用户名: 密码: 验证码:
东农冬麦1号越冬期间的microRNA高通量测序及生物信息学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东农冬麦1号作为黑龙江省唯一能安全过冬的栽培品种,有着重要抗寒miRNA和miRNA相关靶基因资源。本研究旨在挖掘东农冬麦1号的优良抗寒miRNA资源。一方面揭示“东农冬麦1号”强抗寒机理,拓宽冬小麦抗寒遗传基础,为栽培冬小麦转基因研究提供优良抗寒miRNA靶基因源,从而最终为北方地区栽培冬小麦的改良做出重要贡献;另一方面也为miRNA代谢机制的深入研究提供重要信息。
     本研究以东农冬麦1号分为试验材料,在大田自然降温条件下,分别于5℃、-15℃和-25℃三个不同低温下取材分蘖节,采用HiSeq技术进行高通量测序,测序片段长度经统计分析进行Rfam(10.1)、Genbank数据库和重复序列筛选,最后把所有的得到的片段进行注释分类,找到三个温度点的所有miRNA,包括已知和未知miRNA。对已知miRNA进行分析,首先进行碱基偏向性分析,构建三个温度时间点miRNA表达谱,然后进行miRNA差异分析,并构建miRNA差异表达谱,然后对已知的miRNA进行表达差异分析和家族分析:对未知的miRNA进行预测分析,包括碱基偏向性分析和二级结构预测,未知miRNA的表达差异分析和靶基因预测,最后预测其未知miRNA的功能。主要研究结果如下:
     1.小麦Small RNA测序数据处理及统计分析
     采用Solexa测序得到序列长度为10-35nt的小RNA片段,其中文库中数量最多的小RNA是24nt和21nt,最终在5℃、-15℃、-25℃三个温度条件下获得的洁净reads总量分别是10024183、9448982和10868683。
     将reads片段与Rfam(10.1)和Genbank数据库比对,去除其中可能的rRNA、scRNA、 snoRNA、snRNA和tRNA。剩下的reads片段通过重复序列比对去除不同类型的重复序列,最后经sRNA分类注释筛选,获得三个不同温度下筛选出的miRNA总数分别为1299843、1167152和1544325。
     2.在冷诱导下小麦中已知miRNA鉴定及差异表达分析
     构建小麦已知miRNA表达谱。在小麦miRBase中的已知miRNA有44个,在东农冬麦1号三个样品中(分别为5℃、-15℃、-25℃下取样分蘖节)分别发现有35、29和31个,分析小麦保守miRNA阅读框的数量后,发现这些miRNA的表达频率差异很大,其中11个miRNA出现的序列次数相对较高。在差异分析中发现5个与冷诱导有关的miRNA,分别是tae-miR156、tae-miR398、tae-miR160、tae-miR444和tae-miR444b。tae-miR156的表达丰度最高,有下调表达趋势;tae-miR398明显上调表达且差异显著;tae-miR160显著下调表达;tae-miR444和tae-miR444b皆为显著下调表达。根据差异表达分析和已有报道的靶基因分析,本研究推测以上五个miRNA与东农冬麦1号抗寒有关。
     3.东农冬麦1号中的部分已知miRNA鉴定及差异表达分析
     东农冬麦1号在冷诱导下发现了567个已知miRNA,其中发生显著或极显著差异表达的共164个,我们选择其中的30个miRNA进行差异表达分析,在东农冬麦1号中筛选获得了14个差异表达的已知miRNA,其中3个与花发育有关,分别是Tae-miR166、 Tae-miR172;5个与冷诱导有关,分别是Tae-miR393、Tae-miR169, Tae-miR397、Tae-miR319和Tae-miR165;6个功能未知miRNA,但由冷诱导产生、丰度高,且差异显著的已知的miRNA,分别是Tae-miR5565、Tae-miR5029、Tae-miR5070、Tae-miR5139、Tae-miR5218和Tae-miR3704。
     4.预测新的miRNA
     本研究在三个低温时间点上共发掘出378个新的小麦miRNA,其中5℃下获得124个,-15℃下获得96个,-25℃下获得125个。三个低温点分别预测到的靶基因数分别是89个、7个8和99个。在预测miRNA数据库中挑选表达量大、均一化处理后表达差极显著的miRNA,最终在东农冬麦1号中筛选出了14个新miRNA。通过建立预测新miRNA表达谱,并利用Mireap软件预测,发现这14个miRNA都具有代表性的二级茎环结构。对选择的14个新miRNA进行靶基因预测,其中7个预测到了靶基因,另7个没有预测到靶基因。本研究对感兴趣的3个新miRNA进行了靶基因分析,初步预测了这3个新miRNA的功能是与低温有关。
Dongnongdongmai1is the uniqueness cultivated wheat variety which can survive in Heilongjiang province (overwinter survival rate more than85%), and it has important cold resistant miRNA and relevant resources of target genes. This study is aimed at exploring the important stress resistant miRNA resources of Dongnongdongmai1. On one hand, it will reveal strong cold resistance mechanism of Dongnongdongmai1, widen the cold resistant hereditary basis of wheat, provide useful traits and sources of cold resistant miRNA genes to wheat genetically modified cultivation, and make an important contribution to the improvement of cultivation in winter wheat in the north of China. On the other hand, it will also supply important information for the deep research of miRNA metabolism.
