用户名: 密码: 验证码:
大黄鱼异源精子诱导雌核发育及性别特异性AFLP标记筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大黄鱼(Pseudosciaena crocea)是我国人工育苗和养殖规模最大的海水鱼类,但目前养殖大黄鱼已经出现了种质资源衰退和遗传多样性降低,有必要进行种质改良,培育优良品种。雌核发育是一种特殊的有性生殖方式,其子代遗传物质全部来自母本。通过诱导雌核发育,不但可以快速建立纯系、固定优良性状,还可以为探讨性别决定机制、繁育单性群体奠定基础。已有研究显示使用同源灭活精子诱导的大黄鱼雌核发育中可能会因灭活不完全导致部分子代中掺有父本遗传物质。为避免此现象,本研究以不经灭活的鮸鱼精子和紫外灭活的黄姑鱼精子作为异源激活源,通过冷休克处理诱导染色体组加倍,成功诱导了大黄鱼雌核发育二倍体(可调式精子灭活装置和温度休克处理装置均为自行研制,均已获得专利)。通过对冷休克处理起始时刻、温度和持续时间的探索,得到异源精子诱导大黄鱼雌核发育的最佳冷休克处理条件为授精后2-3min将受精卵置于3-4°C过滤海水中处理10-13min。在此冷休克处理条件下,使用不经灭活的鮸鱼精子和紫外灭活的黄姑鱼精子作为激活源均可得到大黄鱼雌核发育子代,SSR标记扩增分析结果显示两种异源精子诱导得到的大黄鱼雌核发育子代中均只出现母本条带而未出现父本条带;形态观察和染色体分析显示40-50日龄幼鱼外部形态与普通大黄鱼幼鱼相同,且均为含有48条染色体的二倍体,表明子代全部为雌核发育二倍体。
     对以紫外灭活的同源(大黄鱼)精子和未灭活的异源(鮸鱼)精子诱导的雌核发育大黄鱼进行了胚胎发育时程和SSR标记分析的比较,结果显示:(1)异源组的受精率和孵化率分别为41.33±0.58%和36.67±0.58%,分别高于同源组的20.67±1.52%和24.67±0.58%;但异源组的存活率为3.28±0.09%,低于同源组的6.93±0.15%;(2)两组中经冷休克处理未能恢复倍性的胚胎发育畸形而陆续死亡,恢复倍性的胚胎在发育程序上均与普通大黄鱼相同,但由于冷休克处理导致了发育的延迟,各阶段出现时间较对照组滞后:同源组和异源组在胚盘形成时分别滞后3min和2min,至低囊胚期分别滞后35min和45min,至原肠晚期分别滞后55min和1h,至心跳期分别滞后50min和1h45min,至出膜时分别滞后1h和1h30min;(3)两对SSR引物(KPC9和KPC45)对同源组的扩增分析显24尾子代中有20尾在两个位点均未出现父本条带,为雌核发育个代,占83.3%;3尾在两个位点均出现父本条带,为正常受精个体,占12.5%;1尾仅在KPC9位点出现父本条带,可能是灭活不完全精子中的部分DNA片段进入了子代,占4.17%;SSR引物KPC43对异源组的扩增分析显示18尾子代中均未出现父本条带,全部是雌核发育产物。结果表明以灭活的同源(大黄鱼)精子和未经灭活的异源(鮸鱼)精子诱导大黄鱼雌核发育各有优缺点,需根据具体情况选择使用。
     为更好的对鮸鱼精子诱导的雌核发育大黄鱼进行检测分析,同时也为今后鮸鱼这一经济鱼类的遗传多样性分析、种质资源保护以及石首鱼科的种系进化研究奠定基础,使用磁珠富集法构建了鮸鱼的SSR文库,挑选247个阳性克隆测序后获得138个含有SSR核心单元的独特序列,对其中35个序列设计了37对SSR引物,在象山港鮸鱼养殖群体进行扩增、分析,结果显示有30对引物可扩增到清晰、特异的目的条带,其中24个位点呈多态性,6个位点呈单态性。24个多态性引物的等位基因数为2-8个,平均每个位点4.33个;观察杂合度(Ho)为0.0667-1.0000,平均0.6361;期望杂合度(He)为0.3828-0.8139,平均0.6443;PIC值范围为0.348-0.823,平均0.576,其中17个呈高度多态性(PIC>0.5);8个位点偏离哈代平衡,可能与群体内小范围的非随机交配和人工育种有关,某些位点杂合度很低,也可能与采样群体较小有关。
     将筛选得到的30对鮸鱼SSR引物在象山港养殖大黄鱼群体中进行交叉扩增,结果显示有12对引物可稳定扩增且条带清晰,交叉扩增的成功率为40.00%,其中10对呈多态性,2对为单态性。10个多态性引物的等位基因数为2-8个,平均每个位点5.10个;观察杂合度(Ho)为0.0000-0.8667,平均0.5200;期望杂合度(He)为0.0655-0.8492,平均0.6053。10个位点的PIC值范围为0.062-0.815,平均0.555,其中6个呈高度多态性(PIC>0.5);4个位点偏离哈代平衡。对大黄鱼和鮸鱼中相同引物的扩增序列进行比对,结果显示除MM007位点的相似度较低外(51.08%),其他位点相似度均较高(89.63%-99.36%);除核心单元的重复次数不同外,微卫星侧翼序列在鮸鱼和大黄鱼间也存在差异,表现为个别碱基的转换/颠换或一段序列的插入/缺失。用4对交叉扩增成功的引物对鮸鱼精子诱导的雌核发育大黄鱼进行扩增分析,结果显示4个引物都可以在父本和母本间扩增出清晰的差异性条带,子代在4个微卫星位点均只出现母本条带而没有父本条带,表明子代是真正的雌核发育产物,同时多个位点的检测结果也证明精子中的遗传物质既没有以染色体形式也没有以DNA片段形式进入子代。
     现有的核型分析显示大黄鱼没有异型分化的性染色体,目前尚无法鉴定大黄鱼的遗传性别。使用AFLP技术对雌、雄大黄鱼进行条带对比分析,结果显示64对选择性扩增引物组合中除E-ACC/M-CAT外均可得到清晰的条带,但仅引物组合E-ACC/M-CTG扩增到一条在雌、雄大黄鱼间显著差异的条带,表明大黄鱼雌性和雄性的基因组差异极小。将引物组合E-ACC/M-CTG扩增到的仅在雄鱼中出现差异条带进行回收测序,来自4个雄性个体的差异条带测序成功,结果显示虽然长度都是188bp,但为两段不同的序列,经BLAST搜索,两条序列在GenBank中均无同源序列。对两条序列分别设计引物进行PCR扩增检验,结果显示两对引物在雌性和雄性个体中都可扩增到条带,推测此AFLP条带可能是由DNA序列修饰(如甲基化等)和酶切识别等因素共同作用产生的性别差异性条带。
     综上所述,本研究建立了异源(鮸鱼、黄姑鱼)精子诱导大黄鱼雌核发育的技术体系,除幼鱼外部形态观察和染色体分析外,还使用已发布的大黄鱼、黄姑鱼SSR引物对大黄鱼雌核发育子代进行了鉴定和比较分析,从个体、细胞和分子遗传等多个水平上确认了雌核发育的真实性,并对同源和异源精子诱导的雌核发育大黄鱼进行了胚胎发育时程的观察和比较;通过磁珠富集法筛选了30对鮸鱼SSR引物,并将这些引物在大黄鱼中进行交叉扩增,对交叉扩增成功的12对引物进行了鮸鱼、大黄鱼间的扩增序列比较并应用于鮸鱼精子诱导大黄鱼雌核发育子代的鉴定;使用AFLP技术对雌、雄大黄鱼基因组进行了扩增条带的比较分析,找到一条仅在雄鱼中出现的差异条带。这些结果为大黄鱼雌核发育、群体遗传结构分析、性别决定与性别分化、石首鱼科种系进化等理论研究提供资料,也为大黄鱼遗传育种、种质保护以及单性群体繁育等应用性研究奠定了基础,但雌核发育大黄鱼的生长发育特别是性腺发育情况以及遗传性别的鉴定等问题仍有待于更加深入的研究。
Large yellow croaker Pseudosciaena crocea is the largest artificial breeding and culture species ofmarine fish in China. In recent years, reared P. crocea have begun to degrade in germplasm and loss ofgenetic diversity. It is needed to improve the germplasm and breed superior variety. Gynogenesis is aspecial type of sexual reproduction whereby the chromosomes of offspring are exclusively inherited fromthe mother. It is a valuable tool both in genetic research and aquaculture, e.g., producing monosexpopulation and pure lines, revealing sex-determing mechanisms, constructing genetic maps. Althoughgynogenetic diploids of P. crocea have been induced by UV-irradiated homologous sperm, some researcheshave reported that paternal genetic material was revealed into some offspring, which may due to theinadequacy of UV-irradiation. To ensure that any surviving offspring are truly gynogenetic, using suitableheterologous sperm is an alternative. In this study, gynogenesis was induced in P. crocea using untreatedMiichthys miiuy sperm or UV-irradiated Nibea albiflora sperm, and cold-shock was performed to diploidizethe female chromosome. By altering the initial time, temperature and duration, cold shock at3-4℃for10-13min which started in2-3min after fertilization was found as the optimum protocol for retaining thesecond polar body and producing meiotic diploids P. crocea with heterologous sperm. Under the abovecondition, the morphologic of gynogenetic P. crocea induced by unirradiated M. miiuy and UV-irradiated N.albiflora sperm were all similar compared to normal P. crocea, and cytogenetic analysis showed all thegynogenetic larveas were diploid with~48chromosomes. The results of microsatellite DNA analysisshowed that gynogenetic progeny were exclusive maternal inheritance.
