用户名: 密码: 验证码:
土壤物理性质对玉米生长影响及高产农田土壤物理特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物高产不但需要土壤有充足的养分供给,还要求土壤有水、气、热相协调的物理环境条件。近二、三十年来,由于玉米生产中采取长年连作、旋耕、单施化肥、少施或不施有机肥,导致土壤质量严重下降,表现为:土壤板结,耕层浅、容重大、结构性差等。尽管目前有关土壤物理性质与作物生长的定性关系已经非常明确,但是在不同土壤类型上,不同作物生长适宜土壤物理性质的定量关系研究还非常欠缺。本文首先通过大田研究了高产玉米田土壤物理特征,然后以棕壤为试验材料,通过盆栽与大田小区试验的方法,进一步研究了容重、孔隙度、耕层厚度等土壤物理性质对玉米生长的影响。研究结果将对高产稳产农田建设具有重要的理论意义,对农业生产实践具有重要的参考价值。研究结论如下:
     1.通过玉米田调查发现,产量>750公斤/亩的玉米田,有90%的地块耕层、犁底层厚度分别在20~25cm、7-10cm之间;耕层容重、硬度分别在1.30-1.33g cm-3与3.1~5.1Kg cm-2范围;耕层土壤总孔隙度、通气孔隙度分别介于50%-52%、10%~15%之间;耕层土壤的水稳性团聚体含量在20%以上,团聚体的水稳性系数在25%以上。产量450~750公斤/亩的玉米田,有90%的地块耕层、犁底层厚度分别在16~19cm、10~16cm之间;耕层容重、硬度分别在1.33~1.38g cm-3与5.5~7.5Kg cm-2范围;耕层土壤总孔隙度、通气孔隙度分别介于41%-44%、8%-12%之间;耕层土壤的水稳性团聚体含量小于18%,团聚体的水稳性系数小于22%。
     2.通过不同耕层厚度处理的小区试验研究结果发现,耕层厚度在10-50cm范围内,随着耕层厚度增加,玉米地上、地下部位生长都有不同程度的增加,对叶绿素、光合特性没有影响。当耕层厚度>30cm时,株高、茎粗增长不明显,平均增加10%左右,同时,其他玉米生长指标增加幅度也较小。盆栽结果表明,当耕层深度小于15cm时,总根量下降,表层根系分布比例增加10%-20%,表现为根系补偿;当耕层深度大于30cm时,不同处理对根总生长量无显著影响,综合小区试验结果可知,适宜玉米生长的耕层厚度为20~30cm,耕层厚度再增加对玉米生长促进作用减少,经济性下降。
     3.通过不同容重处理的盆栽试验研究结果发现:
     1)利用有机质含量为13.79g Kg-1的棕壤进行1.1~1.4g cm-3不同的容重处理,结果容重均从播种到出苗期迅速增高,之后的整个生育期缓慢升高,但在灌浆期略有下降。1.1和1.2g cm-3容重处理在玉米生育期分别稳定在1.26~1.31g cm-3和1.28~1.33g cm-3之间。1.3和1.4g cm-3容重处理则分别稳定在1.34-1.38g cm-3和1.43-1.45g cm-3之间。说明有机质含量低的土壤耕作后低容重很难保持,均会大幅度增高。
     2)土壤总孔隙度对玉米根系生长有极大的影响。当总孔隙度为49.9%-51.2%时,玉米根系生长指标极显著高于低孔隙度处理;当总孔隙度低于48%时,随着孔隙度的减少,根系生长指标虽然呈减少趋势,但总孔隙度的影响不显著。不同孔隙度对根系活力有影响,根系活力在灌浆期前都呈上升趋势,总孔隙度>49.9%时影响不显著,当总孔隙度低于48%时,根系活力极显著下降。
     3)叶绿素含量在玉米生育期内始终增长,不同通气孔隙度处理对叶绿素含量的影响从拔节期后极显著。光合速率与容重、胞间二氧化碳浓度呈负相关,与气孔导度呈正相关。当通气孔隙度在8.6%-11.0%范围时,玉米光合效率较高。
     4)容重对玉米根、茎、叶中N、P、K元素的吸收与积累影响显著(P<0.05),随设计容重增加,在相同生育期同一玉米生理部位同一元素的积累下降,除根茎中K含量随生育期先下降后上升外,其它元素在玉米生育期都表现为下降,这种结果的累积效应导致容重1.1、1.2处理产量极显著高于容重1.3、1.4处理(P<0.01)。1.26~1.33g cm-3处理各项指标差异较小,是玉米生长适宜的土壤容重范围。
     5)土壤有机质含量小于1.5%时制约玉米生长,有机物料含量为3%-5%时,显著提高了土壤的总孔隙度(增加9%左右)、通气孔隙度(增加40%-50%)、田间持水量(增加9%-30%),显著降低了容重(降低5%-12%)。低容重(1.2g cm-3)土壤有机物料增加到3%,高容重(1.4g cm-3)土壤有机物料增加4%时,土壤物理指标较好,达到玉米高产所需的物理条件。
     4.综合大田调查、小区及盆栽试验,高产玉米田的土壤物理特征应该满足耕层厚度在20~30cm之间,总孔隙度、通气孔隙度分别在50%-51.2%、10%-11%的范围,在玉米整个生育期容重稳定在1.26~1.33g cm-3范围。
High yield not merely requires soil could provide sufficient nutrients, but also require soil has the coordinating physical environment condition within water, air and heat. Due to long time continuous cropping, rotary tillage, applying fertilizer alone and no or less manure in maize cultivation, soil quality declined seriously which showed as soil hardening, thin topsoil layer, large soil bulk density, poor soil structure, etc. In spite of the relationship of soil physical properties and crop growth were very clearly, however there was less research on soil physical properties that fitting different crop growth in different soil types. This paper firstly studied the characteristics of physical properties of high yield maize farmland, afterwards took brown soil as experimental material, using pot and field pot experiment studied soil bulk density, porosity and topsoil layer thickness which affect maize growth. The research results have important theoretical significance of high and stable yield. It also has reference value of agricultural production practice. The results were as follows:
