用户名: 密码: 验证码:
骨髓间充质干细胞过表达MIR126移植通过AKT/ERK相关途径促进缺血心肌血管新生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     目前,缺血性心肌病是人类死亡和致残的主要疾病之一。由于冠脉的狭窄和闭塞导致组织缺血和缺氧,伴随心绞痛、心梗、心律失常及心衰等症状,当心功能恶化到Ⅳ级时,1年死亡率可达60%。在过去几十年里,药物治疗、经皮冠状动脉腔内成形+支架术、冠状动脉搭桥术及心脏移植等已经显著改善了缺血性心肌病患者的预后。尽管这些治疗措施已经取得了很大的进步,但仍存在许多限制,因此,很多学者致力于干细胞移植的研究。
     心肌梗死的修复过程中常看到冠脉侧支循环的形成,侧支循环能够改善缺血心肌灌注,减少心肌坏死,恢复“冬眠”心肌细胞的活性,从而减少心功能障碍的发生。然而机体自身生成的新生血管往往不足以代偿冠脉闭塞诱发的心肌缺血。因此,刺激缺血区小血管生长,促进侧支循环的形成,完成缺血区血管的自我搭桥便成了十分诱人且似乎直观合理的治疗方法。近年来,随着对血管新生和血管生长因子研究的不断深入,治疗性血管新生已成为治疗缺血性心脏病的新方法。
     目前有关MSCs移植治疗心肌梗死的动物实验表明,MSCs植入损伤部位后可长期存活,并分化为具有心肌细胞特征的类心肌细胞,促进“血管新生”,改善血液动力学。但仍然存在着大量有待解决的问题。例如如何增加移植后的干细胞存活率;改善梗死区的微环境,增加迁移或归巢到梗死区干细胞的数量等。近来,对于miRNAs调控干细胞的发生发展、自我更新、分化、抗凋亡及炎症和血管新生等一系列生物过程知识的积累,有学者认为miRNAs可以作为干细胞移植治疗缺血性心肌病研究的一个新的切入点。
     MiRNA126是血管内皮上的特殊的MiRNA,它在心梗后的血管发生和维持血管的完整性起着重要作用。MiRNA126可通过细胞分裂素活化蛋白酶发信号给VEGF与FGF来起作用。Spred-1和PIK3R2/p85-b是对Ras/细胞分裂素活化蛋白酶的抑制因子,可被MiRNA126抑制,而Spred-1和PIK3R2/p85-b可能抑制ERK\AKT途径从而抑制血管生成。因此,上调MiRNA126可减轻Spred-1和PIK3R2/p85-b对VEGF及FGF的抑制作用,有利于血管发生。我们推测MiRNA126通过对干细胞的调节可能为干细胞移植治疗缺血性心脏病开辟一条新途径。
     第一部分小鼠骨髓间充质干细胞的体外培养、诱导及鉴定
     研究目的
     建立小鼠骨髓间充质干细胞(MSCs)的分离、培养方法,研究其在体外生长增殖的生物学特性及表型特征.
     研究方法
     应用60%的Percoll细胞分离液分离骨髓间质干细胞,接着进行培养和传代。应用MTT方法测定培养细胞的生长曲线,应用流式细胞仪测定细胞周期和鉴定培养细胞的纯度,同时成骨诱导分化及成脂诱导分化鉴定骨髓间质干细胞
     实验结果
     原代培养的BMSCs24小时内贴壁并伸展成多角形、梭形,前3天为相对抑制期,其后细胞增殖速度逐渐加快,呈对数形式,7天左右至平台期,细胞覆盖率达90%左右,约在2周内传至第3代时可到106个数量级细胞,能够满足细胞移植数量的需要,应用流式细胞仪检测BMSCs的标志,显示CD29, CD44阳性,而CD34, CD45阴性,符合BMSCs特征。
     实验结论
     本课题应用60%Percoll细胞分离液成功地分离和培养出较为均一的骨髓间质干细胞。骨髓间质干细胞体外培养生长稳定,传代后细胞生长较快,适应能力较强,细胞大多数处于静止期,增殖潜力巨大。
     第二部分MiR126转染小鼠骨髓间充质干细胞
     研究目的:
     1构建miR-126的慢病毒表达载体,包装生产重组慢病毒,并进行慢病毒滴度、活性测定。
     2包装生产重组慢病毒,慢病毒滴度、活性测定
     研究方法
     我们利用Gateway clone构建pDown-miR126及pLV.EX3d.P/puro-TRE> miRl26>IRES/eGFP。制备编码了慢病毒颗粒的重组病毒质粒及其pLV/helper-SL3, pLV/helper-SL4, pLV/helper-SL5辅助包装原件载体质粒,三种质粒载体分别进行高纯度无内毒素抽提,重组质粒DNA进行去内毒素质粒提取后,与包装系统质粒混合物按Invitrogen公司Lipofectamine2000使用说明进行共转染293TN细胞,然后进行慢病毒的包装,包装完成之后进行重组慢病毒滴度检测。
     实验结果:
     (1)成功构建miR-126的慢病毒表达载体。
     (2)成功进行了LV-miR-126重组病毒的生产和滴度测定。
     (3)慢病毒感染293TN细胞后,能够大大增强目的基因的表达。
     实验结论:
     通过慢病毒途径可以有效增强miR-126在宿主细胞中的表达
     第三部分观察MiRNA126对ERK\AKT调控作用
     研究目的:
     在MSCs中过表达miRNA126以观察其对ERK\AKT的影响及体外诱导骨髓间充质干细胞分化为血管内皮细胞。
     研究方法:
     总RNA提取是根据All-in-One miRNA qRT-PCR Detection Kit生产厂家的说明进行,miR126的表达行quantitative real-time RT-PCR检测,测试miRNA以U6作为单拷贝基因对照。阴性对照组及控制组相比在过表达miRNA126的MSCs中ERK\AKT的表达行Westernblot检测。在第3代,过表达miR-126骨髓间充质干细胞与骨髓间充质干细胞分别按1×109/L密度接种,加入含血管内皮细胞生长因子、碱性成纤维细胞因子的DMEM培养基向血管内皮细胞诱导分化,ECMatrixTM凝胶体外血管新生实验观察血管新生情况。
     实验结果:
     在过表达miRNA126的MSCs中ERK\AKT表达明显增加及过表达miRNA126的MSCs中毛细血管密度明显增加。
     实验结论:
     在MSCs中过表达MiRNA126对ERK\AKT具有调控作用,能促进干细胞分化为血管内皮细胞。
     第四部分骨髓间充质干细胞过表达MIR126移植通过AKT/ERK途径促血管新生及改善心脏功能
     研究目的:
     比较骨髓间充质干细胞过表达MIR126移植与单纯BM-MSCs移植在小鼠心梗模型中的促血管新生作用及其机制。
     研究方法:
     通过结扎C57小鼠冠状动脉前降支制备心肌梗死模型,C57小鼠随机分为3组:MIR126-MSC组(即过表达MIR126的MSCs移植,n=15),MSC组(单纯的MSCs移植,n=15)以及PBS对照组(注射PBS, n=15)。在术后14天,进行细胞移植。实验组每只C57小鼠接受总计5×106(0.1m1)个过表达MIR126骨髓间充质干细胞或MSCs,分成6个点注入C57小鼠缺血心肌;对照组注入同等体积的无菌PBS。6周后行组织学及超声检查。
     实验结果:
     细胞移植6周后,MSC组和MIR126-MSC组缺血肌肉组织的血管新生均明显增强,以MIR126-MSC组的毛细血管密度最高(P<0.01)。Western-blot结果显示,MSC组和MIR126-MSC组缺血肌肉组织中ERK1, AKT蛋白表达均明显高于PBS对照组,以MIR126-MSC组的表达量最高(P<0.05)。细胞移植6周后,组MiRNA126-MSCs组、BMSCs组心功能都较移植前有明显改善(p<0.05),而其中MiRNA126-MSCs细胞移植组EF、FS改善程度要明显好于单纯细胞移植组(P<0.05)。
     实验结论:
     与单纯的MSC细胞移植疗法相比,过表达MIR126骨髓间充质干细胞移植具有更强的促进血管新生和侧枝血管形成的能力。我们推测过表达MIR126骨髓间充质干细胞移植通过ERK/AKT途径改善心功能,MIR126可能为干细胞移植治疗缺血性心脏病开辟一条新途径。
Backgroud
     Ischemic heart disease which triggers dysfunction and the death of cardiomyocytes is the most common cause of death throughout the world despite continued advances in the prevention and treatment of coronary artery disease. The symptoms of ischemic heart disease are angina, myocardial infarction, arrhythmia and heart failure, which are the consequence of decreased patency of atherosclerotic vessels. The mortality of heart failure can reach60%within one year for patients in New York Heart Association functional class IV.Over the past decades,improvements in medical therapy, percutaneous transluminal coronary angioplasty(PTCA), coronary artery bypass surgery(CABG) and heart transplantation, have dramatically improved the prognosis of ischemic heart disease. However, all the methods including drugs, thrombolysis and revascularization are not able to influence the dead myocardium. Many researchers devote to studies in the field of myocardium regeneration and repairing insulted myocardium with stem cells.
