用户名: 密码: 验证码:
三个水稻叶色突变体的基因克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶片是光合作用的主要器官,是碳水化合物的主要来源。叶绿体是进行光合作用的场所,光合作用效率的高低与叶绿素的含量、叶绿体形态和结构密切相关,这些变化会影响植物的光合作用和生长发育。叶色突变体是研究叶绿素合成、调控和降解以及叶绿体的发育和叶绿体-细胞核的信号传递的重要材料。水稻是禾谷类作物中基因组最小的物种,是研究禾谷类作物遗传和发育的模式植物。随着水稻基因组测序计划的完成以及相关技术的不断发展,通过构建各种水稻突变体库,利用正反向遗传学的方法来鉴定特定生物学过程中的重要基因,进而了解基因的功能,是后基因组时代的核心任务。
     本研究针对从恢复系选育和EMS诱变所获得的三份叶色突变体,即半显性黄叶自然突变体Chy(chlorophyll)、温敏型白条叶自然突变体st11(stripe11)和淡绿叶EMS诱变突变体pgl4(pale green leaf4),开展了突变体的形态学鉴定、叶绿体发育的电镜观察、遗传分析、光合生理测定、基因定位与克隆、载体构建、转基因功能验证和基因表达调控研究,其主要研究结果如下:
     1、遗传分析表明突变体Chy为单基因控制的半显性遗传模式。突变体Chy缺失叶绿素a和b,叶绿体发育受阻,呈液泡状,没有完整的类囊体,突变体Chy出芽后在三叶期致死。杂合体Chy/+为黄叶色,叶绿素a和b的含量在二叶期、苗期、分蘖期和抽穗期四个不同时期均比野生型要低,但杂合体Chy/+的叶绿素a/b比值在四个时期均比野生型要高,且较为稳定一致,杂合体Chy/+的叶绿体发育也存在部分紊乱。杂合体Chy/+的农艺性状与野生型相比,主要在株高、生育期和每穗粒数上差异显著。利用混合法将突变基因CHY初定位在Chr3的RM1164和RM8208之间,位于着丝粒附近,在此区间进一步设计11对分子标记引物,将突变基因CHY定位在着丝粒两侧的2.1Mb的范围内。
     2、利用网络资源和相关文献资料信息,查找发现一个位于BAC号为AC084767上的编码镁离子螯合酶Ⅰ亚基的CHLI基因(LOC_Os03g36540)可能与叶色突变体Chy的表型相关。测序结果表明CHLI基因的编码区第921个碱基由G突变成C,氨基酸由谷氨酸变成谷氨酰胺,突变位于CHLI基因的保守AAA+结构域上,突变体Chy与突变体chl9等位,基因CHLI为突变基因CHY的侯选基因。把突变基因CHY(包括启动子区、5’非翻译区和3’非翻译区在内)的6.9Kb的DNA片段连接到互补载体上,通过农杆菌介导法转入日本晴愈伤,获得5株阳性植株。与转空载体的日本晴对比,转基因植株T0代没有明显的叶色变化,T.代中分离出四分之一的(淡)黄叶植株,用转基因T1代中的(淡)黄叶色植株与突变体chl9进行杂交,F1验证T1代中分离出的(淡)黄叶植株是转基因互补植株,不是来自组培过程中叶色突变体。转基因进一步互补验证了突变基因CHY就是CHLI基因,突变基因CHY具有剂量效应。半定量RT-PCR检测发现CHY下调了叶绿素合成途径中的CHLH、PORA和CAO-1基因的表达,通过下调CHLH基因的表达间接影响了叶绿体的发育。同时CHY下调了编码叶绿体内蛋白的Cab1R、Cab2R、PsbA和RbcL基因的表达和上调了PsaA基因的表达。
     3、遗传分析鉴定EMS诱变的pgl4为隐性单基因控制的突变体,三叶期叶片为淡绿色,三叶期后只有新长出来的心叶为淡绿色,随着叶片完全展开而逐渐变绿。突变体在抽穗期叶绿素含量与野生型没有明显差异,但光合速率和气孔导度明显低于野生型。在三叶期,突变体pgl4的叶绿体的类囊体发育紊乱,出现液泡状,而在抽穗期与野生型没有差异。突变基因PGL4精细定位在某号染色体的21Kb的范围内,测序分析发现一个编码CLP蛋白水解酶的基因在ATG后的第926个碱基由G突变成A,突变位点位于基因的第二个内含子与第三个外显子的剪切位点,突变导致RNA的剪切位点向后移动了9个碱基。T-DNA插入敲除了基因的功能,导致植株白化致死。RNAi干涉的转基因苗心叶为淡黄叶,叶片全展后变成绿色。T-DNA插入和RNAi干涉结果进一步验证了基因PGL4编码了一个CLP蛋白水解酶。基因PGL4在根、茎、叶、鞘和穗等五个器官中均表达,但在叶和鞘中表达最高,根中表达最低。基因PGL4被T-DNA插入敲除后,下调了核基因OsGLK的表达,从而间接影响了编码叶绿体内蛋白的基因PsaA、PsbA和RbcL的表达。本研究还对叶色突变体用作标记性状在杂交育种上的应用进行了分析。
     4、突变体st1l从苗期开始叶片表现为白条状,穗颖壳成白色。在24℃处理下,突变体st1l叶片没有白条叶表型;在28℃处理下,突变体st1l叶片出现少量的白条纹;在32℃处理下,突变体st1l几乎成白化状,表明突变体st1l为高温敏感型白条叶,临界温度在28℃左右。遗传分析表明突变体st1l为单基因控制的隐性突变,但突变体的自交后代伴随出现白化致死苗,并具有细胞质效应,以突变体st1l为母本杂交,F,均出现一半的白化致死苗,其遗传模式还有待研究。利用混合法将突变基因STll初定位在Chr6短臂上的RM225和RM217之间,遗传距离为3.9cM。在此区间进一步设计5对分子标记,突变基因定位在标记RM584和WP-4之间的143Kb的范围内。在该范围内有12个具有全长cDNA支持的ORF,其中有一个编码核苷二磷酸还原酶大亚基的基因(LOC_Os06g07210),序列分析表明在该基因第15个外显子上有一个碱基发生错义突变,由G突变成了A,位于ATG起始后的第3859个碱基,氨基酸由甲硫氨酸变成异亮氨酸。突变体st1l在24℃、28℃和32℃处理下,基因ST1l表达没有明显差异。在32℃高温处理下,基因ST11下调了Cab1R和RbcL两个基因的表达。
Leaf is an important organ for photosynthesis and the major source for carbohydrates. Photosynthetic efficiency is closely related to chlorophyll content, the shape and structure of chloroplast, the place for plant photosynthesis, which will affect the photosynthesis, growth and development of the plant. Leaf color-related mutants are important materials to study the synthesis, regulation and degradation of the chlorophyll, the growth and development of the chloroplast and the signal transmission between chloroplasts and the nucleus. Rice is the cereal crops which has smallest genome size, and as a model plant, it is used to research the genetic and development of the cereal crops. Following the completion of the rice genome sequencing project and the continuous development of correlation technology, and the constructing of all kinds of rice mutant library, it is an essential task in post-genome era to identify the important genes in specific biological process and learn to know the functions by using forward genetics and reverse genetics
     In this study, there were three leaf color-related mutants which were selected from restorer lines and derived from Ethylmethyl Sulfone (EMS) mutagenesis, respectively, they were natural mutant Chy (chlorophyll) with the semi-dominant yellow-leaf trait, natural mutant stll (stripe11) with the temperature-sensitive white-stripe leaf trait and the pgl4(pale green leaf4). We studied the morphological identification of the mutants, the electron microscopy of the chloroplast development, genetic analysis, the measurement of photosynthetic and physiological traits, the mapping and cloning of genes, the constructions of each vector, the complementation test and the regulation of the genes express. And the main results were summarized as follows:
     1. Genetic analysis indicated that Chy belongs to a semi-dominant genetic model which was controlled by one gene locus. Chy lacked chlorophyll a and b, and the development of chloroplast obstructed, then the shape of chloroplasts were abnormal and into vacuole shape. There were not complete thylakoids in Chy which was lethal at three-leaf stage. Heterozygote Chy/+showed yellow-leaf, and the content of chlorophyll a and b were both lower than the wild-type at two-leaf stage, seedling stage, tillering stageand heading stage, respectively, but the ratio of chlorophyll a and b of Chy/+was higher than the wild-type at the stage above and stayed consistent, the development of the chloroplast disordered partially. The plant height, growth stages and the grain number per panicle showed significant difference between Chy/+and the wild-type. The CHY was located on chromosome3between the markers RM1164and RM8208, which was near the centromere, then the candidate region was delimited to a2.1Mb physical distance on either side of centromere by using the newly developed11pairs of molecular markers.