     1.90%field's topsoil, subsoil thickness were between20~25cm and7~10cm when yield is greater than750kg/mu, soil bulk density and hardness were range from1.30~1.33g cm-3and3.1~5.1kg cm-2, respectively. Total porosity and aeration porosity of topsoil were range from50%~52%and10%~15%, respectively. Topsoil waterstable aggregate content was greater than20%, water stability coefficient was greater than25%after maize cropland investigation. When the yield was between450and750kg/mu, almost90%topsoil and subsoil thickness were range from16to19cm and10to16cm, topsoil bulk density and hardness were range from1.33to1.38g cm-3and5.5to7.5kg cm-2. Topsoil total porosity and aeration porosity were range from41%to44%and8%to12%. Waterstable aggregate content was less than18%, water stability coefficient was less than22%.
     2. Results of different topsoil thickness plot experiment showed that, the overground and underground part of maize increased as the thickness of topsoil increased, and it had no effect on chlorophyll and photosynthetic characteristic. There was no significant difference in plant height and spear thickness which increased10%when topsoil thickness was greater than30cm, and the other maize growth index increased slowly. Plot experiment showed that total root amount decreased when topsoil thickness was less than15cm, and the topsoil root distribution rate increased10%and20%which showed a compensation of root. There was no significant difference of different treatment to total root amount, when topsoil thickness was greater than30cm. To sum up the plot experiment results, it can be concluded that topsoil thickness which fit maize growth was range from20to30cm. It will have the negative effect on maize growth if increased topsoil thickness more than30cm, and the economical efficiency will decrease.
     3. Results of different soil bulk density plot experiment showed that:
     1) Soil bulk density increased from sowing to seeding stage, then increased slowly during the whole growth stage and decreased during filling stage when soil bulk density was range from1.1to1.4g cm-3and soil organic matter was13.79g kg-1. The soil bulk density treatments of1.1and1.2g cm-3were stabled at1.26to1.31g cm-3and1.28to1.33g cm-3during the growth stage. While the1.3and1.4g cm-3treatments were stabled at1.34to1.38 g cm-3and1.43to1.45g cm-3. This result illustrate that low soil bulk density could not be stable and increased sharply after tillage in low organic matter soil.
     2) Soil total porosity affect maize root deeply. Maize root growth index significant higher than low porosity treatment when total porosity was range from49.9%to51.2%. Root growth index decreased as total index decreased, however, it had no significant difference in total porosity when total porosity was less than48%. Different porosity influenced root activity, root activity showed an increasing tendency during filling stage. There was no significant difference when total porosity was greater than49.9%and root activity significant decreased when total porosity was less than48%.
     3) Chlorophyll content increased during the whole maize growth stage. Significant affect was after the jointing stage of different aeration porosity treatment. There was a negative relationship between photosynthetic rate with soil bulk density and the intercellular CO: concentration, and photosynthetic and stomatal conductance had a positive relationship. Maize photosynthetic efficiency was higher when aeration porosity was range from8.6%to11.0%.