     The embryonic development and SSR patterns were compared between the two groups of gynogenetic P.crocea which were induced by UV-irradiated homologous sperm and untreated heterologous (M. miiuy)sperm, respectively. The fertilization and hatching rate of heter-gynogenesis was41.33±0.58%and36.67±0.58%, respectively, and both higher than the rate of homo-gynogenesis, which was20.67±1.52%and24.67±0.58%, respectively. But the survival rate was opposite, which was3.28±0.09%forheter-gynogenesis and6.93±0.15%for homo-gynogenesis. In the two gynogenesis groups, the embryoswhich were failed to inhibit the extrusion of the polar body show obvious haploid syndrome; the embryoswhich were successful diploidized had the same process with the normal diploid embryos. However, thedeveloping speed of gynogenetic diploid was slower than control group: the homo-and heter-gynogenesisembryos delayed3min and2min at blastodisc stage,35min and45min at low blastula stage,55min and1h at late gastrula stage,50min and1h45min at heartbeat stage, and1h and1h30min at hatching stage,respectively. The delay may be due to the disturbance of cell division cycle caused by cold shock. Inhomo-gynogenesis, the analysis of SSR primes KPC9and KPC45showed in24tested offsprings,83.3%(20/24) had maternal bands only;12.5%(3/24) individuals had paternal bands in the two loci, suggestingthey derived from normal fertilization; and1individual showed paternal band in locus KPC9but absent inlocus KPC45, suggesting there were genetic leakage of the paternal fish. In heter-gynogenesis, the analysisof SSR prime KPC43showed18tested offsping all have maternal specific band only. The results showedheterologous sperm can avoid paternal gene inflowing to offspring. In gynogenesis induction, the selectionof homo-or heterologous sperm should accord to their relative merits.
     In order to analyze gynogenetic P. crocea induced by sperm of M. miiuy, as well as manage and protect M.miiuy and study the phylogeny in Sciaenidae, SSR markers were isolated for M. miiuy using genomiclibrary enriched by magnetic beads, and subsequently these markers were cross-amplified in P. crocea andused to analyze the gynogenetic P. crocea induced by sperm of M. miiuy. In total,247positive clones weresequenced and got138unique sequences that contained microsatellite motifs. Thirty-seven primer pairswere designed for35sequences and amplified in30M. miiuy individuals. Thirty primer pairs wereeffective, and within the tested population, twenty-four were polymorphic with an average of4.33allelesper locus (range from2to8). The observed (Ho) and expected (He) heterozygosity ranged from0.0667to 1.0000(mean0.6361) and0.3828to0.8139(mean0.6443), respectively. The mean PIC value was0.576,ranging from0.348to0.823. Seventeen loci showed high polymorphism (PIC>0.5). Eight loci weresignificant deviations from HWE, which may be due to the small sample size. Twelve out of the30primerpairs showed amplification in the different genus fish P. crocea and ten showed polymorphic with anaverage of5.10alleles per locus (range from2to8). The observed (Ho) and expected (He) heterozygosityranged from0.0000to0.8667(mean0.5200) and0.0655to0.8492(mean0.6053), respectively. The meanPIC value was0.555, ranging from0.062to0.815. Six loci showed high polymorphism (PIC>0.5). Fourloci were significant deviations from HWE. Except MM007(the homologous was51.08%between the twospecies), the sequence alignment of microsatellite flanking regions of other11loci showed highlyhomologous (range from89.63%to99.36%) between the two species. The gynogenetic P. crocea inducedby sperm of M. miiuy were analyzed through four cross-amplified primer pairs, and no specific paternalbands were found in the offspring. The results of four SSR markers indicate the genetic material of M.miiuy sperm did not revealed to the gynogenetic P. crocea as neither chromosome nor DNA fragment.The karyotype showed there was no identifiable sex chromosome in P. crocea. The inability to determinethe genotypic sex of P. crocea is a problem in aquaculture. In this study, AFLP technique was used toanalyse the bands between female and male P. crocea. Sixty-three out of64primer combinations couldamplify clear bands, but only the primer combination E-ACC/M-CTG got a band wihch was present in allmales and absent in all females. The result indicates there were only a few genomic differences betweenfemale and male P. crocea. Alignment showed this male-specific candidate band was two differentnucleotide sequences which were both188bp, and BLAST showed there was no homologous sequence inGenBank. Two PCR primers were designed, but amplification showed bands were appeared both in femaleand male P. crocea. We speculate that this sex-difference AFLP band came from the interaction ofrestriction enzyme recognition sites, DNA sequence modification (e.g, methylation) and other factors.
     In conclusion, this study established a technique that inducing gyonogenetic P. crocea by heterologoussperm (M. miiuy and N. albiflora) and using cold-shock to diploidize the female chromosome, verifiedgynogenesis through morphology, cytogenetic and SSR markers analysis, compared the embryonicdevelopment and SSR patterns between two group of gynogenetic P. crocea which were induced byhomologous sperm and heterologous (M. miiuy) sperm, isolated and characterized SSR markers for M.miiuy, verified the gynogenetic P. crocea using M. miiuy SSR markers which were cross-amplifed in P.crocea besides P. crocea SSR markers, screened a male-specific ALFP band. The result of this study wasuseful both for theoretical research and application research. Nevertheless, the growth, development(especially gonadal development) of gynogenetic offspring and identification of genotypic sex in P. croceaare needed to be further investigated.
引文
[1]徐开达,刘子藩.东海区大黄鱼渔业资源及资源衰退原因分析[J].大连水产学院学报.2007,22(5):392-396.
    [2]田明诚,徐恭昭,余日秀.大黄鱼形态特征的地理变异和地理种群问题[J].海洋科学.1962,2:79-97.
    [3]徐恭昭,罗秉征,王可怜.大黄鱼Pseudoscinena crocea (Richardson)种群结构的地理变异[J].海洋科学.1962,2:98-109.
    [4]徐兆礼,陈佳杰.东黄海大黄鱼洄游路线的研究[J].水产学报.2011,35(3):429-437.
    [5]张其永,洪万树,杨圣云等.大黄鱼地理种群划分的探讨[J].现代渔业信息.2011,26(2):3-8.
    [6]丁文超,李明云,管丹冬等.大黄鱼4个家系的形态差异分析[J].宁波大学学报(理工版).2009,22:185-190.
    [7]李明云,郑岳夫,管丹东等.大黄鱼四家系肌肉营养成分差异及品质选育分析[J].水产学报.2009,33(4):632-639.