     2. We found that the CHLI gene (LOC_Os03g36540) which encoded Mg-chelatase I subunit on the BAC AC084767may be related to the mutants Chy. The result of sequence analysis showed that there was a single substitution (G to C) in coding region of CHLI, which resulted in the amino acid changed from glutamate into glutamine, the substitution was in the conserved AAA+domain, Chy and the mutant chl9were allelic, then CHLI considered as the candidate gene for CHY. We connected the6.9Kb DNA fragment from CHY including the promoter region,5'non-translated region and3' non-translated region to the complementary vector, and transferred to Nipponbare by agrobacterium-mediated approach, and we got5positive plants. Compared with the control, in To generation the transgenic plants did not show significant difference in leaf colour, while in T1generation, there were a quarter of (pale) yellow leaf individuals, then we crossed the (pale) yellow leaf individuals with chl9, and the analysis on the F1showed that the segregated (pale) yellow leaf individuals were transgenic complementary plants rather than the leaf color-related mutants which were generated from the tissue culture. The complementation test further identified that the CHY was the CHLI. CHY showed dose effect. Semi-qRT-PCR analysis indicated that CHY down-regulated the CHLH, PORA and CAO-1expression, and CHY affected indirectly the development of chloroplast by down-regulating the CHLH expression. Meanwhile, CHY also down-regulated expression of CablR, Cab2R, PsbA and RbcL encoded the proteins in chloroplast and up-regulated PsaA expression.
     3. Genetic analysis indicated that pgl4was a mutant with a recessive gene controlled, the leaf showed virescent at three-leaf stage, after which only the newly growing leaf showed virescent, and the leaf color gradually become green with the leaf completely unfolded. At heading, the chlorophyll content was not significant difference between pgl4and the wild-type, while the photosynthetic rate and the stomatal conductance of pgl4were obviously lower than that of the wild-type. At three-leaf stage, the development of thylakoids of pgl4disordered and vacuole appeared, while there was not difference at heading compared with the wild-type. PGL4was mapped to a21Kb physical distance on the chromosome, the result of sequence analysis indicated that there was a single substitution (G to A) at the926th base in PGL4which encoded CLP proteolytic enzymes, and the substitution was at the splice site between the second intron and the third exon, which resulted in the splice site moved backward for nine bases. PGL4in T-DNA insertion line lost the function and the mutant showed albino and lethal. The transgenic plants which transferred with the RNAi vector showed pale yellow, and the leaf turned to green when completely unfolded. Both the insertion and the RNAi results further identified that PGL4encoded a CLP proteolytic enzymes. PGL4expressed in the root, shoot, leaf, sheath and panicle organs, but it expressed highest in the leaf and the sheath, while lowest in the root. When inserted by T-DNA, it down-regulated the nuclear genes OsGLK expression, and then affected the PsaA,,PsbA and RbcL expression, which encoded the protein in chloroplast. In addition, we also analyzed that leaf color-related mutants were put into use for hybrid breeding as marker traits.
     4. stll showed white stripe during the seedling, and the glume turned white. stll that cultivated in24℃was normal, while in28℃, it showed white stripe, and in32℃, it almost showed albino, which indicated that stll was temperature-sensitive white-stripe leaf mutant and the critical temperature was28℃. Genetic analysis indicated that stll was a recessive mutant and controlled by a single gene. But when the mutant selfing, there were albinos in the descendant, and the plant showed cytoplasmic effect..To cross stll as the maternal parent, the individuals of the F1of all cross showed half albino, and the genetic model are still being worked out. The ST11was located on the short arm of the chromosome6between the markers RM225and RM217, and the genetic distance was3.9cM. Then the candidate region was delimited to a143Kb physical distance between the RM584and WP-4by using the developed5pairs molecular markers. There were12open reading frames in the candidate region, among which there was a gene (LOC_Os06g07210) encoded the large subunit nucleoside diphosphate reducase, the sequencing analysis showed that there was a missense mutation in the fifteen exon (G-A), which was the3859th base, this missense mutation resulted in the amino acid changed from methionine into isoleucine., There was no difference in the expression of ST11when stll subject to24℃,28℃and32℃. And, ST11down-regulated the expression of Cab1R and RbcL at32℃
引文
[I]Abdallah F, Salamini F, Leister D. A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci.2000,5(4):141-142.
    [2]AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J.2006,48(1):28-44.
    [3]Adam Z, Adamska I, Nakabayashi K, Ostersetzer O, Haussuhl K, ManuelI A, Zheng B, Vallon O, Rodermel SR, Shinozaki K, Clarke AK. Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol.2001,125(4):1912-1918.
    [4]Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tosl7 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene. Plant Physiol.2001,125(3): 1248-1257.
    [5]An G, Jeong DH, Jung KH, Lee S. Reverse genetic approaches for functional genomics of rice. Plant Mol Biol.2005,59(1):111-123.