     In this study, tillering nodes of Dongnongdongmai1in three different growing periods were adopted as materials, depth sequencing was conducted through HiSeq technology in three different growing periods, the sequencing results were statistically analysed, then the sequencing fragments were screened by Rfam(10.1), Genbank database, and repeat sequence, finally, all the fragments were classified, and all miRNAs were found in three different period including known and unknown miRNA. Known miRNAs were analysed, first of all, base bias analysis was adopted, and miRNA expression profiling was build in three temperature points, then different analysis was conduced in miRNA, meanwhile, miRNA differential expression profiling was build. Differential expression analysis and family analysis were adopted on known miRNA, and unknown miRNAs were predicted and analyzed in including base bias analysis, secondary structure prediction, unknown miRNA differential expression analysis and target gene prediction and functions prediction. The results are as follows:
     1. Wheat Small RNA sequencing data processing and Statistics Analysis
     The largest numbers of the small RNA we have got were24nt and21nt among the fragments of the length between10nt and35nt by adopting Solexa Sequencing. At last, clean reads accounts (10024183,9448982,10868683) were obtained at3different temperature points.
     The possible rRNA, scRNA, snoRNA, snRNA, tRNA from reads fragments were erased by the comparison between Rfam(10.1) and Genbanak database. The rest of the Different respective sequences were erased by repetitive sequences comparison, at last, sRNA categories and selection were conducted, the total accounts we selected at3different temperatures of miRNA are1299843,1167152,1544325.
     2. Identification and Difference Expressions of the Known miRNA under Cold Induction
     The known miRNA expression profile was built.of the wheat. There are44known miRNA in wheat miRBase, but35,29and31known miRNA in each3samples (tillering nodes under5℃、-15℃and-25℃) were found in Dongnongdongmai1. The accounts of wheat conservative reading frame were analysed, and a big difference was found in express frequency of miRNA. Among them, the higher frequency of11miRNA was found,5miRNAs were referring to cold inducement in the difference analysis, they are tae-miR156,tae-miR398, tae-miR160and tae-miR444and tae-miR444b, and tae miR156expression was in the highest abundance, it had a downregulated trend, and tae-miR398was significantly up-regulated expressed, while tae-miR.160taemiR444and tae-miR444b significantly were significantly down-regulated expressed. Based on the difference analysis and reported target genetic analysis, we infer that above5miRNA have something to do with the cold resistance of Dongnongdongmai1.
     3. The Identification of a Part of Known miRNA and Difference Analysis of Dongnongdongmai1
     567known miRNA were found in Dongnongdongmai1under the cold induction, among them,164known miRNA were in OEG analysis. Among the selected14known miRNA in OEG analysis,3miRNAs were connected with flower development, they are Tae-miR168, Tae-miR166, Tae-miR172.5miRNAs were connected with cold induction, they are Tae-miR169, Tae-miR397, Tae-miR319, Tae-miR165,6unknown were from cold induction and significant in OEG known miRNA. They are Tae-miR5565,Tae-miR5029, Tae-miR5070、Tae-miR5139, Tae-miR5218,Tae-miR3704.
     4. Predicting the New miRNA
     378new wheat miRNAs were discovered on the three low temperature points in this study. The number of the new wheat miRNA on each low temperature point are124,96and125, and the predicted accounts of target genes are89,78and99. Among the predicted miRNA database, fully expressed and significant in OEG analysis ones were choosed. Finally,14new miRNA among "Dongnongdongmai1" were choosed and new miRNA expression profile was built and predicted, take advantage of the Mineap software,14miRNAs were predicted which had typical secondary stem-loop structure. Furthermore, the selected14new miRNA were predicted in target genes, seven of them were predicted in target genes, while another seven did not. In this study, the3interesting new miRNAs were analysed, the function of the3new miRNA was predicted by analysing the target genes.
引文
[1]倪胜利,张国宏,李兴茂.小麦抗寒性研究概述.甘肃农业科技[J].2008(8);23-26.
    [2]Vagujfalvi G, Galiba L, Cattivelli J. et al. The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A [J]. Mol Gen Genomics,2003,269:60-67.
    [3]Fowler D B, Limin A E, Ritchie J T. Low-temperature tolerance in cereals:model and genetic interpretation [J]. Crop Sci,1999,39:626-633.