     4) Soil bulk density had a significant effect on nitrogen, phosphorus and potassium in maize root, stem and leaves (P<0.5). The accumulation of the same element of the same maize physiology part in the same growth stage decreased, except potassium content was decreased first then increased, all the other element content decreased. This result lead to yield in the soil bulk density treatment of1.1and1.2were significant higher than1.3and1.4treatment (p<0.01). There was no significant difference of all indexes in the treatment of1.26to1.33g cm-3, this range of soil bulk density was the suitable scope which fit maize growth.
     5) When soil organic matter was less than1.5%, it restricted maize growth. Soil total porosity significant increased with9%, aeration porosity increased40%to50%, field moisture capacity increased9%to30%and soil bulk density was decreased5%to12%when soil organic material content was3%to5%. With low soil bulk density (1.2g cm-3) and high soil bulk density (1.4g cm-3), soil organic material should increased to3%and4%,respectively which could meet the standard requirement of physical conditions of maize high yield.
     4. Took field investigation, field plot experiment and plot as a whole, the physical character of high yield maize cropland need the topsoil thickness range from20to30cm, total porosity and aeration porosity was range from50%to51.2%and10%to11%, respectively. Soil bulk density should be stabled at1.26to1.33g cm-3
引文
1.鲍毅新,程宏毅,葛宝明,等.2007.不同土地利用方式下大型土壤动物群落对土壤理化性质的响应[J].浙江师范大学学报(自然科学版),30(2):121-126.
    2.蔡昆争,骆世明,方祥.2006.水稻覆膜旱作对根叶性状、土壤养分和土壤微生物活性的影响[J].生态学报,26(6):1903-1911.
    3.曹彩云,郑春莲,李科江,等.2009.长期定位施肥对夏玉米光合特性及产量的影响研究[J].中国生态农业学报,17(6):79-83.
    4.曹国军,刘宁,李刚,等.2008.超高产春玉米氮磷钾的吸收与分配[J].水土保持学报.22(2):198-201.
    5.陈恩凤,周礼恺,邱凤琼,等.1985.土壤肥力实质的研究[J].十壤学报,22(2):113-119.
    6.陈恩凤,周礼恺,武冠云.1991.土壤的自动调节性能与抗逆性能[J].土壤学报,28(2):168-173.
    7.陈恩凤.1959.深耕的现状与发展[J].十壤通报,(6):7-13.
    8.陈恩凤.1961.耕翻深度与耕层的层次发育[J].中国农业科学,(12):1-6.
    9.程少敏,林桂凤,张漫龄,等.2006.土壤有机质对土壤肥力的影响与调节[J].辽宁农业科学,(1):13-15.
    10.褚贵新,吕新,刘建国,等.2000.冬小麦套作玉米作物氮磷吸收分配规律和施肥运筹[J].新疆农业科学,(5):199—-202.
    11.董钻,谢甫绨.1996.大豆氮磷钾吸收动态及模式的研究[J].作物学报,22(1):89—95.
    12.冯君,赵兰坡,孙芸芸,等.2009.吉林省西部地区苏打盐渍化草原不同利用方式对土壤肥力质量的影响[J].吉林农业大学学报,31(2):190-194.
    13.关松荫.1986.土壤酶及其研究法[M].北京:农业出版社.
    14.郝余祥.1982.土壤微生物[M].北匕京:科学出版社.
    15.何景友,安景文,刘慧颖,等.2003.兴城地区土壤钾素状况及施钾肥对玉米的影响[J].杂粮作物,23(2):107-108.
    16.何萍,金继运.1999.氮钾互作对春米养分吸收动态及模式的影响[J].玉米科学,7(3):68-72.
    17.何其华,何永华,包维楷.2003.干旱半干旱区山地土壤水分动态变化[J].山地学报,21(2):149-154.
    18.何淑勤,郑子成.2010.不同十地利用方式下十壤团聚体的分布及其有机碳含量的变化[J].水土保持通报,30(1):7-10.
    19.胡吕浩,潘子龙.1982.夏玉米同化产物积累与养分吸收分配规律的研究.干物质积累与可溶性糖和氨基酸的变化规律[J].中国农业科学,(1):56-64.
    20.黄昌勇.2000.土壤学[M].北京:中国农业出版社.
    21.姜琳琳,韩晓日,杨劲峰,等.2010.施肥对不同密度型高产玉米品种光合生理特性的影响[J].沈阳农业大学学报,41(3):265-269.