    [6]An S, Park S, Jeong DH, Lee DY, Kang HG, Yu JH, Hur J, Kim SR, Kim YH, Lee M, Han S, Kim SJ, Yang J, Kim E, Wi SJ, Chung HS, Hong JP, Choe V, Lee HK, Choi JH, Nam J, Park PB, Park KY, Kim WT, Choe S, Lee CB, An G. Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol.2003,133(4):2040-2047.
    [7]Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol.1949,24:1-15
    [8]Azoulay Shemer T, Harpaz-Saad S, Belausov E, Lovat N, Krokhin O, Spicer V, Standing KG, Goldschmidt EE, Eyal Y. Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: a study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization. Plant Physiol.2008,148(1):108-118.
    [9]Azpiroz-Leehan R, Feldmann KA. T-DNA insertion mutagenesis in Arabidopsis:going back and forth. Trends Genet.1997,13(4):152-156.
    [10]Bailey S, Walters RG, Jansson S, Horton P. Acclimation of Arabidopsis thaliana to the light environment:the existence of separate low light and high light responses. planta.2001,213(5): 794-801.
    [11]Balmer Y, Koller A, del Val G, Manieri W, Schurmann P, Buchanan BB. Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci U S A. 2003,100(1):370-375.
    [12]Barakat A, Gallois P, Raynal M, Mestre-Ortega D, Sallaud C, Guiderdoni E, Delseny M, Bernardi G. The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett.2000,471(2-3):161-164.
    [13]Barber J, Morris E, Buchel C. Revealing the structure of the photosystem Ⅱ chlorophyll binding proteins, CP43 and CP47. Biochim Biophys Acta.2000,1459(2-3):239-247.
    [14]Beale SI. Green genes gleaned. Trends Plant Sci.2005,10(7):309-312.
    [15]Beck CF. Signaling pathways in chloroplast-to-nucleus communication. Protist.2001,152(3): 175-182.
    [16]Beck CF. Signaling pathways from the chloroplast to the nucleus, planta.2005,222(5):743-756.
    [17]Benedetti CE, Arruda P. Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Plant Physiol.2002,128(4):1255-1263.
    [18]Benedetti CE, Costa CL, Turcinelli SR, Arruda P. Differential expression of a novel gene in response to coronatine, methyl jasmonate, and wounding in the Coil mutant of Arabidopsis. Plant Physiol.1998,116(3):1037-1042.
    [19]Bougri O, Grimm B. Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J.1996,9(6):867-878.
    [20]Brazhnik P, de la Fuente A, Mendes P. Gene networks:how to put the function in genomics. Trends Biotechnol.2002,20(11):467-472.
    [21]Brown EC, Somanchi A, Mayfield SP. Interorganellar crosstalk:new perspectives on signaling from the chloroplast to the nucleus. Genome Biol.2001,2(8):REVIEWS 1021.
    [22]Brummell DA, Balint-Kurti PJ, Harpster MH, Palys JM, Oeller PW, Gutterson N. Inverted repeat of a heterologous 3'-untranslated region for high-efficiency, high-throughput gene silencing. Plant J.2003,33(4):793-800.
    [23]Campisi L, Yang Y, Yi Y, Heilig E, Herman B, Cassista AJ, Allen DW, Xiang H, Jack T. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J.1999,17(6):699-707.
    [24]Chabes A, Domkin V, Thelander L. Yeast Smll, a protein inhibitor of ribonucleotide reductase. J Biol Chem.1999,274(51):36679-36683.
    [25]Chabes AL, Pfleger CM, Kirschner MW, Thelander L. Mouse ribonucleotide reductase R2 protein:a new target for anaphase-promoting complex-Cdhl-mediated proteolysis. Proc Natl Acad Sci U S A.2003,100(7):3925-3929.
    [26]Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P. Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J.2003,36(1):105-113.
    [27]Chin HG, Choe MS, Lee SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC, Choi HC, Cho MJ, Han CD. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J.1999,19(5):615-623.
    [28]Chuang CF, Meyerowitz EM. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A.2000,97(9):4985-4990.
    [29]Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S. High-throughput screening for induced point mutations. Plant Physiol.2001, 126(2):480-484.
    [30]Cornah JE, Terry MJ, Smith AG. Green or red:what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci.2003,8(5):224-230.
    [31]Coulson A, Sulston J, Brenner S, Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A.1986,83(20):7821-7825.
    [32]Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux A, Hill CP, Hunter CN. Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry.2005,44(21):7603-7612.
    [33]Eckhardt U, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol.2004,56(1):1-14.
    [34]EI-Saht HM. Effects of delta-aminolevulinic acid on pigment formation and chlorophyllase activity in French bean leaf. Acta Biol Hung.2000,51(1):83-90.
    [35]Elledge SJ, Zhou Z, Allen JB. Ribonucleotide reductase:regulation, regulation, regulation. Trends Biochem Sci.1992,17(3):119-123.
    [36]Eriksson M, Uhlin U, Ramaswamy S, Ekberg M, Regnstrom K, Sjoberg BM, Eklund H. Binding of allosteric effectors to ribonucleotide reductase protein RI:reduction of active-site cysteines promotes substrate binding. Structure.1997,5(8):1077-1092.
    [37]Fedoroff N, Wessler S, Shure M. Isolation of the transposable maize controlling elements Ac and Ds. Cell.1983,35(1):235-242.
    [38]Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J.2002,31(6):713-727.
    [39]Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD, Al-Karadaghi S. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol.2001,311(1):111-122.
    [40]Fu GK, Smith MJ, Markovitz DM. Bacterial protease Lon is a site-specific DNA-binding protein. J Biol Chem.1997,272(1):534-538.
    [41]Gibson LC, Jensen PE, Hunter CN. Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BchI-BchD complex. Biochem J.1999,337 (Pt 2):243-251.
    [42]Gibson LC, Marrison JL, Leech RM, Jensen PE, Bassham DC, Gibson M, Hunter CN. A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Sequence and transcript analysis of the gene, import of the protein into chloroplasts, and in situ localization of the transcript and protein. Plant Physiol.1996,111(1):61-71.
    [43]Gibson LC, Willows RD, Kannangara CG, von Wettstein D, Hunter CN. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides:reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci U S A.1995,92(6):1941-1944.
    [44]Goff SA. Rice as a model for cereal genomics. Curr Opin Plant Biol.1999,2(2):86-89.
    [45]Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science.2002,296(5565):92-100.
    [46]Goslings D, Meskauskiene R, Kim C, Lee KP, Nater M, Apel K. Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants. Plant J. 2004,40(6):957-967.
    [47]Gothandam KM, Kim ES, Cho H, Chung YY. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol.2005,58(3):421-433.
    [48]Gottesman S, Clark WP, de Crecy-Lagard V, Maurizi MR. ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities. J Biol Chem.1993,268(30):22618-22626.
    [491 Greco R, Ouwerkerk PB, De Kam RJ, Sallaud C, Favalli C, Colombo L, Guiderdoni E, Meijer AH, Hoge Dagger JH, Pereira A. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet.2003,108(1):10-24.