     During AMI repairs, coronary collateral formed which could improve myocardial perfusion, circulation(CC)often decrease myocardial necrosis, restore hibernating myocardial viability and reduce left ventricular function disorder. As self neovascularisation is insufficient for compensation myocardial ischemia induced from CHD, stimulating small vessels to develop in ischemic region and promoting to form CC become attractive and reasonable strategy. As study of the angiogenesis and VGF development, theraputic angiogenesis has become a new approach to treat IHD. This strategy is designed to promote the development of supplemental collateral blood vessels that will constitute endogenous bypass conduits around occluded native arteries, a strategy termed "therapeutic angiogenesis."
     Recentely,a few studys on MSCs to treat MI in animal experiment have proven that MSCs have the ability of differentiating into cardiac myocytes, living long time, promoting angiogenesis, and improving haemodynamics. However, some problems, for example, how to further augment the implanted cells survival and other functions to overcome the limitations for their clinical applications, are still to be explored. Since the knowledge of a variety of biological processes, including developmental timing, signal transduction, tissue differentiation and maintenance, Antiapoptosis, Anti-inflammation and neoangiogenesis under miRNAs regulate, new therapeutic targets for ischemic heart disease may identified in these non-coding RNAs.
     MiR-126is an endothelial cell-specific miRNA that plays an essential role in neoangiogenesis following MI and in maintenance of vascular integrity [94]. MiR-126functioned in part by directly repressing negative regulators of the VEGF pathway, including the Sprouty-related protein SPRED1and phosphoinositol-3kinase regulatory subunit2(PIK3R2/p85-beta). MiR-126represses the expression of spredl and PIK.3R2, which negatively regulate VEGF signaling via the ERK and AKT pathways, respectively. Thus, in the absence of miR-126, Spred-1/PI3k expression is elevated, resulting in repression of angiogenic signaling. Conversely, miR-126overexpression relieves the repressive influence of Spred-1/PI3k on the signaling pathways activated by VEGF and FGF, favoring angiogenesis. It is reasonable to speculate that miRNA126, a novel but practical regulator of stem cell implantation for ischemic heart disease, introduce a promising strategy for the treatment of myocardial infarction.
     Part Ⅰ. MSCs isolation, culture and identification
     Objective
     This study was to establish the experimental method for isolating, culturing, proliferating and inducing mice bone marrow mesenchymal stem cells in vitro.
     Methods
     We isolated MSCs from animal bone marrow and separated MSCs by Percoll Centrifugation.MSCs were cultured and subcultured in low-glucose Dulbecco's modified Eagle's medium (DMEM) with10%selected fetal calf serum. Cell growth patterns were evaluated by MTT test. Cell cycle and surface antigenic features were analyzed by flow cytometry technique.
     Results:
     To isolate MSCs from bone marrow aspiration, the samples were fractionated with Percoll by density gradient centrifugation for mononuclear cell isolation. Through replacing culture medium, the non-adherent cells were removed and the remaining tightly adhered cells were MSCs. The morphology of cultured MSCs was fibroblast-like form. Primary cultured BMSCs adhered to and stretched into polygon or spindle within24hours. The first3days was the relative inhibition period, and then the cell proliferation accelerated gradually in a pattern of logarithm and reached the period of plateau by Day7or so, with90% cell coverage. The number of P3BMSCs can reach1062weeks later, and that can satisfy the required number of cell transplantation. The signs of BMSCs with positive CD29, CD44, CD90and negative CD34, CD45were detected by the flow cytometry, and that is consisted with the characteristics of BMSCs.
     Conclusions:
     In this study, we believed the adherent cells in cultured medium were mainly MSCs obtained by Percoll fractionation. Numerous molecular markers of MSCs were characterized, but unique marker of MSCs and any marker of blood cells and endothelial cells were not identified. MSCs showed stable growth in vitro, easy survival in subculture and rapid proliferation in culture medium.
     Part II Transfection of miR-126in mesenchymal stem cellsand its expression
     Object:
     Construct Lentivirus vector to express miR-126, produce pseudoviral particles and determine its titer.
     Methods:
     Lentiviral MicroRNAs expression vector was constructed with Gateway system. Mature miR126, TRE promoter and eGFP sequences were inserted into plasmids to produce pUp-TRE, pDown-miR126and pTail-IRES/eGFP; scramble sequence was set as negative control pLV.EX3d.P/puro-TRE> miR126>IRES/eGFP was obtained with incubation of donors and accepter vectors catalyzed by LR clonase. Plasmid was then sequenced and purified for lentivirus envelope.
     Envelope helper plasmids:pLV/helper-SL3, pLV/helper-SL4, pLV/helper-SL5, with pLV.EX3d.P/puro-TRE-miR126-IRES/eGFP or pLVrtTA/neo which contains the imperative elements for virus packaging, were co-transfected into293T cells with lipofectamine2000, according to the manufacture's instructions for the generation of Lenti-miR126-eGFP/puro or Lenti-rtTA/neo respectively.
     To perform lentiviral infections, the mice MSCs cells were plated at40%-50%confluence and incubated overnight. Cells were firstly treated by Lenti-rtTA/neo, Selection was terminated when control cells were completely dead and antibiotic free medium were used for propagation. Neomycin resistant cells were then infected by Lenti-miR126-eGFP/puro and grown with2μg/ml Puromycin. Double resistance cells were ultimately obtained, and2μg/ml doxycycline was added to medium and intrigue expression of miR126.