    22.李潮海,梅沛沛,王群等.2007.下层十壤容重对玉米植株养分吸收和分配的影响[J].中国农业科学,40(7):1371-1378
    23.李潮海,王群,梅沛沛,等.2007.不同质地十壤上玉米养分吸收和分配特征[J].植物营养与肥料学报,13(4):561—568
    24.李少昆,赵明.1998.同基因型玉米光合作用强度的调控研究[J].石河子大学学报(自然科学版),2(3):245-247.
    25.李霞,丁在忪,李连禄,等.2007.玉米光合性能的杂种优势[J].应用生态学报,18(5):1049-1054.
    26.李志明,周清,王辉,等.2009.土壤容重对红壤水分溶质运移特征影响的试验研究[J].水土保持学报,23(5):101-103.
    27.刘恩科,赵秉强,胡吕浩,等.2004.长期不同施肥制度对玉米产量和品质的影响[J].中国农业科学37(5):711-716
    28.刘来华,李韵珠,綦雪梅,等.1996.冬小麦水氮有效利用的研究[J].中国农业大学学报,(5):67-73.
    29.刘梦云,常庆瑞,安韶山,等.2005.土地利用方式对十壤团聚体及微团聚体的影响[J].中国农学通报,21(11):247-249.
    30.刘晚苟,山仑,邓西平.2002.不同土壤水分条件十土壤容重对玉米根系生长的影响[J].西北植物学报22(4):831-838
    31.刘晚苟,山仑.2004.土壤机械阻力对玉米根系导水率的影响[J].水利学报,4:114-117.
    32.刘文利,罗广军.2006.不同林型下土壤物化性质的差异研究[J].吉林林业科技,35(1):26-34.
    33.祁迎春,王益权,刘军,等.2011.不同土地利用方式土壤团聚体组成及儿种团聚体稳定性指标的比较[J].农业工程学报,7(1):340-346.
    34.任志萍,齐华.2007.“双微生物肥”对玉米光合特性的影响[J].辽宁农业科学,(3):40-41.
    35.邵明安,吕殿青,付晓莉.2007.土壤持水特征测定中质量含水量、吸力和容重三者间定量关系[J].土壤学报,44(6):1003-1008.
    36.沈阳市农业局.1989.沈阳土壤[M].沈阳:辽宁科学技术出版社.
    37.沈裕琥,莫相国,王海庆.1998.秸秆覆盖的农田效应[J].干旱地区农业研究,16(1):45-50.
    38.宋海星,李生秀.2003.玉米生长量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学,36(1):71-76.
    39.宋秋华,李凤民,王俊,等.2002.覆膜对春小麦农田微生物数量和土壤养分的影响[J].生态学报,22(12):2125-2132.
    40.宋日,吴春胜,牟金明,等.2000.深松土对玉米根系生长发育的影响.吉林农业大学学报,22(4):73-75.
    41.孙年喜,宗学凤,王三根.2005.不同供氮水平对玉米光合特性的影响[J].西南农业大学学报(自然科学版),27(2):389-396.
    42.田昆,胡慧蓉,陆梅,等.2004.土壤利用方式改变对滇东南岩溶区土壤特性的影响[J].土壤通报,35(2):112-116.
    43.田霄鸿,妓刚,李生秀.2002.不同土壤层次供应水分和养分对玉米幼苗生长和吸收养分的影响[J].土壤通报,33(4):243-247.
    44.脱云飞,王克勤,张振伟,等.2010.膜孔肥液自由入渗中土壤容重对水氮分布和均匀性的影响[J].浙江大学学报(农业与生命科学版),36(6):650-656.
    45.王贵平,张胜,王圣瑞,等.2000.地膜覆盖对春玉米氮磷钾吸收累积和化肥利用率的影响[J].内蒙古农业大学学报,21(5):157-161.
    46.王海峰,王秀平,杨天军,等.2001.夏玉米施用钾肥效果研究[J].河南农业大学学报,35(9):171-177.
    47.王继芳,刘树堂,宋希云.2009.长期定位施肥对夏玉米光合性状及产量的影响[J].中国农学通报,25(15):136-139.
    48.王金凤,康绍忠,张富仓,等.2006.控制性根系分区交替灌溉对玉米根区土壤微生物及作物生长的影响[J].中国农业科学,39(10):2056-2062.
