]Amin AS, Asghari-Roodsari A, Tan HL. Cardiac sodium channelopathies[J]. Pflugers Arch,2010,460(2):223-37.
    [123]Ramos-Mondragon R, Vega AV, Avila G. Long-term modulation of Na+ and K+ channels by TGF-β1 in neonatal rat cardiac myocytes[J]. Pflugers Arch,2011, 461(2):235-247.
    [124]Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi et al. Oxidative stress, nitric oxide, and diabetes[J]. Rev Diabet Stud,2010,7(1):15-25.
    [125]Brownlee M. The pathobiology of diabetic complications:a unifying mechanism[J]. Diabetes,2005,54(6):1615-1625.
    [126]Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res,2010,107(9):1058-1070.
    [127]Trumpower BL The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bcl complex[J]. J Biol Chem,1990,265(20):11409-11412.
    [128]Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J]. Nature,2000,404(6779):787-790.
    [129]Liu M, Sanyal S, Gao G, Gurung IS, Zhu X, Gaconnet G et al. Cardiac Na+ current regulation by pyridine nucleotides[J]. Circ Res,2009,105(8):737-745.
    [130]Valdivia CR, Ueda K, Ackerman MJ, Makielski JC. GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A[J]. Am J Physiol Heart Circ Physiol,2009,297(4):H1446-1452.
    [131]Liu M, Liu H, Dudley SC Jr. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel[J]. Circ Res,2010,107(8): 967-974.
    [132]Yanagita T, Kobayashi H, Yamamoto R, Kataoka H, Yokoo H, Shiraishi S et al. Protein kinase C-alpha and -epsilon down-regulate cell surface sodium channels via differential mechanisms in adrenal chromaffin cells[J]. J Neurochem,2000,74(4): 1674-1684.
    [133]Zhou LZ, Johnson AP, Rando TA. NF kappa B and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells[J]. Free Radic Biol Med,2001,31(11):1405-1416.
    [134]Shang LL, Dudley SC Jr. Tandem promoters and developmentally regulated 5'-and 3'-mRNA untranslated regions of the mouse Scn5a cardiac sodium channel[J]. J Biol Chem,2005,280(2):933-940.
    [135]Shang LL, Sanyal S, Pfahnl AE, Jiao Z, Allen J, Liu H et al. NF-kappaB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin Ⅱ[J]. Am J Physiol Cell Physiol,2008,294(1):C372-379.
    [136]van der Heyden MA, Wijnhoven TJ, Opthof T. Molecular aspects of adrenergic modulation of the transient outward current[J]. Cardiovasc Res,2006,71(3): 430-442.
    [137]Greenstein JL, Wu R, Po S, Tomaselli GF, Winslow RL. Role of the calcium-independent transient outward current I(tol) in shaping action potential morphology and duration[J]. Circ Res,2000,87(11):1026-1033.
    [138]Tanaka K, Honda M, Takabatake T. Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte[J]. J Am Coll Cardiol,2001,37(2): 676-685.
    [139]Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB. Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes[J]. Am J Physiol Cell Physiol,2002,282(4):C926-934.
    [140]Nakamura TY, Coetzee WA, Vega-Saenz De Miera E, Artman M, Rudy B. Modulation of Kv4 channels, key components of rat ventricular transient outward K+ current, by PKC[J]. Am J Physiol,1997,273(4 Pt 2):H1775-1786.
    [141]Scholz EP, Welke F, Joss N, Seyler C, Zhang W, Scherer D et al. Central role of PKCa in isoenzyme-selective regulation of cardiac transient outward current Ito and Kv4.3 channels[J]. J Mol Cell Cardiol,2011,51(5):722-729.
    [142]Goette A, Bukowska A, Lendeckel U. Non-ion channel blockers as anti-arrhythmic drugs (reversal of structural remodeling) [J]. Curr Op in Pharmacol, 2007,7(2):219-224.
    [143]Savelieva I, Camm J. Statins and polyunsaturated fatty acids for treatment of atrial fibrillation [J]. Nat Clin Pract Cardiovasc Med,2008,5(1):30-41.
    [144]Salehian O, Healey J, Stambler B, Alnemer K, Almerri K, Grover J et al. Impact of ramipril on the incidence of atrial fibrillation: results of the Heart Outcomes Prevention Evaluation study[J]. Am Heart J,2007,154(3):448-453.
    [145]Ducharme A, Swedberg K, Pfeffer MA, Cohen-Solal A, Granger CB, Maggioni AP et al. Prevention of atrial fibrillation in patients with symptomatic chronic heart failure by candesartan in the Candesartan in Heart failure:Assessment of Reduction in Mortality and morbidity (CHARM) program[J]. Am Heart J,2006,152(1):86-92.
    [146]Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications[J]. Circ Arrhythm Electrophysiol,2008,1(1):62-73.
    [147]Burstein B, Libby E, Calderone A, Nattel S. Differential behaviors of atrial versus ventricular fibroblasts:a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences[J]. Circulation,2008,117(13):1630-41.
    [148]Shimano M, Tsuji Y, Inden Y, Kitamura K, Uchikawa T, Harata S et al. Pioglitazone, a peroxisome proliferator-activated receptor-gamma activator, attenuates atrial fibrosis and atrial fibrillation promotion in rabbits with congestive heart failure[J]. Heart Rhythm,2008,5(3):451-459.
    [149]Tsai CT, Lai LP, Kuo KT, Hwang JJ, Hsieh CS, Hsu KL et al. Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts:implication for the therapeutic effect of statin in atrial structural remodeling[J]. Circulation,2008,117(3):344-355.
    [150]Lin CS, Pan CH. Regulatory mechanisms of atrial fibrotic remodeling in atrial fibrillation[J]. Cell Mol Life Sci,2008,65(10):1489-1508.
    [151]Direct Inhibition of delta-Protein Kinase C Enzyme to Limit Total Infarct Size in Acute Myocardial Infarction (DELTA MI) Investigators, Bates E, Bode C, Costa M, Gibson CM, Granger C et al. Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction[J]. Circulation,2008,117(7):886-896.
    [152]PKC-DMES Study Group. Effect of ruboxistaurin in patients with diabetic macular edema: thirty-month results of the randomized PKC-DMES clinical trial [J]. Arch Ophthalmol,2007,125(3):318-324.
    [153]Casellini CM, Barlow PM, Rice AL, Casey M, Simmons K, Pittenger G et al. A 6-month, randomized, double-masked, placebo-controlled study evaluating the effects of the protein kinase C-beta inhibitor ruboxistaurin on skin microvascular blood flow and other measures of diabetic peripheral neuropathy [J]. Diabetes Care, 2007,30(4):896-902.
    [154]Palaniyandi SS, Sun L, Ferreira JC, Mochly-Rosen D. Protein kinase C in heart failure:a therapeutic target[J]? Cardiovasc Res,2009,82(2):229-39.
    [155]PKC-DRS Study Group. The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe nonproliferative diabetic retinopathy:initial results of the Protein KINase C beta Inhibitor Diabetic Retinopathy Study (PKC-DRS) multicenter randomized clinical trial[J]. Diabetes,2005,54(7):2188-2197.
    [156]PKC-DMES Study Group. Effect of ruboxistaurin in patients with diabetic macular edema: thirty-month results of the randomized PKC-DMES clinical trial[J].Arch Ophthalmol,2007,125(3):318-324.
    [157]Mayer CR, Bekeredjian R. Ultrasonic gene and drug delivery to the cardiovascular system[J].Adv Drug Deliv Rev,2008,60(10):1177-1192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700