    [50]Green BR, Durnford DG. The Chlorophyll-Carotenoid Proteins of Oxygenic Photosynthesis. Annu Rev Plant Physiol Plant Mol Biol.1996,47:685-714.
    [51]Guo HS, Fei JF, Xie Q, Chua NH. A chemical-regulated inducible RNAi system in plants. Plant J.2003,34(3):383-392.
    [52]Hanin M, Paszkowski J. Plant genome modification by homologous recombination. Curr Opin Plant Biol.2003,6(2):157-162.
    [53]Hansson A, Kannangara CG, von Wettstein D, Hansson M. Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Natl Acad Sci U S A.1999,96(4):1744-1749.
    [54]Hansson A, Willows RD, Roberts TH, Hansson M. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proc Natl Acad Sci U S A.2002,99(21):13944-13949.
    [55]Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, Hortensteiner S, Gidoni D, Gal-On A, Goldschmidt EE, Eyal Y. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell.2007,19(3): 1007-1022.
    [56]Harper AL, von Gesjen SE, Linford AS, Peterson MP, Faircloth RS, Thissen MM, Brusslan JA. Chlorophyllide a Oxygenase mRNA and Protein Levels Correlate with the Chlorophyll a/b Ratio in Arabidopsis thaliana. Photosynth Res.2004,79(2):149-159.
    [57]Henikoff S, Comai L. Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol.2003,54:375-401.
    [58]Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem.1983,258(13): 8206-8214.
    [59]Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994,6(2):271-282.
    [60]Hinnerwisch J, Reid BG, Fenton WA, Horwich AL. Roles of the N-domains of the ClpA unfoldase in binding substrate proteins and in stable complex formation with the CIpP protease. J Biol Chem.2005,280(49):40838-40844.
    [61]Hirochika H. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol.2001,4(2):118-122.
    [62]Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A.1996,93(15):7783-7788.
    [63]Holtorf H, Guitton MC, Reski R. Plant functional genomics. Naturwissenschaften.2002,89(6): 235-249.
    [64]Hortensteiner S. Chlorophyll degradation during senescence. Annu Rev Plant Biol.2006,57: 55-77.
    [65]Hsing YI, Chern CG, Fan MJ, Lu PC, Chen KT, Lo SF, Sun PK, Ho SL, Lee KW, Wang YC, Huang WL, Ko SS, Chen S, Chen JL, Chung CI, Lin YC, Hour AL, Wang YW, Chang YC, Tsai MW, Lin YS, Chen YC, Yen HM, Li CP, Wey CK, Tseng CS, Lai MH, Huang SC, Chen LJ, Yu SM. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol.2007,63(3):351-364.
    [66]Huang M, Zhou Z, Elledge SJ. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crtl repressor. Cell.1998,94(5):595-605.
    [67]Huang YS, Li HM. Arabidopsis CHLI2 can substitute for CHLI1. Plant Physiol.2009,150(2): 636-645.
    [68]Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail PH. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science.2004,305(5692):1937-1941.
    [69]Ilag LL, Kumar AM, Soll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell.1994,6(2):265-275.
    [70]Itoh T, Tanaka T, Barrero RA, Yamasaki C, Fujii Y, Hilton PB, Antonio BA, Aono H, Apweiler R, Bruskiewich R, Bureau T, Burr F, Costa de Oliveira A, Fuks G, Habara T, Haberer G, Han B, Harada E, Hiraki AT, Hirochika H, Hoen D, Hokari H, Hosokawa S, Hsing YI, Ikawa H, Ikeo K, Imanishi T, Ito Y, Jaiswal P, Kanno M, Kawahara Y, Kawamura T, Kawashima H, Khurana JP, Kikuchi S, Komatsu S, Koyanagi KO, Kubooka H, Lieberherr D, Lin YC, Lonsdale D, Matsumoto T, Matsuya A, McCombie WR, Messing J, Miyao A, Mulder N, Nagamura Y, Nam J, Namiki N, Numa H, Nurimoto S, O'Donovan C, Ohyanagi H, Okido T, Oota S, Osato N, Palmer LE, Quetier F, Raghuvanshi S, Saichi N, Sakai H, Sakai Y, Sakata K, Sakurai T, Sato F, Sato Y, Schoof H, Seki M, Shibata M, Shimizu Y, Shinozaki K, Shinso Y, Singh NK, Smith-White B, Takeda J, Tanino M, Tatusova T, Thongjuea S, Todokoro F, Tsugane M, Tyagi AK, Vanavichit A, Wang A, Wing RA, Yamaguchi K, Yamamoto M, Yamamoto N, Yu Y, Zhang H, Zhao Q, Higo K, Burr B, Gojobori T, Sasaki T. Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res.2007,17(2):175-183.
    [71]Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J.1987,6(13):3901-3907.
    [72]Jensen PE, Gibson LC, Hunter CN. ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803:evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits. Biochem J.1999,339 (Pt 1):127-134.
    [731 Jensen PE, Reid JD, Hunter CN. Modification of cysteine residues in the ChlI and ChlH subunits of magnesium chelatase results in enzyme inactivation. Biochem J.2000,352 Pt 2: 435-441.
    [74]Jeon J, An G. Gene tagging in rice:a high throughput system for functional genomics. Plant Sci. 2001,161(2):211-219.
    [75]Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G. T-DNA insertional mutagenesis for functional genomics in rice. Plant J.2000,22(6):561-570.
    [76]Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol.2002,130(4):1636-1644.
    [77]Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR. An active DNA transposon family in rice. Nature.2003,421(6919):163-167.
    [78]Jiang SY, Ramachandran S. Natural and artificial mutants as valuable resources for functional genomics and molecular breeding. Int J Biol Sci.2010,6(3):228-251.
    [79]Jin WZ, Duan RJ, Zhang F, Chen SY, Wu YR, Wu P. [Application of Ac/Ds transposon system to genetate marker gene free transgenic plants in rice]. Sheng Wu Gong Cheng Xue Bao.2003,19(6):668-673.
    [80]Jin WZ, Wang SM, Xu M, Duan RJ, Wu P. Characterization of enhancer trap and gene trap harboring AcADs transposon in transgenic rice. J Zhejiang Univ Sci.2004,5(4):390-399.
    [81]Jung KH, An G, Ronald PC. Towards a better bowl of rice:assigning function to tens of thousands of rice genes. Nat Rev Genet.2008,9(2):91-101.
    [82]Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol. 2003,44(5):463-472.
    [83]Kakizaki T, Inaba T. New insights into the retrograde signaling pathway between the plastids and the nucleus. Plant Signal Behav.2010,5(2):196-199.
    [84]Kakizaki T, Matsumura H, Nakayama K, Che FS, Terauchi R, Inaba T. Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. Plant Physiol.2009,151(3):1339-1353.
    [85]Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D. Activation tagging of the floral inducer FT. Science.1999, 286(5446):1962-1965.
    [86]Kikuchi K, Terauchi K, Wada M, Hirano HY. The plant MITE mPing is mobilized in anther culture. Nature.2003,421(6919):167-170.