    49.王磊,自由路.2005.不同氮处理春玉米叶片光谱反射率与叶片全氮和叶绿素含量的相关研究[J].中国农业科学,38(11):2268-2276.
    50.王清全,汀思龙,冯宗炜,等.2005.土壤活性有机质及其与十壤质量的关系[J].生态学报,25(3):513-517.
    51.王群,尹匕,郝四平,等.2009.下层土壤容重对玉米根际土壤微生物数量及微生物量碳、氮的影响[J].生态学报,29(6),3096-3099.
    52.王小利,苏以荣,黄道友,等.2006.土地利用对亚热带红壤低山区土壤有机碳和微生物碳的影响 [J].中国农业科学,39(4):750-757.
    53.王宜伦,李潮海,何萍,等.2010.超高产夏玉米养分限制因子及养分吸收积累规律研究[J].植物营养与肥料学报,16(3):559-566.
    54.王义祥,任丽花,翁伯琦,等.2005.土壤干旱胁迫对圆叶决明土壤微生物的生态效应[J].厦门大学学报(自然科学版),44(1306):66-68.
    55.王月容,周金星,周志翔,等.2010.退田还湖区土壤物理特性[J].华中农业大学学报,29(3):306-311.
    56.王芸,李增嘉,韩宾,等.2007.保护性耕作对土壤微生物量及活性的影响[J].生态学报,27(8):3384-3390.
    57.魏朝富,高明,车福才,等.1990.垄作免耕下稻田土壤团聚体和水热状况变化的研究[J].土壤学报,27(2):172-177.
    58.温以华.2002.不同质地和容重对C1-在土壤中运移规律的影响[J].水土保持研究,9(1):73-76.
    59.吴承祯.1999.不同经营模式十壤团粒结构的分形特征研究[J].土壤学报,36(2):162-167.
    60.吴龙华,张素君.2000.不同土壤类型和肥力玉米地土壤养分根际效应研究[J].应用生态学报,11(4):356-360.
    61.武际,郭熙盛,王文军.2006.磷钾肥配合施用对玉米产量及养分吸收的影响[J].玉米科学,14(3):147-150.
    62.夏乐,于海秋,郭焕茹,等.2008.低钾胁迫对玉米光合特性及叶绿素荧光特性的影响[J].玉米科学,16(6):71-74.
    63.肖春华,李少昆,刘景德,等.2005.种植方式对玉米养分吸收动态和利用效率的影响[J].土壤肥料,(2):10-14.
    64.谢佳贵,吴巍,王秀芳.2001.硫肥对玉米的增产效果及其适宜用量的研究[J].吉林农业科学26(5):34-36.
    65.谢均强,史尔梅,张兵,等.2008.紫色丘陵坡地不同用地类型土壤理化特征分析[J].西南大学学报(自然科学版),30(9):108-112.
    66.徐航,尹枝瑞.2000.玉米超高产中土壤与气候作用的初步研究[J].玉米科学,8(3):40-45.
    67.徐明岗,姚其华,吕家珑.2000.土壤养分运移[M].北京:中国农业科技出版社.
    68.杨兰芳,蔡祖聪.2006.玉米生长和施氮水平对十壤有机碳更新的影响[J].环境科学学报,26(2):280-286.
    69.杨青华,高尔明,马新明,等.2000.不同土壤类型玉米根系生长发育动态研究[J].华北农学报,15(3)88-93.
    70.展争艳,李小刚,张德呈,等.2005.利用方式对高寒牧区土壤有机碳含量及十壤结构性质的影响[J].土壤学报,42(5):777-781.
    71.战秀梅,韩晓日,杨劲峰,等.2007.沈阳市玉米主产区土壤有机质和有效磷含量及其与玉米产量水平之间的关系[J].中国土壤与肥料,(3):29-31.
    72.张德水, 王柱荣.1992.玉米光合性状和产量的遗传相关与通径分析[J].山东农业大学学报,23(2):149-152.
    73.张福武,蔡立群,陈英.2008.免耕对十壤容重总孔隙度和水稳性团聚体的影响[J].甘肃农业科技,(8):9-11.
    74.张建恒,李宾兴,王斌,等.2006.不同磷效率小麦品种光合碳同化和物质生产特性研究[J].中国农业科学,39(11):2200-2207.
    75.张建军.2009.古浪县黄灌区耕地不同利用方式对土壤结构性质的影响[J].现代农业科技,21:222-223.
    76.张蕾,依艳丽,贺忠科,等.2008.沈阳市郊玉米连作土壤有机质组成及其对土壤结构的影响[J].土壤通报,39(4):756-760.