    [4]Allen E, Limin D, Brian Fowler. Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.):response to photoperiod, vernalization, and plant development[J]. Planta,2006,224:360-366.
    [5]Antonio F M, Dryanova A, Brigitte M. et al. Regulatory gene can-didates and gene expression analysis of cold acclimation in winter and spring wheat[J]. Plant Mol Biol, 2007,64:409-423.
    [6]Roger S, Pearce. Molecular analysis of acclimation to cold [J].Plant Growth Regulation, 1999,29:47-76.
    [7]MinamiA,NagaoM,IkegamiK.et al.Cold acclimation in bryo-phytes:low-temperature induced freezing tolerance in Physcomi-trella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid[J]. Planta,2005,220:414-423.
    [8]GalibaG,KerepesiL,VagujfalviA. et al. Mapping of genes involved in glutathione. carbohydrate and COR14b cold induced protein accumulation during cold hardening in wheat [J] Euphytica,2001,119:173-177.
    [9]李志,王刚,吴忠义,等.脯氨酸与植物抗渗透胁迫基因工程改良研究进展[J]河北师范大学学报(自然科学版),2005,29(4):405-408.
    [10]陈璇,李金耀,马纪,等.低温胁迫对春小麦和冬小麦叶片游离脯氨酸含量变化的影响[J].新疆农业科学,2007,44(5):553-556.
    [11]王玉玲,康洁.低温胁迫对冬小麦苗期和拔节期生理生化特性的影响[J].河南农业科学,2004(5):3-6.
    [12]陈龙,吴诗光,李淑梅,等.低温胁迫下冬小麦拔节期生化反应及抗性分析[J].华北农学报,2001,16(4):42-46.
    [13]李宗霆,周燮.植物激素及其免疫检测技术[M].南京:江苏科学出版社,1996:1137-1421.
    [14]赵春江,康书江,王纪华,等.植物内源激素与不同基因型小麦抗寒性关系的研究[J].华北农学报,2000,15(3):51-54.
    [15]李宗霆,周燮.植物激素及其免疫检测技术[M].江苏科学出版社,1996:137-151.
    [16]康书江,赵春江,郭晓维,王纪华.植物内源激素对小麦生长发育调控机理的研究[J]Ⅱ.冬小麦拔节前植物内源激素变化规律的初步研究.麦类作物.1999,19 (4):51-53.
    [17]Lalk I, Dorffling K. Hardening.abscisic acid, proline and freezing resistance in two winter wheat varieties [J]. Physiol Plant,1985,63:287-292.
    [18]BR U BE-BA BL E A L. Genetic control of cold hardiness and venalizatin requir ement in winter whe-at[J]. Crop Sci,1988,28(3):879-884.
    [19]SIM IN OV IT CH D, BRIGG Y S D. R. Studies on the chemistr y of t he living bark of the black locus tree in relation to frost hardiness [J]. Plant Physio 1,1953,28:177-200.
    [20]SIM IN OV IT CH D, BRIG GY S D. R. T he Chemistr y of the living bark of the black locust tree in relation to frost hardiness I Seasonal variations in protein cortent[J]. A rch Biochem,1949,23:8-17.
    [21]StushnoffC,FowlerDB,Brule-BabelA.Breeding and selection for resistance to low temperature [C]. Oxford:Pergamon Press,1984:115-136.
    [22]Monroy A F, Dryanova A, Malette B, et al. Regulatory gene candi-dates and gene expression analysis of cold acclimation in winter and spring wheat[J]. Plant Mol Biol, 2007,64:409-423
    [23]Skinner D Z. Post-acclimation transcriptome adjustment is amajorfactor in freezing tolerance of winter wheat[J]. Funct Integr Geno-mics,2009(9):513-523
    [24]K ACP ERSK A A. M echa nism of cold acclim ation inherbaceous plant [J]. Plant Cold Hardiness and Freezing Stress,1978(1):139-153.
    [25]FRI DOVICH L. T he bilogy of oxygen radical [J].Science,1975,201:875-880.
    [26]CAHA L A N,WALDMANM,ARIKI N.et al.Horir onalreg ulation of morpho genesis and cold resist ance[J]. Ex p Bo t,1975,101:826-853.
    [27]LIM IN A E, DA NY L U K J, CHA U V IN L P. et al.Chromo somem apping in low-temperature induced Wcs120 family genes and regulation of cold-torler anceex pression in wheat [J]. Mol Gen Genet,1997,253:720-727.
    [28]卢存福,王红,简令成.植物抗冻蛋白研究进展[J].生物化学与生物进展,1998,25(3):210-216.
    [29]W EISER C J. Adaptiv e changes in A T Pase activity int he cells o f w inter w heat seedlings during co ldhar dening [J]. Plant P hy siol,1970,16(9):127-131.
    [30]简令成.植物抗寒机理研究的新进展[J].植物学通报,1992,(9):17-22.