    [87]Kim KI, Park SC, Kang SH, Cheong GW, Chung CH. Selective degradation of unfolded proteins by the self-compartmentalizing HtrA protease, a periplasmic heat shock protein in Escherichia coli. J Mol Biol.1999,294(5):1363-1374.
    [88]Kirstein J, Moliere N, Dougan DA, Turgay K. Adapting the machine:adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat Rev Microbiol.2009,7(8):589-599.
    [89]Kleine T, Voigt C, Leister D. Plastid signalling to the nucleus:messengers still lost in the mists? Trends Genet.2009,25(4):185-192.
    [90]Klimyuk VI, Nussaume L, Harrison K, Jones JD. Novel GUS expression patterns following transposition of an enhancer trap Ds element in Arabidopsis. Mol Gen Genet.1995,249(4): 357-365.
    [91]Kobayashi K, Mochizuki N, Yoshimura N, Motohashi K, Hisabori T, Masuda T. Functional analysis of Arabidopsis thaliana isoforms of the Mg-chelatase CHLI subunit. Photochem Photobiol Sci.2008,7(10):1188-1195.
    [92]Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S. Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J.2004,37(2):301-314.
    [93]Komatsu M, Shimamoto K, Kyozuka J. Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell.2003,15(8):1934-1944.
    [94]Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J. Signals from chloroplasts converge to regulate nuclear gene expression. Science. 2007,316(5825):715-719.
    [95]Koussevitzky S, Stanne TM, Peto CA, Giap T, Sjogren LL, Zhao Y, Clarke AK, Chory J. An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol Biol.2007,63(1):85-96.
    [96]Kropat J, Oster U, Rudiger W, Beck CF. Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci U S A. 1997,94(25):14168-14172.
    [97]Kumar CS, Wing RA, Sundaresan V. Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J.2005,44(5):879-892.
    [98]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell.2007, 19(4):1362-1375.
    [99]Kusumi K, Komori H, Satoh H, Iba K. Characterization of a zebra mutant of rice with increased susceptibility to light stress. Plant Cell Physiol.2000,41(2):158-164.
    [100]La Roche J, van der Staay GW, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AW, Green BR. Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA.1996,93(26):15244-15248.
    [101]Larkin RM, Alonso JM, Ecker JR, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science.2003,299(5608):902-906.
    [102]Lecerof D, Fodje M, Hansson A, Hansson M, Al-Karadaghi S. Structural and mechanistic basis of porphyrin metallation by ferrochelatase. J Mol Biol.2000,297(1):221-232.
    [103]Lee S, Kim JH, Yoo ES, Lee CH, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol.2005,57(6):805-818.
    [104]Li J, Pandeya D, Nath K, Zulfugarov IS, Yoo SC, Zhang H, Yoo JH, Cho SH, Koh HJ, Kim DS, Seo HS, Kang BC, Lee CH, Paek NC. ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant J.2010,62(4):713-725.
    [105]Li X, Lassner M, Zhang Y. Deleteagene: a fast neutron deletion mutagenesis-based gene knockout system for plants. Comp Funct Genomics.2002,3(2):158-160.
    [106]Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J. Control of tillering in rice. Nature.2003,422(6932):618-621.
    [107]Li X, Song Y, Century K, Straight S, Ronald P, Dong X, Lassner M, Zhang Y. A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J.2001,27(3):235-242.
    [108]Liu W, Fu Y, Hu G, Si H, Zhu L, Wu C, Sun Z. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). planta.2007,226(3): 785-795.
    [109]Luan WJ, He CK, Hu GC, Dey M, Fu YP, Si HM, Zhu L, Liu WZ, Duan F, Zhang H, Liu WY, Zhuo RY, Garg A, Wu R, Sun ZX. An efficient field screening procedure for identifying transposants for constructing an Ac/Ds-based insertional-mutant library of rice. Genome.2008,51(1):41-49.
    [110]Luan WJ, Sun ZX. [Ac/Ds tagging system and functional genomics in rice]. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao.2005,31(5):441-450.
    [111]Marsch-Martinez N, Greco R, Van Arkel G, Herrera-Estrella L, Pereira A. Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol.2002,129(4): 1544-1556.
    [112]Masuda T. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth Res.2008,96(2):121-143.
    [113]Matile P, Hortensteiner S, Thomas H. Chlorophyll Degradation. Annu Rev Plant Physiol Plant Mo] Biol.1999,50:67-95.
    [114]Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya K, Masuda T. Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol.2004,135(4):2379-2391.
    [115]McCallum CM, Comai L, Greene EA, Henikoff S. Targeted screening for induced mutations. Nat Biotechnol.2000,18(4):455-457.
    [116]McCallum CM, Comai L, Greene EA, Henikoff S. Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol.2000,123(2):439-442.
    [117]McCarthy EM, Liu J, Lizhi G, McDonald JF. Long terminal repeat retrotransposons of Oryza sativa. Genome Biol.2002,3(10):RESEARCH0053.
    [118]McCormac AC, Terry MJ. Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana. Plant J.2002, 32(4):549-559.
    [119]Meinke DW, Meinke LK, Showalter TC, Schissel AM, Mueller LA, Tzafrir I. A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol.2003, 131(2):409-418.
    [120]Meskaushiene R, Nater M, David G. FLU:A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA.2001, (98):12826-12831.
    [121]Meskauskiene R, Apel K. Interaction of FLU, a negative regulator of tetrapyrrole biosynthesis, with the glutamyl-tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett.2002,532(1-2):27-30.
    [122]Miki D, Itoh R, Shimamoto K. RNA silencing of single and multiple members in a gene family of rice. Plant Physiol.2005,138(4):1903-1913.
    [123]Miyao A, Iwasaki Y, Kitano H, Itoh J, Maekawa M, Murata K, Yatou O, Nagato Y, Hirochika H. A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol Biol.2007,63(5): 625-635.
    [124]Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell.2003,15(8):1771-1780.
    [125]Miyoshi K, Ito Y, Serizawa A, Kurata N. OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J.2003,36(4):532-540.
    [126]Mochizuki N. [Plastid-to-nucleus signal transduction pathway]. Tanpakushitsu Kakusan Koso. 2005,50(14 Suppl):1896-1897.
    [127]Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci U S A.2001,98(4):2053-2058.
    [128]Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A. The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci U S A.2008,105(39):15184-15189.
    [129]Monte E, Alonso JM, Ecker JR, Zhang Y, Li X, Young J, Austin-Phillips S, Quail PH. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell.2003,15(9):1962-1980.
    [130]Monte E, Tepperman JM, Al-Sady B, Kaczorowski KA, Alonso JM, Ecker JR, Li X, Zhang Y, Quail PH. The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proc Natl Acad Sci U S A.2004, 101(46):16091-16098.