    77.张振华,谢恒星,刘继龙,等.2005.气相阻力与十壤容重对一维垂直入渗影响的定量分析[J].水十保持学报,19(4):36-39.
    78.赵兰坡,姜岩.1987.施用有机肥料对十壤磷酸酶活性的影响[J].吉林农业大学学报,9(4):43-45.
    79.赵全仁,陈秉焱,毕江涛,等.2004.旱地春小麦覆盖栽培水肥效应研究[J].干旱地区农业研究,22(1):76-80.
    80.周礼恺.1988.土壤酶学[M].北京:科学出版社.
    81.朱德峰,林贤青,曹卫星.2002.水稻根系生长及其对土壤紧密度的反应[J].应用生态学报,3(1):60-62.
    82.朱自玺,方文松,赵国强,等.2000.麦秸和残茬覆盖对夏玉米农田小气候的影响[J].干旱地区农业研究,18(2):19-24.
    83. Massacci A., Ianelli M.A., Pietrini F.. et al.1995.The effect of growth at low temperature on photosynthetic characteristics and mechanisms of photoprotection of maize leaves[J].J. Exp. Bot. 46:118-127.
    84. Abet J D, Nadehoffer K J, Steuder P, et al.1989.Nitrogen saturation in northern forest ecosystem-Hypothesis and implications[J].Bioscience,39:379-386.
    85. Aina P.0.1979.Soil changes resulting from long-term management practices in western Nigeria[J]. Soil Sci. Soc. Am. J.,43:173-177.
    86. Al-Adawi S.S.,Reeder R.C.1996.Compaction and subsoiling effects on corn and soybean yields and soil physical properties[J].Trans. ASAE,39:1641-1649.
    87. Alakukku L.1996.Persistence of soil compaction due to high axle load traffic. Ⅱ. Long-term effects on the properties of fine-textured organic soils[J].Soil Till. Res.,37:223-238.
    88. Alvaro Piresda Silva, Kay B.D., Perfect E.1997.Management versus inherent soil properties effects on bulk density and relative compaction[J].Soil Tillage Research,44:81-93.
    89. Ankenny M.D., Kaspar T.C., Horton R.1990.Characterization of tillage and traffic effects on unconfined infiltration measurements[J].Soil Sci. Am. J.,54:837-840.
    90. Antibus RK, Linkins AE.1991.An enzymic approach to the analysis of microbial activity during plant litter decomposition[J].Agric. Ecosyst. Environ.,34:43-54.
    91. Arvidsson J., HaEkansson 1.1991. A model for estimating crop yield losses caused by soil compaction[J]. Soil Till. Res.,20:319-332.
    92. Arya L.M., Farrell D.A., Blake G.R.1975. A field study of soil water depletion pattern in presence of growing soybean roots.I.Determination of hydraulic properties of the soil[J]. Soil Sci. Soc. Am. J., 39:424-430.
    93. Assaeed A M, Mcgowan M, Hebblethwaite P D.1990. Effect of soil compaction on growth, yield and light interception of selected crops[J].Annals of Applied Biology,117:653-666.
    94. Assouline S., Tavares-Filho J., Tessier D.1997.Effect of compaction on soil physical and hydraulic properties experimental results and modelling[J].Soil Sci. Soc. Am. J.,61:390-398.
    95. Genty B., Briantais J. M., Baker N.R..1989.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J].Biochim. Biophys. Acta, 990:87-92.
    96. Bengough A.G., Mullins C.E.1990.Mechanical impedance to root growth:a review of experimental techniques and root growth responses[J].J. Soil Sci.,41:341-358.
    97. Bouma J., Belmans C.F.M., Dekker L.W.1982. Water infiltration and redistribution in a silt loam subsoil with vertical worm channels[J].Soil Sci. Soc. Am. J.,46:917-921.
    98. Burger J A, Kelting D L.1999.Using soil quality indicators to assess forest stand management.Forest Ecology and Management,122:155-166.
    99. Burns, R. G.(edit),1978, Soil Enzymes[M]. Academic Press, London.
    100. Carreiro M M, Sinsabaugh R L, Repert D A, et al.2000.Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition[J].Ecology,81:2359-2365.
    101. Carter M.R.I 990.Relative measures of soil bulk density to characterize compaction in tillage studies on fine sandy loams[J].Can. J. Soil Sci.,70:425-433.
    102. Cechin.1998.Photosynthesis and chlorophyll fluorescence in two hybrids of sorghum under different nitrogen and water regimes[J].Photosynthetica,35(2):233-240.