    [8]李明云,吴玉珍,苗亮等.岱衢洋和官井洋大黄鱼自交与杂交子代生长性能及杂交优势分析[J].水产学报.2010,34(6):859-864.
    [9]王军,全成干,苏永全等.官井洋大黄鱼遗传多样性的RAPD分析[J].海洋学报.2001,23(3):87-91.
    [10]李明云,张海琪,薛良义等.网箱养殖大黄鱼遗传多样性的同工酶和RAPD分析[J].中国水产科学.2003,10(6):523-525.
    [11]黄良敏,谢仰杰,苏永全.闽-粤东族与岱衢族养殖大黄鱼的遗传多样性研究[J].厦门大学学报(自然科学版).2006,45:836-840.
    [12]王志勇,王艺磊,林利民等.福建官井洋大黄鱼AFLP指纹多态性的研究[J].中国水产科学.2002,9(3):198-202.
    [13]黎中宝,方秀,陈锦等.大黄鱼(Pseudosciaena crocea)养殖群体遗传多样性的降低[J].海洋与湖沼.2009,40(4):447-450.
    [14]王文文,常玉梅,梁利群.微卫星分析四个大黄鱼群体的遗传多样性[J].水产学杂志.2009,22(2):7-11.
    [15]黄振远,苏永全,张建设等.闽粤群和岱衢群养殖大黄鱼(Pseudosciaena crocea)及其杂交子代遗传差异的SSR分析[J].海洋与湖沼.2011,42(4):592-596.
    [16]陈淑吟,徐士霞,张志勇等.大黄鱼野生群体与养殖群体遗传多样性研究[J].海洋科学.2011,35(12):82-87.
    [17]赵广泰,刘贤德,王志勇等.大黄鱼连续4代选育群体遗传多样性与遗传结构的微卫星分析[J].水产学报.2010,34(4):500-507.
    [18] Wu XW, Liu XD, Cai MY et al. Genetic analysis of farmed and wild stocks of large yellowcroaker Larimichthys crocea by using microsatellite markers[J]. African Journal ofBiotechnology.2011,10(30):5773-5784.
    [19]李明云,赵明忠,林允闯.闽-粤东族大黄鱼Pseudosciaena crocea (Richardson)象山港养殖群数量与质量性状的研究[J].现代渔业信息.2001,16(12):6-9.
    [20]扬小强,张城,黄海宁等.网箱饲养大黄鱼性早熟的调查研究[J].水产科技情报.2002,29(6):243-245.
    [21]徐继林,朱艺峰,严小军等.养殖与野生大黄鱼肌肉脂肪酸组成的比较[J].营养学报.2005,27(3):256-257.
    [22]赵广泰.大黄鱼“闽优1号”选育群体遗传结构分析及生长相关性状的遗传参数估计
    [D].厦门:集美大学水产学院,2010.
    [23]冀德伟,李明云,王天柱等.不同低温胁迫时间对大黄鱼血清生化指标的影响[J].水产科学.2009,28(1):1-4.
    [24]李明云,吴玉珍,冀德伟等.低温选择大黄鱼(Pseudosciaena crocea)的肝脏蛋白质组双向电泳分析[J].海洋与湖沼.2010,41(3):348-351.
    [25]高国强,常玉梅,韩启霞等.大黄鱼耐低温性状相关微卫星标记的筛选[J].遗传.2010,32(3):248-253.
    [26]马梁,王军,陈武各等.鮸状黄姑鱼与大黄鱼人工杂交子代的胚胎发育[J].厦门大学学报(自然科学版).2002,41(3):378-382.
    [27]刘颖,蔡明夷,刘贤德等.大黄鱼♀与黄姑鱼♂杂交F1家系初孵仔鱼的AFLP-分析[J].水产学报.2010,34(6):672-678.
    [28]王晓清,王志勇,谢中国等.大黄鱼(♀)与鮸(♂)杂交的遗传分析[J].水产学报.2008,32(1):51-57.
    [29]林琪,吴建绍,曾志南.静水压休克诱导大黄鱼三倍体[J].海洋科学.2001,25(9):6-9.
    [30]王军,王德祥,尤颖哲等.大黄鱼三倍体诱导的初步研究[J].厦门大学学报(自然科学版).2001,40(4):927-930.
    [31]许建和,尤锋,吴雄飞等.冷休克法和静水压法人工诱导大黄鱼三倍体[J].中国水产科学.2006,13(2):206-210.
    [32]郑春静.温度休克诱导大黄鱼四倍体的初步研究[J].中国水产.2004,(3):87-89.
    [33]王晓清,王志勇,柳小春等.大黄鱼人工诱导雌核发育后代的微卫星标记分析[J].遗传.2006,28(7):831-837.
    [34] Xu JH, You F, Yan BL et al. Effects of ultra-violet irradiation on sperm motility and diploidgynogenesis induction in large yellow croaker (Pseudosciaena crocea) undergoing coldshock[J]. Aquacult Int.2007,15:371-382.
    [35]吴清明,蔡明夷,刘贤德等.大黄鱼同质雌核发育的诱导及微卫星标记分析[J].水产学报.2009,33(5):734-741.
    [36] Cai M, Wu Q, Liu X et al. Artificial induction of mito-gynogenetic diploids in large yellowcroaker (Pseudosciaena crocea) by hydrostatic pressure[J]. Chinese Journal of Oceanologyand Limnology.2010,28(4):713-719.
    [37]苗亮,王天柱,李明云等.同源和异源精子诱导大黄鱼(Pseudosciaena crocea)雌核发育的胚胎发育比较及子代SSR遗传标记分析[J].海洋与湖沼.2011,42(3):419-424.
    [38]鄢庆枇,苏永全,王军等.绿色荧光蛋白基因在大黄鱼体内的表达[J].厦门大学学报(自然科学版).2002,41(2):265-268.
    [39]陈莉,邓文汉,卢菀华等.大黄鱼生长激素基因的克隆与表达[J].福州大学学报(自然科学版).2004,32(6):754-758.
    [40]褚武英,于涟,毛芝娟等.大黄鱼α-珠蛋白cDNA的克隆及其特性分析[J].科技通报.2005,21(6):674-678.
    [41]张祖兴,李明云,陈炯等.大黄鱼(Pseudosciaena crocea)热激蛋白的基因克隆、原核表达及抗血清的制备[J].海洋与湖沼.2006,37(4):337-341.
    [42] Li MY, Chen J, Shi YH. Molecular cloning of leucocyte cell-derived chemotaxin-2gene incroceine croaker (Pseudosciaena crocea)[J]. Fish&Shellfish Immunology.2008,24(2):252-256.
    [43]李明云,陈炯,张祖兴等.大黄鱼(Pseudosciaena crocea)转铁蛋白(Tf)基因克隆及序列分析[J].海洋与湖沼.2007,38(6):563-568.
    [44] Chen J, Shi YH, Li MY. Changes in transferrin and hepcidin genes expression in the liver ofthe fish Pseudosciaena crocea following exposure to cadmium[J]. Archives of Toxicology.2008,82(8):525-530.
    [45]娄绘芳,黄艳青,吴信忠.大黄鱼(Pseudosciaena crocea)细胞色素P450CYP4F7基因的克隆及表达分析[J].海洋学报.2008,30(4):131-138.
    [46]余素红,王玉桥,陈新华.大黄鱼β2-微球蛋白基因的克隆及其在大肠杆菌中的重组表达[J].台湾海峡.2009,28(1):13-18.
    [47]周鹏,张子平,王艺磊等.大黄鱼ubc9基因的克隆和组织表达[J].生物技术通讯.2009,(8):76-82.
    [48]李婷,黄伟,薛良义.大黄鱼CD53基因克隆和分子特征分析[J].生物学杂志.2010,27(5):4-6.
    [49]卫玮,吴海珍,徐红艳等.大黄鱼凝血酶原类似基因的克隆及其表达分析[J].华东理工大学学报(自然科学版).2010,36(1):48-53.
    [50]董海阳,叶秀丽,薛良义等.大黄鱼肌肉生长抑制素基因原核表达及多克隆抗体的制备[J].台湾海峡.2011,30(1):196-202.