     Results:
     (1) MiR-126genomic sequence was amplified and lentiviral expression vector were constructed.
     (2) LV-miR-126pseudovirus was packaged and the titer was determined:
     (3)293cell infected by LV-miR-126can over-express miR-126.
     Conclusion:
     LV-miR-126infection can enhance the expression level of miR-126in293cell lines.
     Part III MiR126promote the expression of ERK and AKT in MSCs
     Objective:
     To evaluate the role of miR-126in ERKI and AKT signal transduction pathways.
     Methods:
     Total RNA was extracted from cells with All-in-One miRNA qRT-PCR Detection Kit according to the manufacturer's instructions. Expression of miR126was detected by quantitative real-time RT-PCR using the All-in-OneTM miRNA qPCR Primer. The relative levels of miR126transcripts were normalized to the control U6mRNA. Relative gene expression was quantified using the GraphPad Prism4.0software and expressed as%of the control.
     The miR126transfected and nontransfected MSCs were collected separately for ERK1and PERK1、AKT and pAKT Western blot assay. Chemiluminent detection was performed with the ECL kit. Bands on Western blots were quantified by densitometry using Quantity One software.
     Results:
     Results uncovered that under higher expression of miR126, ERK1and pERK1、 AKT、pAKT and capillarynetwork density were dramatically increased (P<0.01).
     Conclusions:
     MiR-126represses the expression of spredl and PIK3R2, which negatively regulate VEGF signaling via the ERK and AKT pathways, respectively.
     Part IV Transplantation of mesenchymal stem cells overexpressing MiR126Enhances Ischemic angiogenesis via AKT/ERK-related pathway
     Objective:
     To whether a investigate new strategy that combines MSCs transplantation and ex vivo miR-126transferring with lentiviral vectors was more therapeutically efficient than MSCs cell therapy alone in a C57mice Myocardial infarction model
     Methods:
     Mice models of myocardial infarction were established by ligation of coronary artery. The ligated animals were randomly divided into three groups (15in each) and, after2weeks, were intramyocardial injected at the heart infarct zone with miR126-transfected MSCs (miR126-MSCs Group) MSCs (MSCs group), or medium (PBS group).Six weeks later, histological study and Echocardiographic assessment were performed.
     Results:
     Capillary density of the infarcted region was significantly improved in the miR126-MSCs group compared with the MSC group and the PBS group (both P<0.01). Western blot showed that ERK1,pERK1, AKT and pAKT gene were dramatically enhanced in the miR126-MSC group compared with the MSC group and the PBS group (both P<0.05) and. Echocardi ography showed MiR126led to sustained improvement in cardiac function, as assessed by left ventricle ejection fraction (LVEF) and fraction of shortening(FS).
     Conclusions:
     The present study shows that Mesenchymal stem cells overexpressing of MiR126transplantation therapy induced more potent angiogenesis and collateral vessel formation than MSC cell therapy alone. We put forward the hypothesis that transplantation of MSCs transfected with mi R126can improve angiogenesis and cardiac function in infarcted area of mice heart, which may be due to stimulation of AKT/ERK-related pathway.
引文
1. Bolognese L, Neskovic A, Parodi G, et al. Left ventricular remodeling following primary coronary angioplasty [J]. Circulation,2002; 106(18):2351-2357
    2. El Oakley RM, Ooi Oc, Bongso A, et al. Myocyte transplantation form myocardial repair:afew good cells can mend a broken heart. Ann Thorac Surg, 2001;71(5):1724-1733.
    3. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functiongal myocardium:Improved performance after skeletal myoblast transplantation. Nat Med,1998; 4(8):929-933.
    4 Klug GM, Soonpaa MH, Koh GY, et al. Genetically selected cardiomycytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest.1996,98(1):216-224.
    5. Koh GY, Soonpaa MH, Klug MG, et al. Stable fetel cardiomycytes grafts in the hearts of dystrophic mice and dogs. J Clin Invest.1995; 96(4):2034-2042.
    6. Odorico J.S., Kaufman D.S, Thomson J.A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 2001; 19:193-204
    7. Murry, C.E. and Keller, G. Differentiation of embryonic stem cells to clinically relevant populations:lessons from embryonic development. Cell 2008; 132: 661-680
    8. Romanov YA, Darevskaya AN, Merzlikina NV, et al. Mesenchymal stem cells from human bone and adipose tissue:isolation, characterization, and differentiation potentialities. Bull Exp Biol Med 2005;140:138-43.
    9 Haynesworth SE, Baber MA,Caplan Al.Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro:Effects of dexamethasone and IL-la.J Cell Physiol,1996; Ⅰ 66:585-592.
    10. Maegawa N, Kawamura K, Hirose M, et al. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med 2007;1:306-13.
    11. Song SJ, Jeon O, Yang HS, et al. Effects of culture conditions on osteogenic differentiation in human mesenchymal stem cells. J Microbiol Biotechnol 2007; 17:1113-9.
    12. Bosnakovski D, Mizuno M, Kim q et al. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system, Exp Hematol 2004;32:502-9.
    13. Yoo JU,Barthel TS,Nishimura K,et al.The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells.JBone Joint Surg Am, 1998;80:1745-1757.
    14. Bosnakovski D,Mizuno M,Kim G,et al.Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydro gels:Influence of collagen type Ⅱ extracellular matrix on MSC chondrogenesis.Biotechnol Bioeng,2006;93(6):1152-1163.
    15. Kung JW, Choi Y, Park JH, et al. The effects of cyclin-dependent kinase inhibitors on adipogenic differentiation of human mesenchymal stem cells. Biochem Biophys Res Commun 2008;366:624-30.
    16. Vashi AV, Keramidaris E, Abberton KM, et al. Adipose differentiation of bone marrow-derived mesenchymal stem cells using Pluronic F-127 hydrogel in vitro. Biomaterials 2008;29:573-9.
    17.Copland I, Sharma K, Legeune L, et al. CD34 expression on murine marrow-derived mesenchymal stromal cells:impact on neovascularization. Exp Hematol 2008;36:93-103.
    18. Wu Y, Chen L, Scott PG, et al. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007;25:2648-59.
    19. Ke Z, Zhou F, Wang L, et al. Down-regulation of Wnt signaling could promote bone marrow-derived mesenchymal stem cells to differentiate into hepatocytes. Biochem Biophys Res Commun 2008;367:342-8.
    20. Shang YC, Zhang C, Wang SH, et al. Activated beta-catenin induces myogenesis and inhibits adipogenesis in BM-derived mesenchymal stromal cells. Cytotherapy 2007;9:667-81.
    21.Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, et al. In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine. Interact Cardiovasc Thorac Surg 2007;6:593-7.
    22. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970;3:393-403.
    23. Pittenger MF,Martin BJ.Mesenchymal stem cell s and t heir potential as cardiac t herapeutics.Circ Res,2004,95 (1):9-20
    24. Krause DS. Plasticity of marrow-derived stem cells. Gene Ther.9(11):754-758.
    25. Meirelles Lda S, Nardi NB. Murine marrow-derived mesenchymal stem isolation, in vitro expansion, and characterization. Br J Haematol.2003,123(4):702-711.
    26. Van der Bogt KE, Schrepfer S, Yu J, et al. Comparison of transplantation of adipose tissue and bone marrow-derived mesenchymal stem cells in the infracted heart. Transplantation.2009,87(5):642-652.