    [131]Moon S, Jung KH, Lee DE, Jiang WZ, Koh HJ, Heu MH, Lee DS, Suh HS, An G. Identification of active transposon dTok, a member of the hAT family, in rice. Plant Cell Physiol.2006,47(11):1473-1483.
    [132]Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet JG, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol.2007,63(6):847-860.
    [133]Moulin M, McCormac AC, Terry MJ, Smith AG. Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci U S A.2008,105(39):15178-15183.
    [134]Nagata N, Satoh S, Tanaka R, Tanaka A. Domain structures of chlorophyllide a oxygenase of green plants and Prochlorothrix hollandica in relation to catalytic functions. planta.2004, 218(6):1019-1025.
    [135]Nakagawara E, Sakuraba Y, Yamasato A, Tanaka R, Tanaka A. Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. Plant J.2007, 49(5):800-809.
    [136]Nakamura H, Muramatsu M, Hakata M, Ueno O, Nagamura Y, Hirochika H, Takano M, Ichikawa H. Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells. Plant Cell Physiol.2009,50(11):1933-1949.
    [137]Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H, Takamiya K. Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent ChlH protein within the chloroplast. Plant Cell Physiol. 1998,39(3):275-284.
    [138]Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T. Mobilization of a transposon in the rice genome. Nature.2003,421(6919): 170-172.
    [139]Neuwald AF, Aravind L, Spouge JL, Koonin EV. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999,9(1):27-43.
    [140]Nott A, Jung HS, Koussevitzky S, Chory J. Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol.2006,57:739-759.
    [141]Okazawa A, Tango L, Itoh Y, Fukusaki E, Kobayashi A. Characterization and subcellular localization of chlorophyllase from Ginkgo biloba. Z Naturforsch C.2006,61(1-2):111-117.
    [142]Olson BD, Sgourdou P, Downes GB. Analysis of a zebrafish behavioral mutant reveals a dominant mutation in atp2al/SERCA 1. Genesis.2010,48(6):354-361.
    [143]Olsson U, Sirijovski N, Hansson M. Characterization of eight barley xantha-f mutants deficient in magnesium chelatase. Plant Physiol Biochem.2004,42(6):557-564.
    [144]Pang SZ, DeBoer DL, Wan Y, Ye G, Layton JG, Neher MK, Armstrong CL, Fry JE, Hinchee MA, Fromm ME. An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol.1996,112(3):893-900.
    [1451 Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, Lee SK, Jeong SW, Seo HS, Koh HJ, Jeon JS, Park YI, Paek NC. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell.2007,19(5):1649-1664.
    [146]Peltier JB, Ripoll DR, Friso G, Rudella A, Cai Y, Ytterberg J, Giacomelli L, Pillardy J, van Wijk KJ. Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J Biol Chem.2004,279(6):4768-4781.
    [147]Petersen BL, Kannangara CG, Henningsen KW. Distribution of ATPase and ATP-to-ADP phosphate exchange activities in magnesium chelatase subunits of Chlorobium vibrioforme and Synechocystis PCC6803. Arch Microbiol.1999,171(3):146-150.
    [148]Philipps G, Clement B, Gigot C. Molecular characterization and cell cycle-regulated expression of a cDNA clone from Arabidopsis thaliana homologous to the small subunit of ribonucleotide reductase. FEBS Lett.1995,358(1):67-70.
    [149]Picault N, Chaparro C, Piegu B, Stenger W, Formey D, Llauro C, Descombin J, Sabot F, Lasserre E, Meynard D, Guiderdoni E, Panaud O. Identification of an active LTR retrotransposon in rice. Plant J.2009,58(5):754-765.
    [150]Piffanelli P, Droc G, Mieulet D, Lanau N, Bes M, Bourgeois E, Rouviere C, Gavory F, Cruaud C, Ghesquiere A, Guiderdoni E. Large-scale characterization of Tos 17 insertion sites in a rice T-DNA mutant library. Plant Mol Biol.2007,65(5):587-601.
    [151]Polle JE, Benemann JR, Tanaka A, Melis A. Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source. planta.2000,211(3):335-344.
    [152]Pontier D, Albrieux C, Joyard J, Lagrange T, Block MA. Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling. J Biol Chem.2007,282(4):2297-2304.
    [153]Qiao Y, Jiang W, Lee J, Park B, Choi MS, Piao R, Woo MO, Roh JH, Han L, Paek NC, Seo HS, Koh HJ. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol.2010,185(1):258-274.
    [154]Raux-Deery E, Leech HK, Nakrieko KA, McLean KJ, Munro AW, Heathcote P, Rigby SE, Smith AG, Warren MJ. Identification and characterization of the terminal enzyme of siroheme biosynthesis from Arabidopsis thaliana: a plastid-Iocated sirohydrochlorin ferrochelatase containing a 2FE-2S center. J Biol Chem.2005,280(6):4713-4721.
    [155]Reid JD, Hunter CN. Magnesium-dependent ATPase activity and cooperativity of magnesium chelatase from Synechocystis sp. PCC6803. J Biol Chem.2004,279(26):26893-26899.
    [156]Rissler HM, Collakova E, DellaPenna D, Whelan J, Pogson BJ. Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol.2002,128(2):770-779.
    [157]Rodermel S. Pathways of plastid-to-nucleus signaling. Trends Plant Sci.2001,6(10):471-478.
    [158]Rudella A, Friso G, Alonso JM, Ecker JR, van Wijk KJ. Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Plant Cell.2006,18(7):1704-1721.
    [159]Ryu CH, You JH, Kang HG, Hur J, Kim YH, Han MJ, An K, Chung BC, Lee CH, An G. Generation of T-DNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol Biol.2004,54(4):489-502.
    [160]Saitoh S, Chabes A, McDonald WH, Thelander L, Yates JR, Russell P. Cid13 is a cytoplasmic poly(A) polymerase that regulates ribonucleotide reductase mRNA. Cell.2002, 109(5):563-573.
    [161]Sakamoto W, Ohmori T, Kageyama K, Miyazaki C, Saito A, Murata M, Noda K, Maekawa M. The Purple leaf (PI) locus of rice:the Pl(w) allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol.2001,42(9):982-991.
    [162]Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PB, Rueb S, Delseny M, Guiderdoni E. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet.2003,106(8):1396-1408.
    [163]Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM, Grant RA, Hersch GL, Joshi SA, Kenniston JA, Levchenko I, Neher SB, Oakes ES, Siddiqui SM, Wah DA, Baker TA. Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell.2004,119(1): 9-18.
    [164]Sawers RJ, Viney J, Farmer PR, Bussey RR, Olsefski G, Anufrikova K, Hunter CN, Brutnell TP. The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Mol Biol.2006,60(1):95-106.
    [165]Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hortensteiner S. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell.2009,21(3):767-785.
    [166]Schenk N, Schelbert S, Kanwischer M, Goldschmidt EE, Dormann P, Hortensteiner S. The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Lett.2007,581(28):5517-5525.