    [51]崔馨元,薛良义.大黄鱼肝细胞肿瘤相关抗原-127基因克隆及分子特征分析[J].生物技术通讯.2011,(11):125-139.
    [52]贾鲁,薛良义,蔡灿等.大黄鱼KLF6基因分子克隆和特征分析[J].生物学杂志.2012,29(1):5-8.
    [53] Komen H, Thorgaard GH. Androgenesis, gynogenesis and the production of clones in fishes:A review[J]. Aquaculture.2007,269:150-173.
    [54] Schartl M, Wilde B, Schlupp I et al. Evolutionary origin of a parthenoform, the amazonmolly Poecilia formosa, on the basis of a molecular genealogy[J]. Evolution.1995,49:827-835.
    [55] Gabor CR, Grober MS. A potential role of male and female androgen in species recognitionin a unisexual-bisexual mating complex[J]. Hormones and Behavior.2010,57(4-5):427-433.
    [56] Yamashita M, Jiang J, Onozato H et al. A tripolar spindle formed at meiosis I assures theretention of the original ploidy in the gynogenetic triploid crucian carp (Ginbuna),Carassius auratus langsdorfii[J]. Development, Growth&Differentiation.1993,35(6):631-636.
    [57]桂建芳.银鲫天然雌核发育机理研究的回顾与展望[J].中国科学基金.1997,1:11-16.
    [58]赵春民,杜伟,高晓东.我国鲆鲽类全雌苗种技术研究最新进展[J].中国水产.2011,6:59-62.
    [59]张龙岗,李娴,付佩胜.人工诱导雌核发育技术在淡水鱼类遗传育种研究中的应用[J].湖北农业科学.2011,50(7):1430-1433.
    [60]吴萍.我国鱼类雌核发育研究的进展及前景[J].上海水产大学学报.2004,13(3):255-260.
    [61] Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview ofgenetic, physiological, and environmental influences[J]. Aquaculture.2002,208:191-364.
    [62] Cherfas NB. Investigation of radiation-induced diploid gynogenesis in the Carp (Cyprinuscarpio L.)[J]. Soviet Genetics.1975,11(7):867-874.
    [63] Arai K, Onozato H, Yamazaki F. Artificial androgenesis induced with gamma irradiation inmasu salmon, Oncorhynchus masou[J]. Bulletin of the Faculty of Fisheries, HokkaidoUniversity.1979,30:181-186.
    [64] Thorgaard GH, Scheerer PD, Parsons JE. Residual paternal inheritance in gynogeneticrainbow trout, Salmo gairdneri: implications for gene transfer[J]. TAG Theoretical andApplied Genetics.1985,71(1):119-121.
    [65]吴仲庆.水产生物遗传育种学[M].厦门:厦门大学出版社;1991.
    [66] Friedberg EC. DNA Repair[M]. New York: W.H. Freeman and company;1985.
    [67] Cieminis KGK, Ranceliene VM, Prijalgauskiene AJ et al. Chromosome and DNA damageand their repair in higher plants irradiated with short-wave UV light[J]. Mutation Research.1987,181:9-16.
    [68] Quillet E. Survival, growth and reproductive traits of mitotic gynogenetic rainbow troutfemales[J]. Aquaculture.1994,123(3-4):223-236.
    [69] Lin F, Dabrowski K. Androgenesis and homozygous gynogenesis in muskellunge (Esoxmasquinongy): evaluation using flow cytometry[J]. Mol Reprod Dev.1998,49(1):10-18.
    [70] Bertotto D, Cepollaro F, Libertini A et al. Production of clonal founders in the European seabass, Dicentrarchus labrax L., by mitotic gynogenesis[J]. Aquaculture.2005,246(1-4):115-124.
    [71] Komen J, Duynhouwer J, Richter CJJ et al. Gynogenesis in common carp Cyprinus carpioL. I: effects of genetic manipulation of sexual products and incubation conditions ofeggs[J]. Aquaculture.1988,69:227-240.
    [72] Palti Y, Li JJ, Thorgaard GH. Improved Efficiency of Heat and Pressure Shocks forProducing Gynogenetic Rainbow Trout[J]. The Progressive Fish-Culturist.1997,59(1):1-13.
    [73] Flynn SR, Matsuoka M, Reith M et al. Gynogenesis and sex determination in shortnosesturnose, Acipenser brevirostrum Lesuere[J]. Aquaculture.2006,253:721-727.
    [74] Felip A, Zanuy S, Carrillo M et al. Induction of triploidy and gynogenesis in teleost fishwith emphasis on marine species[J]. Genetica.2001,111:175-195.
    [75] Luckenbach JA, Godwin J, Daniels HV et al. Induction of diploid gynogenesis in southernflounder (Paralichthys lethostigma) with homologous and heterologous sperm[J].Aquaculture.2004,237:499-516.
    [76] Morgan AJ, Murashige R, Woolridge CA et al. Effective UV dose and pressure shock forinduction of meiotic gynogenesis in southern flounder (Paralichthys lethostigma) usingblack sea bass (Centropristis striata) sperm[J]. Aquaculture.2006,259(1–4):290-299.
    [77] Fopp-Bayat D, Kolman R, Woznicki P. Induction of meiotic gynogenesis in sterlet(Acipenser ruthenus) using UV-irradiated bester sperm[J]. Aquaculture.2007,264:54-58.
    [78] Liu SJ, Duan W, Tao M et al. Establishment of the diploid gynogenetic hybrid clonal line ofred crucian carp×common carp[J]. Science in China Series C: Life Science.2007,50(2):186-193.
    [79] Fopp-Bayat D. Induction of diploid gynogenesis in wels catfish (Silurus glanis) using UV-irradiated grass carp (Ctenopharyngodon idella) sperm[J]. Journal of ExperimentalZoology.2010,331A(1):24-27.
    [80] Liu S, Qin Q, Wang Y et al. Evidence for the Formation of the Male Gynogenetic Fish[J].Marine Biotechnology.2010,12(2):160-172.
    [81]刘健康,何碧梧.中国淡水鱼类养殖学[M].北京:科学出版社;1992.
    [82]刘海金,刘永新,王玉芬等.牙鲆减数分裂与有丝分裂雌核发育的遗传差异[J].水产学报.2010,34(6):898-904.
    [83] Dustin P. Microtubules,2nd ed[M]. Berlin: Springer Verlag;1984.
    [84] Debec A, Marcaillou C. Structural alterations of the mitotic apparatus induced by the heatshock response in Drosophila cells[J]. Biology of the Cell.1997,89:67-78.
    [85] Vidair CA, Doxsey SJ, Dewey WC. Heat shock alters centrosome organization leading tomitotic dysfunction and cell death[J]. Journal of Cellular Physiology.1993,154:443-455.
    [86] Delattre M, Gonczy P. The arithmetic of centrosome biogenesis[J]. Journal of Cell Science.2004,117:1619-1629.
    [87] Zhang X, Onozato H. Hydrostatic pressure treatment during the first mitosis does notsuppress the first cleavage but the second one[J]. Aquaculture.2004,240:101-113.
    [88] Zhu XP, You F, Zhang PJ et al. Effects of cold shock on microtubule organization and cellcycle in gynogenetically activated eggs of olive flounder (Paralichthys olivaceus)[J]. MarBiotechnol.2006,8(3):312-318.
    [89] Lou YD, Purdom CE. Diploid gynogenesis induced by hydrostatic pressure in rainbow trout,Salmo gairdneri Richardson[J]. Journal of Fish Biology.1984,24(6):665-670.
    [90] Refstie T, Vassvik V, Gjedrem T. Induction of polyploidy in salmonids by cytochalasin B[J].Aquaculture.1977,10(1):65-74.
    [91]吴清江,陈荣德,叶玉珍等.鲤鱼人工雌核发育及其作为建立近交系新途径的研究[J].遗传学报.1981,8(1):50-55.
    [92]潘英,李琪,王如才等.海洋贝类雌核发育研究进展和展望[J].水产学报.2002,26(5):465-471.