    27. Koc ON, Peters C, Aubourg P, et al. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal diseases. Exp Hematol 1999;27:1675-81.
    28. Tropel P, Noel D, Platet N, et al. Isolation and haracterization of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res 2004;295:395-406.
    29.Bosnakovski D, Mizuno M, Kim q et al. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res 2005;319:243-53.
    30.Fortier LA, Nixon AJ, Williams J, et al. Isolation and chondrocytic differentiation ofequine bone marrow-derived mesenchtmal stem cells. Am J Vet Res.1998; 59(9):1182-1187
    31.Ogura N, Kawada M, Chang WJ, et al. Differentiation of the human mesenchymal stem cells derived from bone marrow and enhancement of cell attachment by fibronectin. J Oral Sci 2004;46:207-13.
    32. Hung SC, Chen NJ, Hsieh SL, et al. Isolation and characterization of size-sieved stem cells from human bone marmw. Stem Cells 2002;20:249-58.
    33。傅文玉,路艳蒙,朴英杰.人骨髓问充质干细胞的培养及多能性研究.中华血液学杂志2002;23:202-4。
    34. Parekkadan B, Sethu P, van Poll D, et al. Osmotic selection of human mesenchymal stem/rogenitor cells from umbilical cord blood. Tissue Eng 2007;13:2465-73.
    35. Shintani S, Murohara 'Ii Ikeda H, et al. Augmentation of postnatal neovascularization with autolo}ous bone marrow transplantation. Circulation. 2001:103:897-903
    36. Lennon DP, Haynesworth SE, Bruder SP. Human and animal mesenchymal progenitor cells from bone marrow:Identification of serum for optimal selectionand proliferation. In Vitro Cell Dev Biol Animal.1996; 32:602-611
    37. Barnes D, Sato G. Serum-free cell culture:a unifying approach. Cell.1980; 22: 649-655
    38. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science.1999; 284(5411):143-147
    39宋平根,李素文主编.流式细胞术的原理和应用.北京:北京师范大学出版社,1992:78-84.
    40薛庆善主编,体外培养的原理与技术.北京:科学出版社,2001:216-221.
    41 Deans RJ, Moseley AB. Mesenchymal stem cells:biology and potential clinical uses [J]. Exp Hematol.2000,28(8):875-884.
    42 Majumdar, Thiede MA, Mosca JD, Moorman M, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stxomal cells [J].J Cell Physiol.1998;176(1):57-66.
    43 Javazon EH, Colter DC, Schwarz EJ, et al. Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells [J]. Stem Cells.2001,19(3):219-25.
    1. Crystal RG Transfer of genes to humans:early lessons and obstacles to success [J]. Science.1995,270(5235):404-410.
    2. Dani SU.The challenge of vector development in gene therapy [J]. Braz J Med Biol Res.1999,32(2):133-145.
    3. Bai Y,Soda Y,Izawa K, et al. Effective transduction and stable transgene expression in human blood cells by a third-generation lentiviral vector [J].Gene Ther.2003,10(17):1446-1457.
    4. Ruitenberg MJ, Plant GW, Christensen CL, et al. Viral vector-mediated gene expression in olfactory ensheathing glia implants in the lesioned rat spinal cord [J]. Gene Ther.2002,9(2):135—146.
    5. Mah C, Byrne BJ, Floote TR. Virus-based gene delivery systems Clin Pharmacok inet 2002,41:901-911
    6. Hendriks WT, Ruitenberg MJ, Blits B, et al. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord [J]. Prog Brain Res,2004,146:451-476.
    7. Tenenbaum L, Lehtonen E, Monahan PE.Evaluation of risks related to the use of adeno-associated virus-based vectors [J]. Curr Gene Ther.2003,3(6):545-565.
    8. Poeschla EM, Wong Staal F, Looney D J, et al. Efficient transduction of non dividing hum an cells by feline immunodeficiency virus lentiviral vectors. Nat Med,1998,4:354-357
    9. Bai Y, Soda Y, Izawa K, et al.Effctive transduction and stable transgene expression in human blood cells by a third-generation lentiviral vector [J]. Gene Ther.2003,10 (17):1446-1457.
    10 Naldini L, Blomer U, Gallay P, et al.In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector [J].Science.1996, 272:263-267.
    11. Yoshimitsu M, Sato T, Tao K, et al. Bioluminescent imaging of a marking transgene and correction of Fabry mice by neonatal injection of recombinant lentiviral vectors [J]. Proc Natl Acad Sci U S A.2004,101(48):16909-16914.
    12. Lai CM, Lai YK, Rakoczy PE. Adenovirus and adeno-associated virus vectors. DNA Cell Biol 2002,21(12):895-913.
    13. Naldini L, Blomer U, Gallay P, et al.In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science,1996, 272(5259):263-267.
    14. David,Strayer,Ramesh,et al.Current Status of gene therapy strategies to treat HIV/AIDS [J]. Molecular therapy.2005,11(6):824-837
    15. Aldini L, Blomer U, Gallay P, et al In vivo gene d elivery and stable transduction of non dividing cells by a lentiviral vector.Science,1996,272: 263-267
    16. Miyoshi H, Smith KA, Mosier DE, et al. Transduction of human CD34 + cells that mediate long-term engraftment of NOD/SC ID mice by H Ⅳ vectors. Science,1999,283:682-686.
    17. Kim N V, Mithrophanous K, Kingsman S M, et al.Minimal requirement for a lentivirus vector based on human immunodeficiency type 1 .J Virol,1998,72(1): 811-816.
    18. Kafri T, Praag H V, Gage F H, et al.Lentiviral vectors:regulated gene expression. Mol Ther,2000,1(6):516-521.
    19. Kafri T, van Praag H, Ouyang L, et al. A packaging cell line for lentivirus vectors. J Virol 1999,73:576-584.
    20. Miyoshi H, Blomer U, Takahashi M, et al. Development of a self in activating lentivirus vector.J Virol 1998,72:8150-8157.
    21. Lee SK, Dykxhoorn DM, Kumar P, et al. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple Glades and primary isolates of HIV [J]. Blood,2005,106(3):818-826.
    22. Iwakuma T, Cui Y, Chang LJ. Self-inactivating lentiviral vectors with U3 and US modifications [J]. Virology,1999,261(1):120-132.
    23 Reiser J, Lai Z, Zhang XY, et al. Development of multigene and regulated lentivirus vectors [J]. J Virol,2000,74(22):10589-10599.
    1. Kutryk MJ, Stewart DJ. Angiogenesis of the heart. Microsc Res Tech.2003; 60:138-158.
    2. J.G. Shake, P.J. Gruber, W.A. Baumgartner, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model:engraftment and functional effects, Ann. Thorac. Surg.2002;73:1919-1925.
    3. Zhang X, Wei M, Zhu W, et al. Combined transplantation of endothelial progenitor cells and mesenchymal stem cells into a rat model of isoproterenol-induced myocardial injury. Arch Cardiovasc Dis.2008 May; 101(5):333-42. Epub 2008 Jun 25.