    [167]Sha Y, Li S, Pei Z, Luo L, Tian Y, He C. Generation and flanking sequence analysis of a rice T-DNA tagged population. Theor Appl Genet.2004,108(2):306-314.
    [168]Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian L, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, Yang ZN. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol.2004, 135(3):1198-1205.
    [169]Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP. The Mg-chelatase H subunit is an abscisic acid receptor. Nature. 2006,443(7113):823-826.
    [170]Singh A, Singh U, Mittal D, Grover A. Genome-wide analysis of rice CIpB/HSP100, ClpC and ClpD genes. BMC Genomics.2010,11:95.
    [171]Sjogren LL, MacDonald TM, Sutinen S, Clarke AK. Inactivation of the clpCl gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol.2004, 136(4):4114-4126.
    [172]Sjogren LL, Stanne TM, Zheng B, Sutinen S, Clarke AK. Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis. Plant Cell.2006,18(10): 2635-2649.
    [173]Soldatova O, Apchelimov A, Radukina N, Ezhova T, Shestakov S, Ziemann V, Hedtke B, Grimm B. An Arabidopsis mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis. Mol Genet Genomics.2005,273(4):311-318.
    [174]Spielmeyer W, Ellis MH, Chandler PM. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A.2002,99:9043-9048
    [175]Springer PS. Gene traps:tools for plant development and genomics. Plant Cell.2000,12(7): 1007-1020.
    [176]Stanne TM, Sjogren LL, Koussevitzky S, Clarke AK. Identification of new protein substrates for the chloroplast ATP-dependent Clp protease supports its constitutive role in Arabidopsis. Biochem J.2009,417(1):257-268.
    [177]Strand A. Plastid-to-nucleus signalling. Curr Opin Plant Biol.2004,7(6):621-625.
    [178]Strand A, Asami T, Alonso J, Ecker JR, Chory J. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature.2003,421(6918):79-83.
    [179]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol.2004,45(8):985-996.
    [180]Sugimoto H, Makino M, Sawai H, Kawada N, Yoshizato K, Shiro Y. Structural basis of human cytoglobin for ligand binding. J Mol Biol.2004,339(4):873-885.
    [181]Sun Zong-xiu, Zhao Cheng-zhang, Zheng Kang-le, Qi Xiu-fang, Fu Ya-ping. Somaclonal genetics of rice, Oryza sative L. Theor Appl Genet.1983,67:67-73
    [182]Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev.1995,9(14):1797-1810.
    [183]Surpin M, Larkin RM, Chory J. Signal transduction between the chloroplast and the nucleus. Plant Cell.2002,14 Suppl:S327-338.
    [184]Susek RE, Ausubel FM, Chory J. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell.1993,74(5):787-799.
    [185]Szeverenyi I, Ramamoorthy R, Teo ZW, Luan HF, Ma ZG, Ramachandran S. Large-scale systematic study on stability of the Ds element and timing of transposition in rice. Plant Cell Physiol.2006,47(l):84-95.
    [186]Takamiya KI, Tsuchiya T, Ohta H. Degradation pathway(s) of chlorophyll:what has gene cloning revealed? Trends Plant Sci.2000,5(10):426-431.
    [187]Takeda S, Sugimoto K, Otsuki H, Hirochika H. Transcriptional activation of the tobacco retrotransposon Ttol by wounding and methyl jasmonate. Plant Mol Biol.1998,36(3): 365-376.
    [188]Tanaka A, Tanaka R. Chlorophyll metabolism. Curr Opin Plant Biol.2006,9(3):248-255.
    [189]Tanaka R, Koshino Y, Saw a S, Ishiguro S, Okada K, Tanaka A. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem Ⅱ in Arabidopsis thaliana. Plant J.2001,26(4):365-373.
    [190]Tanaka R, Tanaka A. Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana. Photosynth Res.2005,85(3):327-340.
    [191]Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol.2007,58: 321-346.
    [192]Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H, Tanaka A. Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol.1996,110(4):1223-1230.
    [193]Tarutani Y, Shiba H, Iwano M, Kakizaki T, Suzuki G, Watanabe M, Isogai A, Takayama S. Trans-acting small RNA determines dominance relationships in Brassica self-incompatibility. Nature.2010,466(7309):983-986.
    [194]Terry MJ. Phytochrome chromophore-deficient mutants. Plant Cell Environ.1997,20:740-745.
    [195]Terry MJ, Kendrick RE. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol.1999, 119(1):143-152.
    [196]Thomas H, Howarth CJ. Five ways to stay green. Journal of Experimental Botany.2000,51: 329-337
    [197]Thomas H, Ougham H, Canter P, Donnison I. What stay-green mutants tell us about nitrogen remobilization in leaf senescence. J Exp Bot.2002,370:801-808.
    [198]Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol.2007,7:19.
    [199]Tomoyasu T, Yamanaka K, Murata K, Suzaki T, Bouloc P, Kato A, Niki H, Hiraga S, Ogura T. Topology and subcellular localization of FtsH protein in Escherichia coli. J Bacteriol.1993, 175(5):1352-1357.
    [200]Topping JF, Lindsey K. Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis. Plant Cell.1997,9(10):1713-1725.
    [201]Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation:finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci U S A.1999,96(26):15362-15367.
    [202]Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun CH, Iida S. An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J.2006,45(1):46-57.
    [203]Verdecia MA, Larkin RM, Ferrer JL, Riek R, Chory J, Noel JP. Structure of the Mg-chelatase cofactor GUN4 reveals a novel hand-shaped fold for porphyrin binding. PLoS Biol.2005,3(5):e151.
    [204]Vincentini F, Hortensteiner S, Schellenberg M, Thomas H, Matile P. Chlorophyll breakdown in senescent leaves:identification of biochemical lesion in a stay-green genotype of Festuca pratensis Huds. New Phytol.1995,129:247-252.
    [205]Vothknecht UC, Kannangara CG, von Wettstein D. Barley glutamyl tRNAGlu reductase: mutations affecting haem inhibition and enzyme activity. Phytochemistry.1998,47(4): 513-519.
    [206]Walbot V. Reactivation of Mutator transposable elements of maize by ultraviolet light. Mol Gen Genet.1992,234(3):353-360.
    [207]Walbot V. Saturation mutagenesis using maize transposons. Curr Opin Plant Biol.2000,3(2): 103-107.
    [208]Walden R, Fritze K, Hayashi H, Miklashevichs E, Harling H, Schell J. Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development. Plant Mol Biol.1994,26(5):1521-1528.
    [209]WANG ZHEN, CHEN CHANGBIN, XU YUNYUAN, JIANG RONGXI, HAN YE,,XU ZHIHONG and CHONG KANG. A Practical Vector for Efficient Knockdown of Gene Expression in Rice (Oryza saliva L.). Plant Molecular Biology Reporter.2004,22:409-417
    [210]Waters MT, Moylan EC, Langdale JA. GLK transcription factors regulate chloroplast development in a cell-autonomous manner. Plant J.2008,56(3):432-444.