    [31]王多佳,曾俨,牟永潮,于晶,苍晶.高寒地区冬小麦东农冬麦l号抗冻蛋白的研究.麦类作物学报[J],2009,(5):89-92.
    [32]Carrington JC, Ambros V. Role of microRNAs in plant and animal development [J]. Science,2003,301(5631):336-338.
    [33]SunkarR, Zhu JK.Novel and stress-regulated microRNAs and other smallRNAs from Arabidopsis[J], PlantCell,2004,16(8):2001-2019.
    [34]SunkarR,GirkeT, Jain PK. et al. Cloning and characterization of mi-croRNAs from rice[J]. Plant Cell,2005,17(5):1397-1411.
    [35]AraziT, Talmor-NeimanM, StavR.et al. Cloning and characteriza-tion of microRNAs from mos[J]. Plant,2005,43(6):837-848.
    [36]王磊,范云六.植物微小RNA microRNA研究进展.中国农业科技导报,2007,9(3):18-23.
    [37]徐涛,张富春.植物miRNA抗胁迫机理研究进展.生物技术通报[J],2008,(5):5-9.
    [38]许振华,谢传晓.植物microRNA与逆境响应研究进展.遗传[J],2010,32(10):1018-1030.
    [39]Zhu JK. Reconstituting plant miRNA biogenesis[J]. Proceedings of the National Academy of Sciences,2008,105(29):9851.
    [40]Fowler S.Thomashow MF.Arabidopsis transcriptome pro-filing in dicates that multiple regulatory pathways are acti-vated during cold acclimation in addition to the CBF cold re-sponse pathway[J].Plant Cell,2002,14(8):1675-1690.
    [41]ZhuJK.Salt and drought stress signal transduction inplants.Annu Rev Plant Biol[J], 2002,53:247-273.
    [42]Kawaguchi R,Bailey SJ.Regulation of translational ini-tiation in plants.Curr Opin Plant Biol[J],2002,5(5):460-465.
    [43]Chiou TJ,Aung K,Lin SI,Wu CC,Chiang SF,Su CL.Regulation of phosphate homeostasis by microRNA in Arabidopsis[J].Plant Cell,2006,18(2):412-421.
    [44]Roghothama KG,Karthikeyan AS.Phosphate acqiucition[J].Plant and Soil,2005,274: 37-49.
    [45]BariR,PantBD,StittM,ScheibleWR.PHO2,mi-croRNA399,and PHR1 define a phosphate signaling pathway in plants[J].Plant Physiol,2006,141(3):988-999.
    [46]Sunkar R,Chinnusamy V,Zhu JH,Zhu JK.Small RNAsas big players in plant abiotic stress responses and nutrient deprivation[J].Trends Plant Sci,2007,12(7):301-309.
    [47]Jones-Rhoades MW,Bartel DP.Computational identifica-tion of plant microRNAs and their targets,including as tress induced miRNA[J].Mol Cell,2004,14(6):787-799.
    [48]Aung K,Lin SI,Wu CC,Huang YT,Su CL,Chiou TJ.pho2,a phosphate overaccumulator,is caused by a non-sense mutation in a microRNA399 target gene[J]. PlantPhysiol,2006, 141(3):1000-1011.
    [49]Delhaize E,Randall PJ.Characterization of a phosphateaccumulator mutant of Arabidopsis thaliana[J].Plant Physiol,1995,107(1):207-213.
    [50]Pan BD,Buhtz A,Kehr J.Scheible WR.MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis[J].Plant J,2008,53(5):731-738.
    [51]Nikiforova VJ,Bielecka M,Gakiere B,Krueger S,Rinder J,Kempa S.Morcuende R,Scheble WR,Hesse H,Hoefgen R.Effect of sulfur availability on the integrity ofamino acid biosynthesis in plants[J].Amino Acids,2006,30(2):173-183.
    [52]Lappartient AG,Vidmar JJ,Leustek T,Glass AD,Touraine B.Inter-organ signaling in plants:regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound[J].Plant J,1999,18(1):89-95.
    [53]Takahashi H,Watanabe-Takahashi A,Smith FW,Blake-Kalff M,Hawkesford MJ,Saito K.The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana[J].Plant J,2000,23(2):171-182.
    [54]Guo WJ,Meetam M,Goldsbrough PB.Examining thespecific contributions of individual Arabidopsis metal-lothioneins to copper distribution and metal tolerance[J].Plant Physiol,2008,146(4):1697-1706.
    [55]Yamisaki H,Abdel-Ghany SE,Cohu CM,Kobayashi Y,Shikanai T,Pilon M.Regulation of copper homeostasis bymicroRNA in Arabidopsis[J]. J Biol Chem,2007,282(22): 16369-16378.
    [56]Gifford ML,Dean A,Gutierrez RA,Coruzzi GM,Birn-baum KD.Cell-specific nitrogen responses mediate de-velopmental plasticity[J].Proc Natl Acad Sci USA,2008,105(2): 803-808.
