用户名: 密码: 验证码:
苎麻资源核心种质构建方法及遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从构建核心种质的技术方法入手,建立苎麻种质资源核心种质的构建程序,初步构建苎麻种质资源核心种质,并在分子水平对核心种质进行遗传多样性评价,为苎麻种质资源的进一步深入研究打下基础。
     1、苎麻核心种质构建方法研究:利用国家种质长沙苎麻圃的790份苎麻种质资源,在已有的25个性状数据的基础上,采用不同聚类方法、不同抽样方法、不同遗传距离构建苎麻核心种质,用质量性状和数量性状的6个指标评价不同结合方式(聚类方法、抽样方法、遗传距离)构建核心种质的优劣。结果表明,不同的取样方法对质量性状和数量性状的遗传多样性影响不同,优先取样+多次聚类随机取样方法能使质量性状品系间的差异达到最大化,而优先取样+多次聚类变异度取样方法能使数量性状品系间的差异达到最大化。用优先取样+多次聚类随机取样方法取样时,采用最短距离法和重心法构建的核心种质最好,用优先取样+多次聚类变异度取样时,采用离差平方和法则是构建苎麻核心种质的最佳聚类方法。苎麻核心种质构建与质量性状的不同遗传距离无关,但数量性状以欧氏距离最佳。
     2、初步构建苎麻种质资源核心种质:采取优先取样+多次聚类变异度取样方法,在20%的抽样水平下,构建了158份苎麻初级核心种质。构建的核心种质的质量性状多样性指数均值、数量性状方差差异百分率、变异系数变化率均高于原种质,极差符合率100%;质量性状的性状频率分布与原种质有差异的性状为12.5%;原种质各数量性状间的相关性基本上在核心种质中得到保留。
     3、苎麻EST-SSR引物的开发及利用:SSR重复次数的变异引起位点长度的变化,是产生SSR多态性的主要原因。本试验设计的76对引物的SSR重复次数在3-44之间。重复4次所占比例最高,占所检测的SSR的30%;重复3次和重复18次次之,均占检测SSR的17.1%。重复基元长度变化是EST-SSR位点多态性的主要表现形式,苎麻EST-SSR重复基元长度变化区间在12-44之间,其中,重复基元长度主要为12bp和18bp,这两种基元长度占所检测SSR总数的68.4%。
     4、苎麻核心种质遗传多样性分子评价:利用76对EST-SSR引物,对62份苎麻种质DNA进行扩增,其中70对引物进行了有效扩增,50对引物具有多态性,27对引物扩增出了清晰条带。利用筛选出的27对SSR引物对158份苎麻核心种质DNA进行PCR扩增。共扩增出64条多态性条带,多态性条带集中在80-200bp之间。平均每对引物扩增出2.37条条带。
     对158份苎麻核心种质进行分子标记遗传多样性分析表明,其相似系数在0.27至0.90之间,平均相似系数0.61。通过聚类分析,可以把158份核心种质资源分为10类。采用19个田间性状,通过卡方距离和最短距离法对158份核心种质进行聚类分析,与分子标记的聚类结果进行比较,表明田间性状的聚类结果与分子标记的聚类结果有相似性。
The primary core collection of ramie (Boehmeria Jacq.)was established based on the studies of the technical method, the genetic diversity of the core collection was evaluated on the molecular level.
     a. Studies on the method of core-collection establishment of ramie:Using different clustering methods, different sampling strategy and different genetic distances of qualitative and quantitative characters to establish core collection of ramie based on the data of25traits of790accessions from the Field Genebank for Ramie(Changsha).6Genetic parameters were used to evaluate the core collections established with different methods. The results showed that different sampling methods have different impacts on qualitative traits and quantitative traits. For the largest genetic diversity of qualitative traits, it is effective to choose stepwise clustering with random sampling strategy and preferred sampling strategy. For the largest genetic diversity of quantitative traits, it is effective to choose stepwise clustering with deviation sampling strategy and preferred sampling strategy. The ramie core collection is the best one constructed by centroid method, single linkage clustering way under stepwise clustering with random sampling strategy and preferred sampling strategy and constructed by ward's clustering way under stepwise clustering with deviation sampling strategy and preferred sampling strategy. Core collection in ramie was not related with genetic distances of qualitative traits, whereas the core collection of ramie constructed by euclidean distance of quantitative traits was the best.
     b. Establishing of primary core collection of ramie:The primary core collection of ramie which contained158accessions was established using the method of stepwise clustering with deviation sampling strategy and preferred sampling strategy under20%sampling level. The index of genetic diversity, variance difference percentage and variable rate of coefficient of variation of the core collection were higher than the total collection. The coincidence difference percentage was100%.