    [93]董迎辉,杨爱国,刘志鸿等.栉孔扇贝正常发育和人工雌核发育二倍体早期胚胎核行为的细胞学观察[J].水产学报.2006,30(1):29-35.
    [94]杨凤影,杨爱国,刘志鸿等.人工诱导栉孔扇贝雌核发育后代的微卫星标记分析[J].水生生物学报.2008,32(5):680-686.
    [95]王卫军,杨建敏,刘志鸿等.异源精子诱导栉孔扇贝(Chlamys farreri)雌核发育二倍体早期胚胎的细胞学研究及GISH鉴定[J].海洋与湖沼.2009,40(3):325-329.
    [96]蒋一珪,梁绍昌,陈本德等.异源精子在银鲫雌核发育子代中的生物学效应[J].水生生物学集刊.1983,8(1):1-13.
    [97] Piferrer F, Cal RM, álvarez-Blázquez B et al. Induction of triploidy in the turbot(Scophthalmus maximus): I. Ploidy determination and the effects of cold shocks[J].Aquaculture.2000,188(1–2):79-90.
    [98]贾志良,包振民,潘洁等.三倍体太平洋牡蛎的快速活体鉴定[J].海洋学报.2001,23(2):142-148.
    [99]翁朝红,王志勇,蔡明夷等.不同倍性大黄鱼核仁数目银染观察[J].海洋学报.2009,31(6):136-141.
    [100] Lin F, Dabrowshi K. Effects of sperm irradiation and heat shock on induction ofgynogenesis in Muskellunge (Esox Masquinongy)[J]. Can J Fish Aquat Sci.1996,53:2067-2075.
    [101] Peruzzi S, Chatain B. Pressure and cold shock induction of meiotic gynogenesis andtriploidy in the European sea bass, Dicentrarchus labrax L.: relative efficiency of methodsand parental variability[J]. Aquaculture.2000,189:23-37.
    [102] Xu JH, You F, Sun W et al. Induction of diploid gynogenesis in turbot Scophthalmusmaximus with left-eyed flounder Paralichthys olivaceus sperm[J]. Aquacult Int.2008,16:623-634.
    [103] Ji XS, Tian YS, Yang JF et al. Artificial gynogenesis in Cynoglossus semilaevis withhomologous sperm and its verification using microsatellite markers[J]. AquacultureResearch.2010,41(6):913-920.
    [104]陈洪,杨靖. RAPD技术在异精激发方正银鲫比较研究中的应用[J].科学通报.1994,39(7):661-663.
    [105]邹桂伟,潘光碧,汪登强等.人工雌核发育鲢的遗传多样性及异源遗传物质整入的RAPD分析[J].水生生物学报.2004,28(2):180-185.
    [106] Yan JP, Liu SJ, Sun YD et al. RAPD and microsatellite analysis of diploid gynogens fromallotetraploid hybrids of red crucian carp (Carassius auratus)×common carp (Cyprinuscarpio)[J]. Aquaculture.2005,243:49-60.
    [107]刘海金,侯吉伦,常玉梅等.真鲷精子诱导牙鲆减数分裂雌核发育[J].水产学报.2010,34(4):508-514.
    [108]王晓清,王志勇,柳小春等.人工雌核发育大黄鱼(Pseudosciaena crocea)的AFLP分析[J].海洋与湖沼.2007,38(1):22-28.
    [109] Zhang H, Liu S, Zhang C et al. Induced Gynogenesis in Grass Carp (Ctenopharyngodonidellus) Using Irradiated Sperm of Allotetraploid Hybrids[J]. Marine Biotechnology.2011,13(5):1017-1026.
    [110]杨景峰,陈松林,徐亘博等.异源精子诱导犬齿牙鲆的雌核发育[J].水产学报.2009,33(4):533-541.
    [111] Saber MH, Noveiri SB, Pourkazemi M et al. Induction of gynogenesis in stellate sturgeon(Acipenser stellatus Pallas,1771) and its verification using microsatellite markers[J].Aquaculture Research.2008,39(14):1483-1487.
    [112] Kato K, Hayashi R, Yuasa D et al. Production of cloned red sea bream, Pagrus major, bychromosome manipulation[J]. Aquaculture.2002,207(1-2):19-27.
    [113]刘静霞,周莉,魏丽华等.红白锦鲤人工雌核发育纯系的微卫星标记分析[J].水生生物学报.2003,27(6):557-562.
    [114]叶小军,王志勇,刘贤德等.大黄鱼连续两代雌核发育群体的微卫星标记分析[J].水生生物学报.2010,34(1):144-151.
    [115] Bongers ABJ, Sukkel M, Gort G et al. Development and use of genetically uniform strainsof common carp in experimental animal research[J]. Laboratory Animals.1998,32:349-363.
    [116] Coimbra MRM, Kobayashi K, Koretsugu S et al. A genetic linkage map of the Japaneseflounder, Paralichthys olivaceus[J]. Aquaculture.2003,220(1–4):203-218.
    [117] Ezaz M, Harvey S, Boonphakdee C et al. Isolation and physical mapping of sex-linkedAFLP markers in Nile Tilapia (Oreochromis niloticus L.)[J]. Marine Biotechnology.2004,6(5):435-445.
    [118] Lahrech Z, Kishioka C, Morishima K et al. Genetic verification of induced gynogenesisand microsatellite–centromere mapping in the barfin flounder, Verasper moseri[J].Aquaculture.2007,272(S1):115-124.
    [119] Li YY, Cai MY, Wang ZY et al. Microsatellite-centromere mapping in large yellowcroaker (Pseudosciaena crocea) using gynogenetic diploid families[J]. MarineBiotechnology.2008,10(1):83-90.
    [120] Yamamoto E. Studies on sex-manipulation and production of cloned populations in hirame,Paralichthys olivaceus (Temminck et Schlegel)[J]. Aquaculture.1999,173(1–4):235-246.
    [121] Arai K. Genetic improvement of aquaculture finfish species by chromosome manipulationtechniques in Japan[J]. Aquaculture.2001,197:207-228.
    [122] Quillet E, Foisil L, Chevassus B et al. Production of all-triploid and all-female brown troutfor aquaculture[J]. Aquatic Living Resources.1991,4:27-32.
    [123]吴清江,叶玉珍,陈荣德等.全雌鲤的培育及其养殖效果[J].水利渔业.1990,44:21-23.
    [124] Chen SL, Deng SP, Ma HY et al. Molecular marker-assisted sex control in half-smoothtongue sole (Cynoglossus semilaevis)[J]. Aquaculture.2008,283:7-12.
    [125] Mair GC, Abucay JS, Skibinski DOF et al. Genetic manipulation of sex ratio for the large-scale production of all-male tilapia Oreochromis niloticus L.[J]. Can. J. Fish. Aquat. Sci.1997,54:396-404.
    [126] Lahav E. Use of sex-reversed females to produce all-male tilapia (Oreochromis aureus)fry[J]. Isr. J. Aquacult.1993,45:131-136.
    [127] Grodzicker T, Williams J, Sharp P et al. Physical mapping of temperature-sensitivemutations of adenoviruses[J]. Cold Spring Harbor Symp Quant Biol.1974,39:439-446.
    [128] Botstein D, White RL, Skolnick M et al. Construction of a genetic linkage map in manusing restriction fragment length polymorphisms[J]. Am J Hum Gen.1980,32(3):31-34.
    [129]罗静,张亚平.鲫鱼遗传多样性的初步研究[J].遗传学报.1999,26(1):28-36.
    [130]肖翔,刘楚吾.4种笛鲷属鱼类mtDNA的RFLP研究[J].热带海洋学报.2005,24(6):22-30.
    [131]汪登强,危起伟,王朝阳等.13种鲟形目鱼类线粒体DNA的PCR-RFLP分析[J].中国水产科学.2005,12(4):383-389.
    [132] Williams JGK, Kubelik AR, Livak KJ et al. DNA polymorphisms amplified arbitraryprimers are useful as genetic markers[J]. Nucleic Acids Res.1990,18(22):6531-6535.
    [133] Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers[J].Nucleic Acids Res.1990,18(24):7213-7218.
    [134]沈怀舜,许璞,丁亚平等.四种淡水鱼的RAPD分析[J].水产养殖.2002,(2):30-32.