    [57]PantBD, Musialak-LangeM, NucP, MayP, Buhtz A, Kehr J, Walther D, Scheible WR. Identification of nutri-ent-responsive Arabidopsis and rapeseed micrornas bycomprehensive real-time polymerase chain reaction pro-filing and small RNA sequencing[J]. Plant Physiol,2009,150(3):1541-1555.
    [58]Combier JP,Frugier F,de Billy F,Boualem A,E1-Yahyaoui F,Moreau S,VernieT,Ott T,Gamas P.Cre-spi M.MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by mi-croRNA169 in Medicago truncatula[J].Genes Dev,2006, 20(22):3084-3088.
    [59]Zhao BT,Liang RQ,Ge LF,Li W,Xiao HS,Lin HX,RuanKC,Jin YX.Identification of drought-induced microRNAsin rice[J].Biochem Biophys Res Commun,2007,354(2): 585-590.
    [60]Li WX,Oono Y,Zhu J,Zhu J,He XJ,Wu JM,Iida K,LuXY,Cui X,Jin H,Zhu JK.The Arabidopsis NFYA5 tran-scription factor is regulated transcriptionally and ost-transcriptionally to promote drought resistance[J].Plant Cell,2008,20(8):2238-2251.
    [61]Wei LY,Zhang DF,Xiang F,Zhang ZX.Differentially ex-pressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings[J].Int J Plant Sci,2009,170(8):979-989.
    [62]Sunkar R,Zhu JK.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J].Plant Cell,2004,16(8):2001-2019.
    [63]Zhang JY,Xu YY,Huan Q,Chong K.Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response[J].BMC Genomics,2009,10:449.
    [64]Liu HH,Tian X,Li YJ,Wu CA,Zheng CC.Microar-ray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J].RNA,2008,14(5):836-843.
    [65]LuSF,SunYH,ChiangVL.Stress-responsive microRNAs in Populus[J].Plant J,2008,55(1): 131-151.
    [66]Zhou XF,Wang GD,Sutoh K,Zhu JK,Zhang WX.Identi-fication of cold-inducible microRNAs in plants by tran-scriptome analysis[J].Biochim Biophys Act,2008, 1779(11):780-788.
    [67]Sunkar R,Zhu JK.Novel and stress-regulated microRNAs and other small RNAs from Ar7abidopsis[J].Plant Cell,2004,16(8):2001-2019.
    [68]Jia XY,Wang WX,Ren LG,Chen QJ,Mendu V.Willcut B,Dinkins R,Tang XQ,Tang GL.Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana[J].Plant Mol Biol,2009,71(1-2):51-59.
    [69]Jagadeeswaran G,Saini A,Sunkar R.Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J].Planta,2009,229(4):1009-1014.
    [70]Katiyar-Agarwal S,Gao S,Vivian-Smith A,Jin HL.Anovel class of bacteria-induced smallRNAs in Arabidopsis[J].Genes Dev,2007,21(23):3123-3134.
    [71]Navarro L,Dunoyer P,Jay F,Arnold B,Dharmasiri Estelle M,Voinnet O,Jones JD.A plant miRNA contrutes to antibacterial resistance by repressing auxin signing[J].Science, 2006,312(5772):436-439.
    [72]Padmanabhan C,Ramachandran V,Fauquet CM.MicroRNA-binding viral protein interferes with Arabidopsis developmen[J].Proc Natl Acad Sci USA,2005,102(29): 10381-10386.
    [73]Bazzini AA,Hopp HE,Beachy RN,Asurmendi S.Infec-tion and coaccumulation of tobacco mosaic virus proteins alter microRNA levels,correlating with symptom and plant development[J].Proc Natl Acad Sci USA,2007,104(29):12157-12162.
    [74]Bjorn LO,Kendrick RE,Kronenberg GHM.Photomorphog-enesis in Plants.2nd ed[J]. Kluwer Academic Publishers,Bos-ton,1994,3-25.
    [75]Paul ND,Gwynn-Jones D.Ecological roles of solar UV radiation.towards an integrated approach[J].Trends EcolEvol,2003,18(1):48-55.
    [76]Britt AB.DNA damage and repair in plants.Annu Rev Plant Physiol Plant Mol [J]. Biol,1996,4:75-100.
    [77]ZhouXF,WangGD,ZhangWX.UV-B responsive mi-croRNA genes in Arabidopsis thaliana[J].Mol Syst Biol,2007,3(103):1-10.
    [78]Combier JP,Frugier F,de Billy F,Boualem A,El-Yahyaoui F,Moreau S,Vernie T,Ott T,Gamas P.Cre-spi M.MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by mi-croRNA169 in Medicago truncatula[J].Genes Dev,2006, 20(22):3084-3088.