    4. Pavne TR,Oshima H,Okada M, et al. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol.2007 Oct 23;50(17): 1685-7.
    5. Creighton CJ, Nagaraja AK, Hanash SM, etal. A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA,2008,14(11):2290-2296
    6. Enright A J, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol,2003,5:Rl
    7. Kim S K, Nam J W, Rhee J K, et al. MiTarget:microRNA target gene prediction using a support vector machine. BMC Bioinform,2006,7:411
    8. Rehmsmeier M., Steffen P, Hochsmann M, et al. Fast and effective prediction of microRNA/target duplexes. RNA,2004,10:1507-1517
    9. Lewis B P, Shih I H, Jones-Rhoades M W, et al. Prediction of mammalian microRNA targets.Cell,2003,115:787-798
    10. Rusinov V, Baev V, Minkov I N, et al. Microlnspector:a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res,2005,33: W696-W700
    11. Krek A, Grun D, Poy M N, et al. Combinatorial microRNA target predictions. Nat Genet,2005,37:495-500
    12. Saetrom O, Ola Snove J, Saetrom P. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms.RNA,2005,11:995-1003
    13. Miranda K C, Huynh T, Tay Y, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell,2006,126:1203-1217
    14. Zhan B H, Pan X P, Anderson T A. MicroRNA:A new player in stem cells. J Cell Physiol,2006(Epub ahead of print).
    15. Napoli C, Lemieux C, Jorgensen RA. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell.1990; 2:279-289.
    16. Van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitji AR. Flavonoid genes in petunia:addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell.1990; 2:291-299.
    17. Lee R C, Feinbaum R L, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993, 75(5):843-854.
    18. Lee Y, Kim M, et al. MicroRNA genes are transcribed by RNA PolymeraseⅡ. EMBOJ,2004,23(20):4051-4060.
    19. Borchert G M, Lanier W, Davidsonl B L. RNA polymeraselll transcribes human microRNAs. Nat Struct Mol Biol,2006,13(12):1097-1101.
    20. Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297.
    21. Han J, Leel Y, Yeom K H,et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell,2006,125(5):887-901.
    22. Grishok A, Pasquinelli A,Conte D, et al. Genes and machanisms related to RNA interference regulate expression of the small tremporal RNAs that control C. elegans developmental timing. Cell,2001,106:23-24.
    22. Bohnsack M T, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA,2004, 10(2):185-191.
    23. Erno Wienholds, Kloosterman WP, Miska E, et al. MicroRNA Expression in Zebrafish Embryonic Development [J]. Science,2005,309:310-311
    24. Wigard P K, Wienholds E, de Bruijn E, et al. In situ detection of miRNAs in animal embryos using LNA-modied oligonucleotide probes [J]. Nat methods, 2006,3:27-29
    25. Kuehbacher A, Urbich C, Zeiher AM, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis [J]. Circ Res,2007,101: 59-68
    26. Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood [J],2006,108:3068-3071
    27.Hu Y, Cben L, Wolfgang B, et a l.Activation of mitogen-activated protein kinases(ERK/JNK) and AP-1 transtription factor in rat carotid arteries after balloon injury. Arterioscler Thromb Vase Biol,1997,17(13): 2808-2816.
    28. Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell.2008; 15:272-284.
    29. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med.2001; 7:430-436.
    30. Philpott KL, McCarthy MJ, Klippel A, Rubin LL. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J Cell Biol.1997;139(3):809-815.
    31. Anderson CN, Tolkovsky AM. A role for MAPK/ERK in sympathetic neuron survival:protection against a p53-dependent,JNK-independent induction of apoptosis by cytosine arabinoside. JNeurosci.1999;19(2):664-673.
    32. Bouhon Tq Yancopoulos GD, Gregory JS, et al. An insulin-stimulated protein kinade similar to yeast kinases involved in cell cycle control. Sciences, 1990,249(4964):64-67.
    33. Boulton Tq Nye SH, Robbins DT, et al.ERKs:a family of protein serine/threonine kinases that are activated and tyrosine phesphorylated in response to insulin and NGF.Cel l,1991,65(4):663-675.
    34. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol,1997,9(1):18.
    35. Mullonkal CJ, Toledo-Pereyra LH. Akt in ischemia and reperfusion. J Invest Sung.May-Jun 2007;20(3):195-203.
    36. Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res. Jun 28 2002;90(12):1243-1250.
    1. Zhan B H, Pan X P, Anderson T A. MicroRNA:A new player in stem cells. J Cell Physiol,2006(Epub ahead of print).
    2. Lim LP, Lau NC, Garrett-Engele P, Grimson A, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005; 433:769-773.
    3. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120:15-20.
    4. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell.2003; 115:787-798.
    5. Wang Jih-Shium, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cardiomyoplasty:feasibility and potential clinical advantages. J Thorac Cardiovasc Surg.2000; 120:999-1006
    6 Litwin SE, Katz SE, Morgan JP, et al. Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat. Circulation 1994; 89:345-54.
    7. Scholzen, T.&Gerdes, J. The ki-67 protein:from the known and the unknown. J. Cell. Physiol.2000; 182,311-322
    8. Musil, L. S., Le, A. N., VanSlyke, J. K. et al. Regulation of connexin degradation as a mechanism to increase gap junction assembly and function.J. Biol. Chem. 2000; 275,25207-25215.
    9. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med.2001;7(4):430-6
    10. Dedkov EI, Christensen LP, Weiss RM, et al. Reduction of heart rate by chronic beta 1-adrenoceptor blockade promotes growth of arterioles and preserves coronary perfusion reserve in postinfarcted heart. Am J Physiol Heart Circ Physiol.2005.288:H2684-2693
    11. Konieczny SF, Emerson CP Jr.5-Azacytidine induction of stable mesodermal stem cell lineage from 1OTI/2 cells:evidence for regulatory genes controlling determination. Cell,1984,38(1):791-800.
    12. Saito T, Bruder SP. Bittira B, et al.Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg,2002,74(3):19-24.
    13. Service RF. Tissue engineering build new bone. Science,2000,289(12):1498.
    14. Conget PA, Minguell JJ. Phenotypical and function properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol,1999,181(2):67-73.
    15. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomised controlled clinical trial. Lancet 2004;364(9429):141—148
    16. Reinecke, H. C.E. Murry, Transmural replacement of myocardium after skeletal myoblast grafting into the heart. Too much of a good thing?Cardiovasc Pathol,2000.9(6):p.337-44.
    17. Zhang, M., et al., Cardiomyocyte grafting for cardiac repair:graft cell death and anti-death strategies. J Mol Cell Cardiol,2001.33(5):p907-21
    18. Whittaker, P., et al., Development of abnormal tissue architecture in transplanted neonatal rat myocytes. Ann Thorac Surg,2003.75(5):p1450-6.
    19. Reinecke, H. and C.E. Murry, Cell grafting for cardiac repair. MethodsMol Biol,2003.219:p.97-112
    20. Silva, G.V., et al., Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heartfunction in a canine chronic ischemia model. Circulation,2005. 111(2):p150-6
    21. Isner, J.M., Angiogenesis:a "breakthrough" technology in cardiovascular medicine. J Invasive Cardiol,2000.12 Suppl A:p14A-7A.
    22. Li, T.S., et al., Improved angiogenic potency by implantation of ex vivo hypoxia prestimulated bone marrow cells in rats. Am J Physiol Heart Circ Physiol,2002.283(2):p. H468-73.