    [135]李建中,刘少军,张轩杰等.异源四倍体鲫鲤雌雄差异的RAPD标记[J].水生生物学报.2004,28(6):674-676.
    [136]张春霖,陈大庆,史建全等.青海湖裸鲤繁殖群体遗传多样性的RAPD分析[J].水产学报.2005,29(3):307-312.
    [137]职金华,康绍乐,夏晓华等.一个新的泥鳅雄性特异性DNA片段(简报)[J].分子细胞生物学报.2009,42(3-4):231-236.
    [138] Zabeau M, Vos P. Selective restriction fragment amplification, a general method forDNA fingerprinting[P]. European,05348A1,1993.
    [139] David LD, Rajasekaran PR, Fang JF et al. Polymorphism in ornamental and common carpstrains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellitemarkers[J]. Molecular Genetics and Genomics.2001,266(3):353-362.
    [140] Chen SL, Li J, Deng SP et al. Isolation of female-specific AFLP markers and molecularidentification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis)[J].Marine Biotechnology.2007,9:273-280.
    [141] Ning Y, Liu X, Wang ZY et al. A genetic map of large yellow croaker Pseudosciaenacrocea[J]. Aquaculture.2007,264(1-4):16-26.
    [142] Perez-Enriquez R, Takagi M, Taniguchi N. Genetic variability and pedigree tracing of ahatchery-reared stock of red sea bream (Pagrus major) used for stock enhancement, basedon microsatellite DNA markers[J]. Aquaculture.1999,173(1–4):413-423.
    [143]潘贤,梁利群,雷清泉.筛选与鲤鱼抗寒性状相关的微卫星分子标记[J].哈尔滨工业大学学报.2008,40(6):915-918.
    [144]于飞,王伟继,孔杰等.微卫星标记在大菱鲆(Scophthalmus maximus L.)家系系谱印证中的应用研究[J].海洋学报.2009,31(3):127-136.
    [145] Lander ES. The new genomics: global views of biology[J]. Sciencce.1996,274:526-539.
    [146] Stickney HL, Schmuta J, Woods IG et al. Rapid mapping of zebrafish mutations withSNPs and oligonucleotide microarrays [J]. Genome Research.2002,12:1929-1934.
    [147] Tao WJ, Boulding EG. Associations between single nucleotide polymorphisms incandidate genes and growth rate in Arctic charr (Salvelinus alpinus L.)[J]. Heredity.2003,91:60-69.
    [148] Simth CT, Templin WD, Seeb JE et al. Single nucleotide polymorphisms provide rapidand accurate estimates of the proportions of U.S. and Canadian Chinook salmon caught inYukon River fisheries[J]. North American Journal of Fisheries Management.2005,25(3):944-953.
    [149]徐田军,孙悦娜,石戈等.鮸鱼EST-cSNP位点发掘及其特征分析[J].浙江大学学报(农业与生命科学版).2011,37(3):280-288.
    [150]杨宇晖,梁旭方,方荣等.鳜脂蛋白酯酶基因SNP及其与食性驯化相关性分析[J].遗传.2011,33(9):996-1002.
    [151] Wu KS, Jones R, Danncherger L et al. Detection of microsatellite polymophisms withoutcloning[J]. Nucleic Acids Res.1994,22:3527-3528.
    [152] Zietkiewicz E, Rafalski A, Labuda D. Genome finger printing by simple sequencerepeat(SSR)-anchored polymeraschain reaction amplification[J]. Genomics.1994,20:178-183.
    [153]张媛,胡则辉,周志刚等.利用RAPD-PCR与ISSR-PCR标记技术分析长江口刀鲚的群体遗传结构[J].上海海洋大学学报.2006,15(4):390-397.
    [154]徐建鹏,张全启,王志刚等. ISSR标记在牙鲆(Paralichthys olivaceus)与石鲽(Kareius bicoloratus)种间杂交一代的分离方式分析[J].海洋与湖沼.2009,40(5):622-626.
    [155]徐建鹏,张全启,王志刚等.石鲽野生群体和养殖群体遗传多样性的ISSR分析[J].海洋学报.2009,31(4):128-134.
    [156] Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker systembased on a simple PCR reaction: its application to mapping and gene tagging in Brassica[J].TAG Theoretical and Applied Genetics.2001,103(2):455-461.
    [157]周劲松,曹哲明,杨国梁等.罗氏沼虾缅甸引进种和浙江本地种及其杂交种的生长性能与SRAP分析[J].中国水产科学.2006,13(4):667-673.
    [158]张志伟,韩曜平,仲霞铭等.草鱼野生群体和人工繁殖群体遗传结构的比较研究[J].中国水产科学.2007,14(5):720-725.
    [159] Hu J, Seiler GJ, Jan C et al. Assessing genetic variability among sixteen perennialHelianthus species using PCR-based TRAP markers[C]. In: Proc.25th SunflowerResearch Forum. Fargo;2003.
    [160]张志伟,曹哲明,周劲松等.不同种群草鱼遗传结果的TRAP分析[J].农业生物技术学报.2006,14(4):517-521.
    [161]葛学亮,孙中武,尹洪滨.人工养殖鲶的TRAP遗传分析[J].大连水产学院学报.2010,25(1):76-79.
    [162] Zardoya R, Vollmer DM, Craddock C et al. Evolutionary conservation of microsatelliteflanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces:Perciformes)[J]. Proceedings: Biological Sciences.1996,263:1589-1598.
    [163] Asahida T, Gray A, Gharrett A. Use of Microsatellite Locus Flanking Regions forPhylogenetic Analysis? A Preliminary Study of Sebastes subgenera[J]. EnvironmentalBiology of Fishes.2004,69(1):461-470.
    [164] Kim S-G, Morishima K, Arai K. Cross-species amplification of microsatellite markers forthe brown sole in the family Pleuronectidae[J]. Fisheries Science.2009,75(5):1103-1107.
    [165] Lin B, Zhang Z, Wang Y et al. Amplified fragment length polymorphism assessment ofgenetic diversity in Pacific lamprey[J]. North American Journal of Fisheries Management.2008,28:1182-1193.
    [166]董秋芬,刘楚吾,郭昱嵩等.9种石斑鱼遗传多样性和系统发生关系的微卫星分析[J].遗传.2007,29(7):837-843.
    [167]田鑫江,吴宁,黎中宝等.6种鳗鲡(Anguilla)线粒体DNACOⅡ基因序列分析及其系统发育[J].海洋与湖沼.2011,42(2):279-283.
    [168]王奕华,张士璀,刘振辉.青岛文昌鱼遗传多样性的RAPD分析[J].海洋水产研究.2004,25(3):27-33.
    [169]刘云国,陈松林,李八方.牙鲆养殖群体遗传变异的微卫星标记研究[J].海洋水产研究.2005,26(5):27-33.
    [170] Young WP, Wheeler PA, Coryell VH et al. A detailed linkage map of rainbow troutproduced using doubled haploids[J]. Genetics.1998,148:839-850.
    [171] Sakamoto TD, R.G., Gharbi K, Howard P et al. A microsatellite linkage map of rainbowtrout (Oncorhynchus mykiss) characterized by large sex-specific differences inrecombination rates[J]. Genetics.2000,155:1331-1345.
    [172]孙效文,梁利群.鲤鱼的遗传连锁图谱(初报)[J].中国水产科学.2000,7(1):1-5.
    [173] Nichols KM, Bartholomew J, Thorgaard GH. Mapping multiple genetic loci associatedwith Ceratomyxa shasta resistance in Oncorhynchus mykiss[J]. Dis Aquat Org.2003,56:145-154.
    [174]葛学亮,尹洪滨,毕冰等.黄颡鱼遗传图谱构建及生长相关性状的QTL定位[J].水产学报.2010,34(2):185-193.
    [175] Cnaani A, Hallerman EM, Ron M et al. Detection of a chromosomal region with twoquantitative trait loci, affecting cold tolerance and fish size, in an F2tilapia hybrid[J].Aquaculture.2003,223(1-4):117-128.