    [79]LuS,SunYH,ShiR,ClarkC,LiL,ChiangVL.Novel and mechanical stress-responsive microRNAs in Populus trichoc arpa that are absent from Arabidopsis[J].Plant Cell,2005, 17(8):2186-2203.
    [80]ApelK, HirtH.Reactive oxygen species:metabolism,oxidative stress, and signal transduction[J]. Annu Rev Plant Biol,2004,55:373-399.
    [81]Bowler C,Slooten L,Vandenbranden S,de Rycke R,Bot-terman J,Sybesma C,van Montagu M,Inze D.Manganese superoxide diamutase can reduce cellular damage medi-ated by oxygen radicals in transgenic plants[J].EMBO J,1991,10(7):1723-1732.
    [82]Sunkar R,Kapoor A,Zhu JK.Posttranscriptional induc-tion of two Cu/Zn superoxide dismutase genes in Arabi-dopsis is mediated by downregulation of miR398 and im-portant for oxidative stress tolerance[J].Plant Cell,2006,18(8):2051-2065.
    [83]Reinhart BJ,Weinstein EG,Rhoades MW,Bartel B,Bartel DP.MicroRNAs in plants[J].Genes Dev,2002,16(13):1616-1626.
    [84]Llave C,Kasschau KD,Rector MA.Carrlngton JC.En-dogenous and silencing-associated small RNAs in plants[J].Plant Cell,2002,14(7):1605-1619.
    [85]Park W,Li JJ,Song RT,Messing J,Chen XM.CARPEL FACTORY,a Dicer homolog and HEN1,a novel protein,act in microRNA metabolism in Arabidopsis thaliana[J].Curr Biol,2002,12(17):1484-1495.
    [86]Palatnik JF,Allen E,Wu X,Schommer C,Schwab R,Car-rington JC,Weigel D.Control of leaf morphogenesis by micreRNAs[J].Nature,2003,425(6955):257-263.
    [87]Wang JF,Zhou H,Chen YQ,Luo QJ,Qu LH.Identifica-tion of 20 microRNAs from Oryza sativa[J].Nucleic AcidsRes,2004,32(5):1688-1695.
    [88]Yao YY,Guo GG,Ni ZY,Sunkar R,Du JK,Zhu JK,Sun QX.Cloning and characterization of microRNAs from wheat(Triticum aestivum L.) [J].Genome Biol,2007,8(6):R96,1-13.
    [89]Mica E,Gianfranceschi L,Pe ME.Characterization of five microRNA families in maize[J].J Exp Bot,2006,57(11):2601-2612.
    [90]Sunkar R,Zhu JK.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J].Plant Cell,2004,16(8):2001-2019.
    [91]Lagos-Quintana M,Rauhut R,Lendeckel W,Tuschl T.Identification of novel genes coding for small expressedRNAs[J].Science,2001,294(5543):853-858.
    [92]吕德康,葛瑛,柏锡,李勇,朱延明.生物信息学在植物miRNA研究中的应用.生物信息学[J],2009,7(2):113-116.
    [93]沈亚欧,林海建,张志明,高世斌,潘光堂.植物逆境miRNA研究进展.遗传[J],2009,31(3):227-235.
    [94]陈洁.重金属铅胁迫下玉米根系miRNA的鉴定及相关miRNA的表达分析.四川农业大学博士学位论文[D],2010.
    [95]卫波,张荣志,李爱丽等.利用高通量测序技术发现植物小分子RNA研究进展,中国农业科学[J],2009,42(11):3755-3764
    [96]罗茂,张志明,高健等.miR319在植物器官发育中的调控作用,遗传[J],2011,33(11):1203-1211.
    [97]Fahlgren N,Howell MD,Kassehatl KD.et al.High-throughput sequencing of Arabidopsis microRNAs evidence for frequent birth and death of MIRNA genes[J].PLoS ONE,2007, 2(2):e219
    [98]Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.) [J]. Genome Biol,2007,8:R96.
    [99]Nobuta K, Venu RC, Lu C, Belo A. et.al.Meyers BC. An expression atlas of rice mRNAs and small RNAs[J]. Nat Biotechnol,2007,25:473-477.
    [100]Moxon S,Jing R,Szittya G,Schwach F.et.al.Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening[J].Genome Res, 2008,18:1602-1609.
    [101]Subramanian S,Fu Y,Sunkar R.et.al. Novel and nodulation-regulated microRNAs in soybean roots[J]. BMC Genomics,2008,9:160.
    [102]Lu SF, Sun YH, Shi R. et.al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa thatare absent from Arabidopsis[J]. Plant Cell,2005,17:2186-2203.
    [103]Bompfunewerer AF, Flamm C, Fried C. et.al. Evolutionary patterns of non-coding RNAs[J]. Theory Biosci,2005,123:301-369.