    23. Kobayashi, T., et al., Enhancement of angiogenesis by the implantation of self bone marrow cells in a rat ischemic heart model. J Surg Res,2000.89(2):p. 189-95.
    24. Zhang X, Wei M, Zhu W, et al. Combined transplantation of endothelial progenitor cells and mesenchymal stem cells into a rat model of isoproterenol-induced myocardial injury. Arch Cardiovasc Dis.2008 May; 101(5):333-42. Epub 2008 Jun 25.
    25. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 2001;280:C1358-C1366.
    26. Pavne TR,Oshima H,Okada M, et al. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts.J Am Coll Cardiol.2007 Oct 23; 50(17):1685-7.
    27. Freedman SB, Isner JM. Therapeutic angiogenesis for coronary artery disease. Ann Int Med 2002; 136:54-7
    28. Flamme I, Risau W. Induction of vasculogenesis and hematopoiesis in vitro. Development 1992; 116:435-439.
    29. Melo LQ Pachori AS, Kong D, et al. Gene and cell-based therapies for heart disease. FSSEB J.2004:18:648-663.
    30. Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation, Circ Res.2007;100:1579-1588.
    31. Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood,2006,108:3068-71
    32. Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell.2008;15:272-284.
    33. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med.2001; 7:430-436.
    34. Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA.2006; 103:5078-5083.
    35. Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell.2007; 129:1401-1414.
    36. Kennedy SqWagner AJ, Conzen SD, et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Deu Mar 15 1997;11(6):701-713.
    37. Chang F, Lee JT, Navolanic PM, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation:a target for cancer chemotherapy. Leukemia. Mar 2003;17(3):590-603.
    39. Viscomi MT, Oddi S, Latini L, et al. Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. JNeurosci. Apr 8 2009;29(14):4564-4570.
    40. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. Nov 24 1995; 270 (5240):1326-1331.
    41. Liu L, Cao, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. CancerRes. Dec 15 2006;66(24):11851-11858.
    42. Namgaladze D, Kollas A, Brune B. Oxidized LDL attenuates apoptosis in monocytic cells by activating ERK signaling. JLipid Res. Jan 2008;49(1):58-65.
    [1]Zhan B H, Pan X P, Anderson T A. MicroRNA:Anew player in stem cells. J Cell Physiol,2006(Epub ahead of print).
    [2]Lim LP, Lau NC, Garrett-Engele P, Grimson A, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005; 433:769-773.
    [3]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell.2005; 120:15-20.
    [4]Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell.2003; 115:787-798.
    [5]Napoli C, Lemieux C, Jorgensen RA. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell.1990; 2:279-289.
    [6]Van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitji AR. Flavonoid genes in petunia:addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell.1990; 2:291-299.
    [7]Lee R C, Feinbaum R L, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993, 75(5):843-854.
    [8]Lee Y, Kim M, et al. MicroRNA genes are transcribed by RNA Polymerase Ⅱ. EMBOJ,2004,23(20):4051-4060.
    [9]Borchert G M, Lanier W, Davidsonl B L. RNA polymeraselll transcribes human microRNAs. Nat Struct Mol Biol,2006,13(12):1097-1101.
    [10]Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297.
    [11]Han J, Leel Y, Yeom K H,et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell,2006,125(5):887-901.
    [12]Bohnsack M T, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 2004,10(2):185-191.
    [13]Hutvagner G, McLachlan J, Pasquinelli A E, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science,2001,293:834-838.
    [14]Grishok A, Pasquinelli A,Conte D, et al. Genes and machanisms related to RNA interference regulate expression of the small tremporal RNAs that control C. elegans developmental timing. Cell,2001,106:23-24.
    [15]Ketting R F, Sylvia E J, Bernstein F E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C.elegans. Genes Dev,2001,15:2654-2659.
    [16]Pasquinelli A E, Hunter S, Bracht J. MicroRNAs:a developing story. Curr Opin Genet Dev,2005,15(2):200-205.
    [17]Brennecke J, Stark A,Russell R B, et al. Principles of microRNA-target recognition. PloS Biol,2005,3(3):e85.
    [18]Lai E C. MicroRNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet,2001, 30(4):363-364.
    [19]Selbach M, Schwanhausser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs. Nature,2008,455(7209):58-63.
    [20]Krek A,Grun D,Poy M N, et al. Combinatorial microRNA target predictions.Nat Genet,2005,37(5):495-500.
    [21]Hutvagner G, Zamore P D. A microRNA in a multiple-turnover RNAi enzyme complex. Science,2002,297(5589):2056-2060.
    [22]Hatfield SD, Shcherbata HR, Fischer KA, et al. Stem cell division is regulated by the microRNA pathway [J]. Nature,2005,435 (7044):974-978.
    [23]Suh M R, Lee Y, Kim J Y, et al. Human embryonic stem cells express a unique set of microRNAs[J]. Dev Biol,2004,270(2):488-498
    [24]Cheng T. Cell cycle inhibitors in normal and tumor stem cells [J]. Oncogene 2004,23 (43):7256-7266
    [25]Shcherbata H R, Hatfield S, Ward E J, et al. The MicroRNA pathway plays a regulatory role in stem cell division[J]. Cell Cycle 2006,5(2):172-175
    [26]Singh SK, et al. REST maintains self-renewal and pluripotency of embryonic stem cells. Nature,2008,453(7192):223-227.
    [27]Calabrese JM et al. RNA sequence analysis defines Dicer's role in mouse embryonic stem cells. Proc Natl Acad Sci USA,2007,104(46):18097-18102
    [28]JiR, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation [J]. Circ Res,2007,100 (11):1579-1588.
    [29]Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis [J]. Nature, 2005,436(7048):214-220.
    [30]ANDERSON C, CATOE H, WERNER R, et al. MIR-206 regulates connexin43 exp ression during skeletal muscle development [J] Nucleic Acids Res,2006,34 (20):5863-5871
    [31]Lee Y S, Kim H K, Chung S, et al. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem,2005, 280(17):16635-16641
    [32]Ivey KN et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell,2008,2(3):219-229
    [33]Nakajima N, Takahashi T, Kitamura R, et al. MicroRNA-1 facili-tates skeletalmyogenic differentiation without affecting osteoblastic and adipogenic differentiation[J]. Biochem Biophys Res Commun,2006,350 (4):1006-1012.
    [34]Kwon C, Han Z, Olson E N, et al. MicroRNAl influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci USA,2005, 102(52):18986-18991
    [35]Kutryk MJ, Stewart DJ. Angiogenesis of the heart. Microsc Res Tech.2003; 60:138-158.
    [36]Zhang X, Wei M, Zhu W, et al. Combined transplantation of endothelial progenitor cells and mesenchymal stem cells into a rat model of isoproterenol-induced myocardial injury. Arch Cardiovasc Dis.2008 May; 101(5):333-42. Epub 2008 Jun 25.
    [37]Pavne TR,Oshima H,Okada M, et al. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol.2007 Oct 23; 50(17):1685-7.
    [38]Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res.2007; 100:1579-1588.
    [39]Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood,2006,108:3068-71
    [40]SuarezY, Fernandez-Hernando C, Pober JS, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007 Apr 27; 100(8):1164-73.