    [176] Sun X, Liang L. A genetic linkage map of common carp (Cyprinus carpio L.) and mappingof a locus associated with cold tolerance[J]. Aquaculture.2004,238(1–4):165-172.
    [177] Fuji K, Kobayashi K, Hasegawa O et al. Identification of a single major genetic locuscontrolling the resistance to lymphocystis disease in Japanese flounder (Paralichthysolivaceus)[J]. Aquaculture.2006,254(1–4):203-210.
    [178] Liu Z, Nichols A, Li P et al. Inheritance and usefulness of AFLP markers in channel catfish(Ictalurus punctatus), blue catfish (I. furcatus), and their F1, F2, and backcross hybrids[J].Molecular and General Genetics MGG.1998,258(3):260-268.
    [179] Norris AT, Bradley DG, Cunningham EP. Parentage and relatedness determination infarmed Atlantic salmon (Salmo salar) using microsatellite markers[J]. Aquaculture.2000,182(1–2):73-83.
    [180] Jackson TR, Martin-Robichaud DJ, Reith ME. Application of DNA markers to themanagement of Atlantic halibut (Hippoglossus hippoglossus) broodstock[J]. Aquaculture.2003,220(1–4):245-259.
    [181] Borrell YJ, Alvarez J, Blanco G et al. A parentage study using microsatellite loci in a pilotproject for aquaculture of the European anchovy Engraulis encrasicolus L[J]. Aquaculture.2011,310(3-4):305-311.
    [182] Devlin RH NY. Sex determination and sex differentiation in fish: an overview of geneticphysiological, and environmental influences[J]. Aquaculture.2002,208:191-364.
    [183] Ferreiro BP, Medrano JE, Gall GAE. Genome analysis of rainbow trout and sturgeon withrestriction enzymes and hybridization with a Zfy gene derived probe to identify sex[J].Aquaculture.1989,81:245-252.
    [184] Fukada S, Tanaka M, Iwaya M et al. The Sox gene family and its expression duringembryogenesis in the teleost fish, medaka (Oryzias latipes)[J]. Dev., Growth Differ.1995,37:379-385.
    [185] Kovacs B, Egedi S, Bartfai R et al. Male-specific DNA markers from African catfish(Clarias gariepinus)[J]. Geneica.2001,110:267-276.
    [186] Griffiths R, On KJ, Adam AB, I. DNA sex identification in the three-spined stickleback[J].J Fish Biol.2000,57:1331-1334.
    [187] Felip A, Young WP, Wheeler PA et al. An AFLP-based approach for the identification ofsex-linked markers in rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture.2005,247:35-43.
    [188] Ma H, Chen S, Yang J et al. Isolation of sex-specific AFLP markers in Spotted Halibut(Verasper variegatus)[J]. Environmental Biology of Fishes.2010,88(1):9-14.
    [189] Fuji K, Yoshida K, Hattori K et al. Identification of the sex-linked locus in yellowtail,Seriola quinqueradiata[J]. Aquaculture.2010, In Press, Corrected Proof.
    [190] Chen JJ, Du QY, Yue YY et al. Screening and identification of male-specific DNAfragments in common carps Cyprinus carpio using suppression subtractive hybridization[J].Journal of Fish Biology.2010,77(2):403-413.
    [191] Chen SL, Tian YS, Yang JF et al. Artificial gynogenesis and sex determination in half-smooth tongue sole (Cynoglossus semilaevis)[J]. Mar Biotechnol.2009,11:243-251.
    [192] Haffray P, Petit V, Guiguen Y et al. Successful production of monosex female brook troutSalvelinus Fontinalis using gynogenetic sex reversed males by a combination ofmethyltestosterone immersion and oral treatments[J]. Aquaculture.2009,290:47-52.
    [193] Fopp-Bayat D. Meiotic gynogenesis revealed not homogametic female sex determinationsystem in Siberian sturgeon (Acipenser baeri Brandt)[J]. Aquaculture.2010,305(1-4):174-177.
    [194] Chakraborty BK, Miah MI, Mirja MJA et al. Induction of gynogenesis in endangeredsarpunti, Puntius sarana (Hamilton) and evidence for female homogamety[J]. Aquaculture.2006,258(1-4):312-320.
    [195] Chang YM, Ding L, Li MY et al. Germplasm of breeding Pseudosciaena crocea asrevealed by microsatellite markers[J]. Acta Oceanologica Sinica.2008,27(4):156-164.
    [196]郑忠明,何滔,薛良义.紫外线照射对大黄鱼精子遗传失活和受精能力的影响[J].宁波大学学报(理工版).2008,21(2):169-173.
    [197] Sambrook J, Russel DW. Molecular Cloning: A Laboratory Manual.3rd ed[M]. NewYork:Cold Spring Harbor Laboratory Press,2001.
    [198] An HS, Cho KC, Park JY. Eleven new highly polymorphic microsatellite loci in the yellowcroaker, Pseudosciaena crocea[J]. Molecular Ecology Notes.2005,5:866-868.
    [199] Xing S, Shao C, Liao X et al. Isolation and characterization of polymorphic microsatelliteloci from a dinucleotide-enriched genomic library of spotted maigre (Nibea albiflora)[J].Conservation Genetics.2009,10(3):789-791.
    [200] Bassam BJ, Caetano-Anollés G, Gresshoff PM. Fast and sensitive silver staining of DNAin polyacrylamide gels[J]. AnalytBiochemist.1991,196:80-83.
    [201] Felip A, Piferrer F, Carrillo M et al. The relationship between and effects of UV light andthermal shock on gametes and the viability of early developmental stages in a marineteleost fish, the sea bass (Dicentrarchus labrax L.)[J]. Heredity.1999,83:387-397.
    [202] McConnell S, Hamilton L, Morris D et al. Isolation of salmonid microsatellite loci andtheir application to the population genetics of Canadian east coast stocks of Atlanticsalmon[J]. Aquaculture.1995,137(1-4):19-30.
    [203]全成干,王军,丁少雄等.大黄鱼染色体核型研究[J].厦门大学学报(自然科学版).2000,39(1):107-110.
    [204]邹曙明,李思发,赵金良等.福建官井洋海区大黄鱼的染色体核型分析[J].上海水产大学学报.2003,12(2):179-181.
    [205] Castro J, Bouza C, Sánchez L et al. Gynogenesis assessment using microsatellite geneticmarkers in Turbot (Scophthalmus maximus)[J]. Marine Biotechnology.2003,5:584-592.
    [206] Colburn HR, Nardi GC, Borski RJ et al. Induced meiotic gynogenesis and sexdifferentiation in summer flounder (Paralichthys dentatus)[J]. Aquaculture.2009,289:175-180.
    [207]王德祥,苏永全,王世锋等.异源精子诱导大黄鱼雌核发育的研究[J].高技术通讯.2006,16(11):1206-1210.
    [208]刘伟成,李明云.人工诱导鱼类雌核发育研究进展[J].水利渔业.2005,25(6):12-14.
    [209]陈菲,沈铭辉,柯才焕等.人工诱导杂色鲍雌核发育受精细胞学观察[J].水产学报.2007,31(6):705-710.
    [210]曹学彬,丁君,常亚青.人工诱导马粪海胆雌核发育的早期胚胎发育及细胞学观察[J].大连水产学院学报.2008,23(1):1-7.
    [211]肖俊,彭德姣,段巍.用团头鲂精子诱导金鱼雌核发育研究[J].水生生物学报.2009,33(1):76-81.
    [212]张梅芬,吴美锡,丁汉波.泥鳅雌核生殖单倍体胚胎发育的研究[J].动物学研究.1993,14(4):361-366.
    [213]刘海金,王常安,朱晓琛等.牙鲆单倍体、三倍体、雌核发育二倍体和普通二倍体胚胎发育的比较[J].大连水产学院学报.2008,23(3):161-167.
    [214]季相山,陈松林,武鹏飞等.紫外灭活的异源和同源精子诱导的半滑舌鳎单倍体胚胎发育过程比较[J].水产学报.2009,33(1):60-69.
    [215]田永胜,陈松林,邵长伟等.鲈鱼冷冻精子诱导半滑舌鳎胚胎发育[J].海洋水产研究.2008,29(2):1-9.