    103. Cepeda M C, Carballas T, Sortes FG, et al.1991.Liming and the phosphatase activity and mineralization of phosphorus in an acidic soil[J].Soil Biol Biochem,23:209-215.
    104. Criquet S, Farnet A M, Tagger S, et al.2000.Annual variations of phenoloxidase activities in an evergreen oak litter:influence of certain biotic and abiotic factors[J].Soil Biology Biochemistry, 32:1505-1513.
    105. Filipovic D., Husnjak S., Kosutic S., et al.2006.Effects of tillage systems on compaction and crop yield of Albic Luvisol in Croatia[J]. Journal of Terramechanics,43:177-189.
    106. Hodges D.M., Andrews C.J., Johnson D.A., et al.1997.Antioxidant enzymes responses to chilling stress in differentially sensitive inbred maize lines[J].J. Exp. Bot.,48:1105-1113.
    107. Dawod, V., FitzPatrick, E.A.1993.Some population sizes and effects of the Enchytraeidae (Oligochaeta) on soil structure in a selection of Scottish soils[J].Geoderma 56:173-178.
    108. DeForest J L, Zak D R, Pregiter K S, et al.2004.Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest[J].Soil Biology Biochemistry, 36:965-971.
    109. DeForest J L, Zak D R, Pregitzer K S, et al.2004.Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests[J].Soil Science Society of America Journal,68:132-138.
    110. Dexter A.R., Horn R., Kemper W.D.1988.Two mechanisms of age-hardening of soil[J].J. Soil Sci., 39:163-175.
    111. Dexter A.R.1987.Mechanics of root growth[J].Plant Soil,98:303-312.
    112. Dick R P, Rasmussen PE, Kerle EA.1988.Influence of long-term residue management on soil enzyme activity in relation to soil chemical properties of a wheat-fallow system[J].Biol Fertil Soils, 6:159-164.
    113. Dick R P.1992. A review:Long term effects of agricultural systems on soil biochemical and microbiological parameters[J]. Agric Ecosys Environ,40:25-36.
    114. Dick W A, Juma NG, Tabatabai MA.1983.Effects of soils on acid phosphatase and inorganic pyrophosphatase of corn roots[J].Soil Sci,136:19-25.
    115.Didden. W.A.M.,1993.Ecology of terrestrial Enchytraeidae[J]. Pedobiologia,37:2-29.
    116. Didden, W.A.M., Marinissen.1994.Effects of oligochaete worms on soil aggregates, and implications for organic matter dynamics[J].Soil Sci., Acapulco,4:92-101.
    117. Dolan M S, Dowdy R H, Voorhees W B, et al.1992.Corn phosphorous and potassium uptake in response to soil compaction[J].Agronomy Journal,14:639-642.
    118. FohrerN., Berkenhagen J., Heckler J.M., et al.1999. Changing soil and surface conditions during rainfall-single rainstorm/subsequent rainstonns[J].Catena,355-375.
    119. Gaultney L, Krutz G W, Steinhardt G C, er al.1982, Effects of subsoil compaction on corn yields[J]. American Society of Agricultural Engineers,563-569.
    120. Gomez E, Bisaro V, Conti M.2000.Potential C-source utilization patterns of bacterial communities as influenced by clearing and land use in a vertic soil of Argentina[J].Appl Soil Ecol.,15:273-281.
    121. Gordon W B.1993.Tillage and nitrogen effects on growth, nitrogen content, and yield of corn[J]. Commun. Soil Sci. Plant Anal.,24(6):421-442.
    122. Griffith D.R., Mannering J.V., Galloway H.M., et al.1973.Effect of eight tillage-plant systems on soil temperature, percent stand, plant growth and yield of corn on five Indiana soils[J]. Agron. J., 65:321-326.
    123. Hill J.N.S., Sumner M.E.1967.Effect of bulk density on moisture characteristics of soils[J].Soil Sci., 103:234-238.
    124. Hill, R.L., Meza-Montalvo, M.1990.Long-term wheel traffic effects on soil physical-properties under different tillage systems[J]. Soil Sci. Soc. Am. J.,54:865-870.
    125. Illmer P, Schinner F.1991.Effects of lime and nutrient salts on the microbiological activities of forest soils[J]. Biol Fertil Soils,11:261-266.
    126. Wilson J.M..1997.Mechanisms of chilling resistance in plants, in:A.S.Basra, R.K. Basra (Eds.), Mechanisms of Environmental Stress Resistance in Plants. Switzerland:Harwood Academic Publishers, 111-122.