    [41]Yang WJ, Yang DD, Na SQ, et al. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem,2005,280(10):9330-5
    [42]Kuehbacher A, Urbich C, Zeiher AM, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res,2007,101:59-68
    [43]JiR, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation [J]. Circ Res,2007,100 (11):1579-1588.
    [44]Syed IS, Sanborn TA, Rosengart TK. Therapeutic angiogenesis:a biologic bypass. Cardiology.2004; 101:131-143.
    [45]Wang S, Aurora A, Johnson B, et al. The endothelial-specific microRNA governs vascular integrity and angiogenesis. Dev Cell.2008; 15:261-271.
    [46]Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell.2008;15:272-284.
    [47]Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med.2001; 7:430-436.
    [48]Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A.2006; 103:5078-5083.
    [49]Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell.2007; 129:1401-1414.
    1. E. Braunwald, M.R.Bristow. Congestive heart failure:fifty years of progress, Circulation 2000; 102:Ⅳ14-23.
    2. D. Orlic, J. Kajstura, S. Chimenti et al. Bone marrow cells regenerate infarcted myocardium, Pediatr Transplant.2003; 7:86-8.
    3. C. Stamm, B. Westphal, H.D. Kleine et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration, Lancet.2003; 361:45-6.
    4. K.C. Wollert, G.P. Meyer, J. Lotz, et al.Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomised controlled clinical trial, Lancet.2004 Jul 10-16.
    5. Zhang B H, Pan X P, Anderson T A. MicroRNA:A new player in stem cells. J Cell Physiol,2006; 209:266-9.
    6. Garry DJ, Olson EN. A common progenitor at the heart of development. Cell 2006;127:1101-1104.
    7. Odorico J.S., Kaufman D.S, Thomson J.A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 2001; 19:193-204
    8. Murry, C.E. and Keller, G. Differentiation of embryonic stem cells to clinically relevant populations:lessons from embryonic development. Cell 2008; 132: 661-680
    9. Van Laake L, Passier R, Monshouwer-Kloots J et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Research 2007; 1:9-24
    10. Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Advances in Cancer Research 2008;100:133-158
    11. Harrison NJ, Baker D, Andrews PW. Culture adaptation of embryonic stem cells echoes germ cell malignancy. Int J Androl 2007;30:275-81; discussion 281
    12. Yeh E.T, Zhang S, Wu HD et al. Transdifferentiation of humanperipheral blood CD34-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 2003; 108:2070-2073
    13. Koyanagi M, Bushoven P, Iwasaki M, et al. Notch signaling contributes to the expression of cardiac makers in human circulating progenitor cells. Circulation Research 2007; 101:1139-1145
    14. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium. Nature 410:701-705,2001.
    15. Orlic D, Kajstura J, Chimenti S,et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701-705
    16. Rota M, Kajstura J, Hosoda T, et al. Bone marrow cells adopt the cardiomyogenic fate in vivo. Proceedings of the National Academy of Sciences of the United States of America 2007; 104:17783-17788
    17. Norol F, Bonnet N, Peinnequin A, et al. GFP-ransduced D34t and Lin-CD34-hematopoietic stem ells did not adopt a cardiac phenotype in a nonhuman rimate model of myocardial infarct. Exp Hematol 35:653-61,2007.
    18. Balsam L.B, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004;428: 668-673
    19. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cellsdo not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004; 428: 664-668
    20. Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. New England Journal of Medicine 2006;355:1210-1221
    21. Makino, S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. Journal of Clinical Investigation 1999; 103; 697-705
    22. Tomita, S. et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100 (19 Suppl):11247-256
    23. Shiota M, Li RK, Weisel RD, et al. Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Experimental Cell Research 2007;313:1008-1023
    24. Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Medicine 2005;11:367-368
    25. Gnecchi M, Zhang Z, Ni A,et al. Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research 2008; 103:1204-1219
    26. Kamihata H, Matsubara H, Nishiue T et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001;104:1046-1052.
    27. Kinnaird T, Stabile E, Burnett MS et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004;94:678-685.
    28. J.G. Shake, P.J. Gruber, W.A. Baumgartner, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model:engraftment and functional effects, Ann. Thorac. Surg.2002;73:1919-1925.
    29. Y. L. Tang, Q. Zhao, Y.C. Zhang, et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic, Regul. Pept. 117(2004)3-10.
    30. Eguchi M, Masuda H, and Asahara T. Endothelial progenitor cells for postnatal vasculogenesis. Clin Exp Nephrol 2007;11:18-25
    31. Iwami Y, Masuda H, and Asahara T. Endothelial progenitor cells:past, state of the art, and future. J Cell Mol Med 2004;8:488-497
    32. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999.;18:3964-3972
    33. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006;355:1199-1209.
    34. Kajstura J, Leri A, Finato N,et al. Myocyte proliferation in end-stage cardiac failure in humans. Proceedings of the National Academy of Sciences of the United States of America 1998;95,8801-8805
    35. Barile L, Messina E, Giacomello A, and Marban E. Endogenous cardiac stem cells. Prog Cardiovasc Dis2007; 50:31-48.
    36. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763-776.
    37. Segers VF and Lee RT. Stem-cell therapy for cardiac disease.Nature2008; 451: 937-942.
    38. Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium:homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America 2003;100: 12313-12318
    39. Leri A, Kajstura J, Anversa P, et al. Myocardial regeneration and stem cell repair. Curr Probl Cardiol2008;33:91-153.
    40. Rota M, Padin-Iruegas ME, Misao Y, et al. Local activation or implantation of cardiac progenitor cells rescues scarred infracted myocardium improving cardiac function. Circ Res 103:107-116,2008.
    41. Lee R C, Feinbaum R L, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993; 75: 843-854.
    42. Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing and computational identification of humanmicroRNA genes. Cell.2005; 120:21-24.
    43. Ambros, V. The functions of animal microRNAs. Nature,2004;431:350-5.
    44. He, L. and Hannon, G. J. MicroRNAs:small RNAs with a big role in gene regulation. Nat. Rev. Genet.2004; 5:522-31.
    45. Filipowicz W. RNAi:the nuts and bolts of the RISC machine. Cell.2005; 122:17-20.
    46. Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex. Nature.2004; 432:231-235.
    47. Gregory RI, Yan KP, Amuthan G, et al.The microprocessor complex mediates the genesis of microRNAs. Nature.2004; 432:235-240.
    48. Lee Y, Ahn C, Han J, et al.The nuclear RNase III Drosha initiates microRNA processing. Nature.2003; 425:415-419.
    49. Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs:how many mechanisms? Trends Cell Biol.2007; 17:118-126.
    50. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev.2006; 20:515-524.
    51. Lee Y., Kim M., Han J.J. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J.2004; 23,4051-4060.
    52. Lee Y., Jeon K., Lee J.T., et al. MicroRNA maturation:stepwise processing and subcellular localization. EMBO J.2002; 21,4663-4670.
    53. Kim, V.N. MicroRNA precursors in motion:exportin-5 mediates their nuclear export. Trends Cell Biol.2004; 14,156-159.
    54. Peters, L. and Meister, G. Argonaute proteins:mediators of RNA silencing. Mol Cell.2007; 26,611-623.
    55. Liu J.D., Valencia-Sanchez M.A., Hannon, G.J. et al. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biol.2005; 7,719-723.
    56. LIU, J., RIVAS, F.V., et al. A role for the P-body component GW182 in microRNA function. Nat Cell Biol.2005; 7:1161-1268.