    [216]李忠红,刘海金,张世奎等.雌核发育与正常二倍体条斑星鲽胚胎发育比较研究[J].水产科学.2009,28(12):752-756.
    [217]林国文,谢书秋.鮸鱼苗种培育技术试验[J].福建水产.2006,2:78-81.
    [218] Glenn TC, Schable NA. Isolating Microsatellite DNA Loci[S]. In: Elizabeth AZ, Eric HR,eds. Methods in Enzymology: Academic Press,2005:202-222.
    [219] Bloor PA, Barker FS, Watts PC et al. Microsatellite Libraries by Enrichment[J].http://www.genomics.liv.ac.uk/animal/research/microsatellite.pdf.2001.
    [220] Sequencing ProjectInternational Rice G. The map-based sequence of the rice genome[J].Nature.2005,436(7052):793-800.
    [221] Rozen S, Skaletsky H. Primer3on the www for general users and for biologistprogrammers[S]. In: Misener S, Krawetz SA, eds. Bioinformatics Methods and Protocols:Humana Press,1999:365-386.
    [222] Yeh FC, Yang R, Boylet T. POPGENE version1.32: software microsoft window-basedfreeware for population genetic analysis[D]. Alberta, Canada: University of Alberta,1999.
    [223] Rousset F. GENEPOP’007: a complete re-implementation of the genepop software forWindows and Linux[J]. Molecular Ecology Resources.2008,8(1):103-106.
    [224] Ellegren H. Microsatellites: simple sequences with complex evolution[J]. Nature ReviewsGenetics.2004,5:435-445.
    [225] Kong J, Gao H. Analysis of tandem repeat s in the genome of Chinese shrimpFenneropenaeus chinensis[J]. Chinese Science Bulletin.2005,50(14216):1462-1469.
    [226]阮小凤, Krcza G,杨勇.磁珠富集法分离柿微卫星标记[J].西北农林科技大学学报(自然科学版).2008,36(5):97-102.
    [227]鲁翠云,孙效文,曹洁等.磁珠富集法筛选白鲢的微卫星分子标记[J].农业生物技术学报.2005,13(6):772-776.
    [228]姚廷山,胡军华,李鸿筠等.桔小实蝇5个地理种群的SSR遗传多态性分析[J].中国农学通报.2010,26(8):234-236.
    [229] Barbará T, Palma-Silva C, Paggi GM et al. Cross-species transfer of nuclear microsatellitemarkers: potential and limitations[J]. Molecular Ecology.2007,16(18):3759-3767.
    [230] Chistiakov DA, Hellemans B, Volckaert FAM. Microsatellites and their genomicdistribution, evolution, function and applications: A review with special reference to fishgenetics[J]. Aquaculture.2006,255(1-4):1-29.
    [231] Sasaki K. Phylogeny of the family Sciaenidae, with notes on its zoogeography (Teleostei:Perciformes)[D]. Hakodate: Hokkaido University,1989.
    [232] Ye H, Wang X, Gao T et al. EST-derived microsatellites in Pseudosciaena crocea andtheir applicability to related species[J]. Acta Oceanologica Sinica.2010,29(6):83-91.
    [233] Richards RI, Sutherland GR. Simple repeat DNA is not replicated simply[J]. Nat Genet.1994,6(2):114-116.
    [234] Anmarkrud JA, Kleven O, Bachmann L et al. Microsatellite evolution: mutations,sequence variation, and homoplasy in the hypervariable avian microsatellite locusHrU10[J]. BMC Evolutionary Biology.2008,8:138-147.
    [235] Li Y-C, Korol AB, Fahima T et al. Microsatellites: genomic distribution, putative functionsand mutational mechanisms: a review[J]. Molecular Ecology.2002,11(12):2453-2465.
    [236] Devlin RH, Biagi CA, Smailus DE. Genetic mapping of Y-chromosomal DNA markers inPacific salmon[J]. Geneica.2001,111:43-58.
    [237] Ezaz MT, Harvey SC, Boonphakdee C et al. Isolation and physical mapping of sex-linkedAFLP markers in Nile Tilapia (Oreochromis niloticus L.)[J]. Marine Biotechnology.2004,6:435-445.
    [238] Watanabe T, Yoshida M, Nakajima M et al. Linkage mapping of AFLP and microsatelliteDNA markers with the body color-and sex-determining loci in the guppy (Poeciliareticulata)[J]. Zool Sci.2005,22(8):883-889.
    [239] Watanabe T, Yamasaki K, Seki S et al. Detection of ayu sex-linked DNA markers usinghomologous clones[J]. Fisheries Science.2004,70:47-52.
    [240] Waldbieser GC, Bosworth BG, Nonneman DJ et al. A microsatellite-based genetic linkagemap for channel catfish, Ictalurus punctatus[J]. Genetics.2001,158:727-734.
    [241]林丹军,张健,骆嘉.人工养殖的大黄鱼性腺发育及性周期研究[J].福建师范大学学报(自然科学版).1992,8(3):81-87.
    [242] Altschul SF, Gish W, Miller W et al. Basic local alignment search tool[J]. J. Mol. Biol.1990,215:403-410.
    [243] Crews D. Temperature-dependent sex determination: the interplay of steroid hormones andtemperature[J]. Zool Sci.1996,3(1):1-13.
    [244] Nakamura M, Kobayashi T, Chang XT et al. Gonadal sex differentiation in teleost fish[J]. J.Exp. Zool.1998,281:362-372.
    [245] Baroiller JF, Guiguen Y, Fostier A. Endocrine and environmental aspects of sexdifferentiation in fish[J]. Cellular and Molecular Life Sciences.1999,55(6):910-931.
    [246] Baroiller JF, D'Cotta H. Environment and sex determination in farmed fish[J]. ComparativeBiochemistry and Physiology Part C: Toxicology&Pharmacology.2001,130(4):399-409.
    [247] Sandra G, Norma M. Sexual determination and differentiation in teleost fish[J]. Reviews inFish Biology and Fisheries.2010,20(1):101-121.
    [248] Koopman P, Gubbay J, Vivian N et al. Expression of a candidate sex determining geneduring mouse testis differentiation[J]. Nature.1990,348:450-452.
    [249] Koopman P, Gubbay J, Vivian N et al. Male development of chromosomally female micetransgenic for Sry[J]. Nature.1991,351:117-121.
    [250]李静,陈松林,温海深.鱼类性别相关基因和性别特异标记的研究进展[J].海洋水产研究.2006,27(4):90-95.
    [251] Matsuda M, Nagahama Y, Shinomiya A et al. DMY is a Y-specific DM-domain generequired for male development in the medaka fish[J]. Nature.2002,47:559-563.
    [252] Guo Y, Cheng H, Huang X et al. Gene structure, multiple alternative splicing, andexpression in gonads of zebrafish Dmrt1[J]. Biochem Biophys Res Commun.2005,330:950-957.
    [253] Alfaqih MA, Brunelli JP, Drew RE et al. Mapping of five candidate sex-determining lociin rainbow trout (Oncorhynchus mykiss)[J]. BMC Genet.2009,10:2-10.
    [254]王德祥,苏永全,王世锋等.不同地理种群大黄鱼染色体核型的比较研究[J].海洋学报.2006,28(6):176-178.
    [255] McGowan C, Davidson WS. The RAPD technique fails to detect a male-specific geneticmarker in Altantic salmon[J]. Journal of Fish Biology.1998,53:1134-1136.
    [256] Li Y, Hill JA, Yue GH et al. Extensive search does not identify genomic sex markers inTetraodon nigroviridis[J]. Journal of Fish Biology.2002,61(5):1314-1317.
    [257] Wuertz S, Gaillard S, Barbisan F et al. Extensive screening of sturgeon genomes byrandom screening techniques revealed no sex-specific marker[J]. Aquaculture.2006,258(1–4):685-688.
    [258] Keyvanshokooh S, Pourkazemi M, Kalbassi MR. The RAPD technique failed to identifysex-specific sequences in beluga (Huso huso)[J]. Journal of Applied Ichthyology.2007,23(1):1-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700