    [104]Lippman Z.Gendrel AV,Black M.et al. Role of transposable elements in heterochromatin and epigenetic control[J]. Nature,2004,430:471-476.
    [105]Cokus SJ, Feng S, Zhang X. et.al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning[J]. Nature,2008,452:215-219.
    [106]Tanurdzic M, Vaughn MW, Jiang H. et.al.. Epigenomic consequences of immortalized plant cell suspension culture[J]. PLoS Biol,2008,6:2880-2895.
    [107]Lu C,Kulkarni K,Souret FF.et.al. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant[J]. Genome Res,2006,16: 1276-1288.
    [108]Nobuta K, Lu C, Shrivastava R. et.al.. Distinct size distribution of endogeneous siRNAs in maize:Evidence from deep sequencing in the mop1-1mutant[J]. Proc Natl Acad Sci U S A,2008,105:14958-14963.
    [109]Pieter B Kwak, Qin Q Wang,Xu S Chen.et.al..Enrichment of a set of microRNAs during the cotton fiber developmen[J].BMC Genomics,2009,10:457
    [110]吕德康,葛瑛,柏锡,等生物信息学在植物miRNA研究中的应用,生物信息学[J],2009,7(2):1672-5565.
    [111]Zhang BH, Xiao Ping PAN, Qing Lian W. et al. Identification andcharacterization of new plant microRNAs using EST analysis[J]. Cell Research,2005,15(5):336-360.
    [112]Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell,2004, 116:281-297.
    [113]金伟波,李楠楠,吴方丽,等.水稻MicroRNA的预测及实验验证.中国生物化学与分子生物学报[J],2007,23(009):743-750.
    [114]Rhoades MW, Reinhart BJ, Lim LP. et al. Prediction of plant microRNA targets[J].Cell, 2002,110(4):513-520.
    [115]Joung JG, Fei Z. Computational identification of condition-specific miRNA targets based on gene expression profiles and sequence information[J]. BMC bioinformatics,2009, 10(Suppl 1):S34.
    [116]Zhou X,Wang G,Sutoh K et al.Identification of cold-inducible microRNAs in plants by transcriptome analysis[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2008,1779(11):780-788.
    [117]Allen, E., Z. Xie.et al. "microRNA-directed phasing during trans-acting siRNA biogenesis in plants." [J] Cell,2005,121(2):207-21.
    [118]Schwab, R., J. F. Palatnik. et al. "Specific effects of microRNAs on the plant transcriptome." Dev[J] Cell,2005,8(4):517-27.
    [119]Wang J-W,Schwab R,Czech B,Mica E.et al. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopisis thaliana. Plant Cell,2008,20:1231-1243.
    [120]Wu G,Poethig RS.Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development,2006,133:3539-3547.
    [121]Rhoades MW, Reinhart BJ, Lim LP. et al. Prediction of plant microRNA targetsfJ]. Cell, 2002,110(4):513-520.
    [122]Wu G,Park MY,Conway SR.et al. The sequential action of miR156 and miR172 regulate developmental timing in Arabidopsis[J]. Cell,2009,138(4):750-759.
    [123]Wang JW,Czech B and Weigel D. miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana[J].Cell,2009,138(4):738-749
    [124]Mariana Lagos-Quintana, Reinhard Rauhut, Winfried Lendeckel. et al. Identification of Novel Genes Coding for Small Expressed RNAs[J]. Science,2001,294 (5543):853-858.
    [125]Rebecca Schwab,Javier F. Palatnik,Markus Riester.et.al. Specific Effects of MicroRNAs on the Plant Transcriptome [J]. Developmental Cell Vol.,2005,8,517-527.
    [126]Joachim Klein, Heinz Saedler, Peter Huijser. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J].Molecular and General Genetics,1996,250:7-16.
    [127]Rainer P. Birkenbihl, Guido Jach,Heinz SaedlerM.et al.Functional Dissection of the Plant-specific SBP-Domain:Overlap of the DNA-binding and Nuclear Localization Domainsol Gen[J]. Journal of Molecular Biologyet,2005,(352):585-596.
    [128]R Scott Poethig. Small RNAs and developmental timing in plants[J].Current Opinion in Genetics & Development 2009,19:374-378.
    [129]Ramanjulu Sunkar,Avnish Kapor,Jian-Kang Zhu.Posttranscriptional Induction of Two Cu/Zn Superoxide Dismutase Genes in Arabidopsis Is Mediated byDownregulation of miR398 and Important for Oxidative Stress Tolerance[J]. The Plant Cell,2006,(18): 2051-2065.
    [130]Hiroaki Yamasaki, Salah E. Abdel-Ghany, Christopher M. Cohu, et.al. Regulation of Copper Homeostasis by Micro-RNA in Arabidopsis[J]. THE JOURNAL OF BIOLOGICAL CHEMISTRY,2007,282(22):16369-16378.