    57. ROSSI, J.J. RNAi and the P-body connection. Nat Cell Biol 2005; 7(7): 643-644.
    58. SEN, G.L., and BLAU, H.M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol.2005; 7:633-636.
    59. Tomita S, Li RK, Weisel RD et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100(suppl Ⅱ):Ⅱ-247-Ⅱ-256.
    60. Agbulut O, Vandervelde S, Al Attar N, et al. Comparison of human skeletal myoblasts and bone marrow-derived CD133_ progenitors for the repair of infarcted myocardium. J Am Coll Cardiol.2004; 44:458-463.
    61. Carmell MA, Xuan Z, Zhang MQ, et al. The Argonaute family:Tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 2002; 16:2733-42.
    62. Schauer SE, Jacobsen SE, Meinke DW, et al. DICER-LIKE1:Blind men and elephants in Arabidopsis development. Trends Plant Sci 2002; 7:487-91.
    63. Bernstein E, Kim SY, Carmell MA et al. Hannon GJ. Dicer is essential for mouse development. Nat Genet 2003; 35:215-7.
    64. Houbaviy HB, Dennis L, Jaenisch R, et al. Characterization of a highly variable eutherian microRNA gene. RNA.2005 Aug; 11:1245-57.
    65. Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Dev Cell 2003; 5:351-8.
    66. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ. Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 2005 Aug 23; 102:12135-40.
    67. Rao M. Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev Biol 2004; 275:269-86.
    68. Suh MR, Lee Y, Kim JY et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol 2004; 270:488-98.
    69. Liu SP, Fu RH, Yu HH, et al. MicroRNAs regulation modulated self-renewal and lineage differentiation of stem cells. Cell Transplant.2009;18:1039-45.
    70. Cheng T. Cell cycle inhibitors in normal and tumor stem cells. Oncogene,2004, 23:7256-7266.
    71. Rao S, Orkin SH. Unraveling the transcriptional network controlling ES cell pluripotency. Genome Biol.2006; 7:230.
    72. Xiao L, Yuan X, Sharkis SJ. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells.2006; 24:1476-1486.
    73. Kanellopoulou C, Muljo S A, Kung A L, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 2005,19:489-501
    74. Collin Melton, Robert L. Judson, Robert Blelloch Opposing microRNA families regulate self-renewal in mouse embryonic stem cells Nature.2010; 463:621-6.
    75. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol.2008; 10, 987-993.
    76. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 2008; 320,97-100.
    77. Zhang, J. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Oct4. Nature Cell Biol.2006; 8, 1114-1123.
    78. Heo, I. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 2009; 138,696-708.
    79. Uma Lakshmipathy, Brad Love, Loyal A. Goff, et al. Chesnut Micro RNA expression pattern of undifferentiated and differentiated human embryonic stem cells Stem Cells Dev.2007 December; 16:1003-1016.
    80. Singh SK. REST maintains self-renewal and pluripotency of embryonic stem cells. Nature,2008,453:223-227.
    81. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 2005,436:214-220.
    82. ANDERSON C, CATOE H, WERNER R et al. MIR-206 regu-lates connexin43 expression during skeletal muscle development Nucleic Acids Res,2006,34: 5863-5871.
    83. Lee Y S, Kim H K, Chung S, et al. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem,2005, 280:16635-16641.
    84. Ivey KN. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell,2008,2:219-229.
    85. Nakajima N, Takahashi T, Kitamura R et al. MicroRNA-1 facili-tates skeletalmyogenic differentiation without affecting osteoblastic and adipogenic differentiation. Biochem Biophys Res Commun,2006,350:1006-1012.
    86. Kwon C, Han Z, Olson E N, et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci USA,2005,102: 18986-18991.
    87. Goumans MJ, de Boer TP, Smits AM et al. Doevendans PA. TGF-betal induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res.2007; 1:138-49.
    88. Smits AM, van Laake LW, den Ouden K et al. Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovasc Res.2009; 83:527-35. Epub 2009 May 9.
    89. Van Vliet P, Roccio M, Smits AM, et al. Progenitor cells isolated from the human heart:a potential cell source for regenerative therapy. Neth Heart J.2008; 16:163-9.
    90. Sluijter JP, van Mil A, van Vliet P. MicroRNA-1 and -499 Regulate Differentiation and Proliferation in Human-Derived Cardiomyocyte Progenitor Cells. Arterioscler Thromb Vasc Biol.2010 Jan 15. [Epub ahead of print]
    91. Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res.2007; 100:1579-1588.
    92. Poliseno L, Tuccoli A, Mariani L et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood,2006,108:3068-71.
    93. Kuehbacher A, Urbich C, Zeiher AM et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res,2007,101:59-68.
    94. Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell.2008; 15:272-284.
    95. Wang S, Aurora A, Johnson B et al. An endothelial-specific microRNA governsvascular integrity and angiogenesis. Dev Cell.2008; 15:261-271.
    96. Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 causes cardiac arrhythmias by targeting GJA1 and KCNJ2 genes. Nature Medicine. 2007; 13:486-491.
    97. Xu C, Lu Y, Pan Z, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of Cell Science.2007; 120(Ptl7):3045-3052
    98. Munekazu Yamakuchi, Marcella Ferlito, et al. miR-34a repression of SIRT1 regulates apoptosis PNAS,2008;105 (36):13421-13426
    99. Weber M, Baker MB, Moore JP, et al.MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun,2010; 393(4):643-8. Epub 2010 Feb 12.
    100.Hu X., Yu S. P., Fraser J. L., et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J. Thorac. Cardiovasc. Surg.2008; 135: 799-808.
    101.Fasanaro P., D'Alessandra Y., Di Stefano V., et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3 J. Biol. Chem.2008; 283,15878-15883.
    102. Xu Q. Mouse models of arteriosclerosis:from arterial injuries to vascular grafts. Am J Pathol 2004; 165:1-10.
    103.Kim HW, Haider HK, Jiang S, et al. Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem.2009 Nov 27;284(48):33161-8.
    104.Carmen Urbich, Angelika Kuehbacher, Stefanie Dimmeler. Role of microRNAs in vascular diseases, inflammation, and angiogenesis Cardiovascular Research 2008; 79:581-588
    105.Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissuespecific miRNAs from mouse. Current Biology 2002; 12:735-739.
    106.Ji X, Takahashi R, Hiura Y, et al. Plasma miR-208 as a biomarker of myocardial injury. Clinical Chemistry 2009;55:1944-1949.
    107.Shimin Dong, Yunhui Cheng, Jian Yang, et al. MicroRNA Expression Signature and the Role of MicroRNA-21 in the Early Phase of Acute Myocardial Infarction J Biol Chem.2009 October 23; 284(43):29514-29525
    108.Hutvagner G, Simard MJ, Mello CC, Zamore PD. Sequence-specific inhibition of small RNA function. PLos Biol.2004; 2:E98.
    109.Krutzfeldt J, Kuwajima S, Braich R et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res.2007; 35:2885-2892.
    110.Martinez J, Patkaniowska A, Urlaub H, et al. Singlestranded antisense siRNAs guide target RNA cleavage in RNAi. Cell.2002; 110:563-574.
    111 Jackson AL, Burchard J, Leake D et al. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. RNA.2006;12:1197-1205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700