    127. Johnson M.D., Lowery B., Daniel T.c.1984.Soil moisture regimes of three conservation tillage systems[J].Trans. ASAE,27(5):1385-1390.
    128. Judith N, Adrien N, Martin H, et al.2009.Variations in corn yield and nitrogen uptake in relation to soil attributes and nitrogen availability indices[J].Soil Sci. Soc. Am. J.,73:317-327.
    129. Karunatilake U.P., Van Es.2002.Rainfall and tillage effects on soil structure after alfafa conversion to maize on a clay loam soil in New York[J].Soil Till. Res.,67:135-146.
    130. Lai R.,1996. Axle load and tillage effects on crop yield on a Mollic Ochraqualf in Northwest Ohio[J].Soil Tillage Res.,1996,37:143-160.
    131. Lee KH, Jose S.2003.Soil respiration and microbial biomass in a pecan-cotton alley cropping system in Southern USA[J].Agrofor Syst.,58:45-54.
    132. Lipiec, J., Hatano, R.2003.Quantification of compaction effects on soil physical properties and crop growth[J].Geoderma,116:107-136.
    133. Mannering J.V., Meyer L.D., Johnson C.B.1966.Infiltration and erosion as affected by minimum tillage for corn[J]. Soil Sci. Soc. Am. Proc.,30:101-105.
    134. Mengel K, Kirkby E A.1987.Principles of Plant Nutrition, International Potash Institutes[J].Bern, Switzerland,:247-252.
    135. Miller, C.J., Asce, M., Yesiller, N., et al.2002.Impact of soil type and compaction conditions on soil water characteristic[J].J. Geotech. Geoenviron. Eng.,128:733-742.
    136. Munawar A, Blevins R L, Frye W W and Saul M R.1990.Tillage and cover crop management for soil water conservation, Agron.J.82:773-777.
    137. Pagliai M., Marsili A., Servadio, P., et al.2003. Changes in some physical properties of a clay soil in central Italy following the passage of rubber tracked and wheeled tractors of medium power[J].Soil Till. Res.,73:119-129.
    138. Sarathehandra S U, Ghani A, Yeates G W, et al.2001. Effect of nitrogen and phosphate fertilizer on microbial and nematode diversity in pasture soils[J].Soil Biology Biochemistry,33(7):953-964.
    139. Schrader, S., Lingnau, M.1997.Influence of soil tillage and soil compaction on microarthropods of agricultural land[J]. Pedobiologia,41:202-209.
    140. Shierlaw J, Alston A M.1984. Effect of soil compaction on root growth and uptake of phosphorus [J]. Plant and Soil,77:15-28.
    141. Shiratsuchi H, Yamagishi T, Ishii R.2006.Leaf N distribution to maximize the canopy photosynthesis in rice[J].Field Crops Res,95:291-304.
    142. Sillon, J.F., Richard, G., Cousin, I.2003.Tillage and traffic effects on soil hydraulic properties and evaporation[J].Geoderma,116:29-46.
    143. Sinsabaugh R L, Carreiro M M, Repert D A.2002. Allocation of extracellular enzymatic activity in reaction to fitter composition, N deposition, and mass loss[J].Biogeochemistry,60:1-12.
    144. Sperber.1957.Soltion of mineral phosphates by soil bacteria[J].Nature,180:994-995.
    145. Stenitzer, E., Murer, E.2003.Impact of soil compaction upon soil water balance and maize yield estimated by the SIMWASER model[J].Soil Till. Res.,73:43-56.
    146. Tan J K, Zhang Y L, Shen Q R, et al.2002.Effects of different NH4+-N/NO3--N ratios on water use efficiency and its biological characteristics of rice at early stage[J].J Nanjing Agric Univ,25(3):49-52.
    147. Taylor J P, Wilson B, Mills M S, et al.2002.Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J].Soil Biology Biochemistry,34:387-401.
    148. Unger P.W.1975.Water retention by core and sieved soil samples[J].Soil Sci. Soc. Am. Proc., 39:1197-1200.
    149. Van Doren Jr. M., Triplette Jr. D., et al.1976.Influence of long-term tillage, crop rotation, and soil type combinations on corn yield[J].Soil Sci. Soc. Am. J.,40:100-105.
    150. Wick B, Kuhne RF, Vlek PLG.1998. Soil microbiological parameters as indicators of soil quality under improved fallow management systems in southwestern Nigeria[J].Plant Soil,202:97-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700