    [131]Zhao Sheng Zhou,Si Qi Huang,Zhi Min Yang. Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula[J]. Biochemical and Biophysical Research Communications,2008,374(3):538-542.
    [132]Ramanjulu Sunkar, Jian-Kang Zhu. Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis[J]. PLANT CELL,2004,16 (8):2001-2019.
    [133]Guru Jagadeeswaran, Ajay Saini,Ramanjulu Sunkar..Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J]. Planta,(2009),229(4):1009-1014.
    [134]于晶,张林,崔红,等.高寒地区冬小麦东农冬麦1号越冬前的生理生化特性,作物学报[J].2008,34(11):2019-2025.
    [135]Jia-Wei Wang, Ling-Jian Wang, Ying-Bo Mao.et al. Control of Root Cap Formation by MicroRNA-Targeted Auxin Response Factors inArabidopsis[J].ThePlant Cell,2005, 17:2204-2216.
    [136]Zentgraf U,Jobst J,Kolb D.et al. Senescence-related gene expression profiles of rosette leaves of Arabidopsis thaliana:leaf age versus plant age[J]. Plant Biol,2004,6(2): 178-183:
    [137]Williams L.Grigg SP,Xie M. et al. Fletcher. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and itsAtHD-ZIP target genes. Development[J],2005,132:3657-3668.
    [138]Jung JH,Park CM. MIR 166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis[J]. Planta,2007,225(6): 1327-1338.
    [139]Kim JJung J,Reyes JL.et al. MicroRNA directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems[J]. Plant J,2005,42(1):84-94.
    [140]GlazinskaP,ZienkiewiczA,WoJciechowski W.et al.The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea niI[J]. Plant Physiol,2009,166(16):1801-1813.
    [141]Chen CZ,Li L,Lodish HF. MicroRNAs modulate hemmopoietic lineage differentiation[J]. Science,2004,5654:83-86.
    [142]Navarro L,Dunoyer P,Jay F,et.al. A plant miRNA con-tributes to antibacterial resistance by repressing auxin signaling Science,2006,312(5772):436-439.
    [143]Wen-Xue Li, Youko Oono, Jianhua Zhu.et al. The Arabidopsis NFYA5 Transcription Factor Is Regulated Transcriptionally and Posttranscriptionally to Promote Drought Resistance[J]. The Plant Cell,2008,(20):2238-2251.
    [144]Botao Zhao,Ruqiang Liang,Liangfa Ge.et al. Identification of drought-induced microRNAs in rice[J]. Biochemical and Biophysical Research Communications,2009, 354(2):585-590.
    [145]Matthew W Jones-Rhoades,David P Bartel.Computational identification of plant microRNAs and their targets,.including a stress-induced miRNA[J]. Mol Cell,2004, 14:787-799.
    [146]Palatnik IF,Allen E,Wu X.et al. Control of leaf morphogenesis by microRNAs[J]. Nature,2003,425(6955):257-263.
    [147]Jones-Rhoades MW,Bartel DP,Bartel B. MicroRNAs and their regulatory roles in plants[J]. Annual review of plant biology,2006,57:19-53.
    [148]Rajagopalan R.et al. A deverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana[J]. Genes Development,2006,20:3407-3425.
    [149]Han HL,Tian X,Li YJ.et al. Microarrry-based Analysis of Stress-regulated microRNAs in Arabidopsisthaliana[J].RNA,2008,14:836-843.
    [150]Ping Wan,Lijun Ling,Shuanghe Cao,et.al. Isolation, chromosomal location, and expression analysis of putative powdery mildew resistance genes in wheat[J].Euphytica, 2007,155:125-133.
    [151]MR Grant,L Godiard,E Straube,et.al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance[J].Science,1995,269:843-846.
    [152]Douglas C,Boyes,Jaesung Nam,Jeffery L. Dangl. The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response[J]. pnas,1998,95:15849-15854.
    [153]Ben F,Holt Ⅲ,Douglas C. Boyes,Mats Ellerstr6m,et.al. An evolutionarily conserved mediator of plant disease resistance gene function is required for normal Arabidopsis development[J].development cell,2002,2:807-817.
    [154]Stochinger E J,GilmourS J,ThomashowM F.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis acting DNA regulatory element thatstimulates transcription in response to low temperature andwater deficit[J]. Proc Natl Acad Sci USA,1997,94:1035-1040.
    [155]Jaglo KR,KleffS,Amundsen KL,et al Components of the A rabidop sis C-repeat/dehydration-responsive elem ent binding factor cold-response pathw ay are conservedin B rassica napusand other plant species[J], P lant Physiol,2001,127 (3): 9102917.
    [156]HAA KE V, COOK D,R IECHMANN JL, et al. T ran2scrip tion Factor CBF4 is a Regulator of drough t A dap ta2tion in A rabidop sis[J]. P lant physiology,2002,130 (2):6392648.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700