    [211]Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J. Activation tagging in Arabidopsis. Plant Physiol.2000,122(4):1003-1013.
    [212]Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 2001,27(6):581-590.
    [213]Wilde A, Mikolajczyk S, Alawady A, Lokstein H, Grimm B. The gun4 gene is essential for cyanobacterial porphyrin metabolism. FEBS Lett.2004,571(1-3):119-123.
    [214]Willows RD, Gibson LC, Kanangara CG, Hunter CN, von Wettstein D. Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem. 1996,235(1-2):438-443.
    [215]Wilson K, Long D, Swinburne J, Coupland G. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell.1996,8(4):659-671.
    [216]Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Zhou DX, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. Plant J.2003, 35(3):418-427.
    [217]Wu D, Shu Q, Xia Y. In vitro mutagenesis induced novel thermo/photoperiod-sensitive genic male sterile indica rice with green-revertible xanthan leaf color marker. Euphytica.2002, 123(2):195-202.
    [218]Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H. Chemical-and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol.2005,59(1):85-97.
    [219]Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol.2007,145(1):29-40.
    [220]Xu H, Vavilin D, Funk C, Vermaas W. Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol.2002,49(2): 149-160.
    [221]Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci U S A.2002,99(11): 7530-7535.
    [222]Yoo SC, Cho SH, Sugimoto H, Li J, Kusumi K, Koh HJ, Iba K, Paek NC. Rice virescent3 and stripel encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol.2009,150(1):388-401.
    [223]Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science.2002,296(5565):79-92.
    [224]Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell.2004, 16(10):2795-2808.
    [225]Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC. Rice Chlorina-1 and Chlorina-9 encode ChID and Chll subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol.2006,62(3):325-337.
    [226]Zhang J, Guo D, Chang Y, You C, Li X, Dai X, Weng Q, Chen G, Liu H, Han B, Zhang Q, Wu C. Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J.2007,49(5):947-959.
    [227]Zhao X, Georgieva B, Chabes A, Domkin V, Ippel JH, Schleucher J, Wijmenga S, Thelander L, Rothstein R. Mutational and structural analyses of the ribonucleotide reductase inhibitor Smll define its Rnrl interaction domain whose inactivation allows suppression of mecl and rad53 lethality. Mol Cell Biol.2000,20(23):9076-9083.
    [228]Zheng B, MacDonald TM, Sutinen S, Hurry V, Clarke AK. A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana. planta.2006,224(5):1103-1115.
    [229]Zhu ZG, Xiao H, Fu YP, Hu GC, Yu YH, Si HM, Zhang JL, Sun ZX. [Construction of transgenic rice populations by inserting the maize transponson Ac/Ds and genetic analysis for several mutants]. Sheng Wu Gong Cheng Xue Bao.2001,17(3):288-292.
    [230]Zybailov B, Friso G, Kim J, Rudella A, Rodriguez VR, Asakura Y, Sun Q, van Wijk KJ. Large scale comparative proteomics of a chloroplast Clp protease mutant reveals folding stress, altered protein homeostasis, and feedback regulation of metabolism. Mol Cell Proteomics.2009,8(8):1789-1810.
    [231]曹立勇,钱前.紫叶标记籼型光-温敏核不育系中紫s的选育及其配组的杂种优势.作物学报.1999,25(1):44-49.
    [232]陈甲法.一个玉米叶色突变体的遗传研究.[硕士学位论文].郑州:河南农业大学,2009
    [233]陈青.水稻T-DNA插入黄叶突变体基因克隆与功能分析.[博士学位论文].北京:中国农业科学院研究生院,2007
    [234]董凤高,朱旭东.以淡绿叶为标记的籼型光-温敏核不育系M2S的选育.中国水稻科学.1995,9(2):65-70.
    [235]郭冬.水稻T-DNA插入突变体库侧翼序列的分离与分析及控制叶色性状基因OsRNase Z的功能研究.[博十学位论文].武汉:华中农业大学,2008
    [236]郭龙彪,储成才,钱前.水稻突变体与功能基因组学.植物学通报.2006,23(1):1-13.
    [237]胡茂龙.水稻光合功能相关性状QTL分析及转绿型白叶突变体基因的图位克隆.[博十学位论文].南京:南京农业大学,2006
    [238]雷红梅,刘仁祥,聂琼,刘胜传,黄莉蓉,孔德懋.一份烤烟烟叶突变材料的叶色遗传规律.贵州农业科学.2009,37(8):19-21.
    [239]陆燕鹏,万邦惠,陈雄辉,彭海峰,梁克勤.短光低温不育水稻宜DS叶缘与稃尖颜色遗传的关系研究.华南农业大学学报.2000,21(4):1-3.
    [240]陆作楣.水稻早世代稳定特性研究的问题和建议.中国水稻科学.2008,22(3):321-322.
    [241]牟同敏,李春海,杨国才,卢兴桂.紫叶水稻苗期叶色的遗传研究.中国水稻科学,1995,9(1):45-48.
    [242]祁鲁,刘晓,陈佳颖,林冬枝,董彦君,徐建龙.一个新的水稻温敏感叶色突变体基因定位分析.核农学报.2010,24(2):220-224.
    [243]钱前,程式华.水稻遗传学和功能基因组学.北京:科学出版社.2006,299-339
    [244]沈圣泉,舒庆尧,包劲松,吴殿星,崔海瑞,夏英武.实用转绿型叶色标记不育系白丰A的应用研究.中国水稻科学,2004,18(1):36-40.
    [245]史典义,刘忠香,金危危.植物叶绿素合成、分解代谢及信号调控.遗传,2009,31(7):698-704.
    [246]舒庆尧,陈善福,吴殿星.新型不育系全龙A的选育与研究.中国农业科学.2001,34(4):349-354.
    [247]王平荣.水稻824ys黄绿叶突变基因的图位克隆及功能分析.[博十学位论文].雅安:四川农业大学,2010
    [248]余新桥,罗利军,梅捍卫.水稻标记不育系标1A的选育与利用.西南农业学报,2000,13(4):6-9.
    [249]余有霞.水稻T-DNA插入叶绿素缺失突变体筛选及侧翼序列分离.[硕十学位论文].州:甘肃农业大学,2009
    [250]叶荣国.带叶色标记杂交水稻三系不育系的选育.浙江农业科技.1999,6:254-256.
    [251]赵海军,吴殿星,舒庆尧,沈圣泉,马传喜.携带白化转绿型叶色标记光温敏核不育系玉兔S的选育及其特征特性.中国水稻科学.2004,18(6):41-47.
    [252]朱丽,刘文真,吴超,栾维江,傅亚萍,胡国成,斯华敏,孙宗修.水稻着丝粒附近一个淡绿叶突变相关基因的定位分析.中国水稻科学,2007,3(3):228-234.
    [253]朱丽.水稻三个组培诱变突变体的鉴定与基因克隆.[博士学位论文].北京:中国农业科学院研究生院,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700