     c. Development of EST-SSR primer for ramie:Different SSR repeats causes changes of the site length which results in SSR Polymorphism. There were76EST_SSR primers designed in the experiment whose SSR repeats were from3to44. Most of them was4repeats (account for30%),3repeats and18repeats account for17.1%of SSRs, respectively. The polymorphic primers of SSR mainly derived from changes in the length of repeat motifs, which ranged froml2bp to44bp. There are mainly12bp and18bp for the length of repeat motifs, accounting for68.4%of EST-SSRs.
     d. Evaluation of genetic diversity of the core collection by molecular markers:76primer-pairs were tested among62ramie DNA, the PCR products showed that70pairs were effectively amplified. Among the70pairs,50pairs obtained polymorphic PCR bands in which27pairs obtained clear polymorphic bands. The27pairs of SSR primers amplified64polymorphic bands with the average2.37per SSR primer pair in the158cultivars of the core collection. Most of the band varied from80to200bp.
     SSR technique was used in analyzing the biological genetic diversity of158core collection, and the results showed:the average genetic similarity is0.61, varying from0.27to0.90. The158accessions were grouped into10types based on the cluster analysis. Similarity results were obtained by shortest distance method and chi-square distance based on19field traits.
引文
1.白瑞霞.枣种质资源遗传多样性的分子评价及其核心种质的构建[博士学位论文].石家庄:河北农业大学,2008,
    2.白晶,张月学,杨冬鹤等.几种重要的分子标记原理及RAPD应用(J).哈尔滨师范大学自然科学学报.2004,20(5):89-91.
    3.陈德福.苎麻人工种子制备技术[M].苎麻生物技术研究进展,长沙:湖南科技出版社,1996:138-169
    4.陈荷泉.苎麻不同基因型亲缘关系的RAPD分析.2006,硕士论文:华中农业大学.
    5.陈建荣,张学文,唐香山,郭清泉,杨友才.CCoAOMT基因反义表达载体的构建及转化苎麻的研究[J].湖南师范大学自然科学学报200528(1):75-78
    6.陈亮,梁春阳,孙传清等.AFLP和RFLP标记检测水稻亲本遗传多样性比较研究[J].中国农业科学,2002,35(6):143-1 48
    7.陈灵芝.马克平.生物多样性科学[M].北京:科学出版社,2002.
    8.陈巍,王力荣,张绍铃,陈昌文,曹珂.利用SSR研究不同国家桃育成品种的遗传多样性[J].果树学报,2007,24(5):580-584
    9.陈喜文,陈德福,周朴华等.苎麻不同来源原生质体的分离和培养的比较研究[J]..中国麻作,1995,17(3):1-5
    10.陈晓蓉,廖志强.苎麻属植物资源的搜集、保存与开发利用[J]..中国麻业科学,2007,29(6):308-312
    11.程丽莉.燕山板栗实生居群遗传多样性研究与核心种质初选[硕士学位论文].北京:北京林业大学,2005,
    12.程尧楚,段映池,蒋佐升等.苎麻染色体组型及Giemsa-C带带型研究[J]..中国麻作1986(4):1-2
    13.董玉琛、曹永生、张学勇等.中国普通小麦初选核心种质的产生[J].植物遗传资源学报,2003,4(1):1-8
    14.董玉慧.枣树农艺性状遗传多样性评价与核心种质构建[博士学位论文].石家庄:河北农业大学,2008,
    15.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001,1-9.
    16.高志红,章镇,韩振海,房经贵.中国果梅核心种质的构建与检测[J].中国农业科学,2005,38(2):363-368.
    17.葛颂.遗传多样性及其检验方法[M].生物遗传多样性研究的原理与方法.北京:科学出版社.1994。123-140.
    18.郭安平.RAPD分子标记重建我国苎麻属植物亲缘关系的研究[博士学位论文].长沙:湖南农业大学,1999
    19.郭安平,周鹏,黎小瑛,李宗道,郑学勤.17份苎麻栽培品种的RADP分析[J].农业生物技术学报,2003,11(3):318-320
    20.郭小平.赵元明,刘毓侠.SSR技术及其在植物传育种中的应用[J].华北农学报,1998,13(3):73-76.
    21.郭清泉,陈建荣,杨瑞芳等.苎麻叶片愈伤组织诱导与植株再生的研究[J]..中国麻作,1998,20(2):1-5
    22.胡建斌;李建吾.黄瓜基因组EST.SSRs的分布规律及EST-SSR标记开发[J].西北植物学报,2008,12:2429-2435
    23.胡晋,徐明海,朱军.保留特殊种质材料的核心库构建方法[J].生物数学学报,2001,16(3):348-352
    24.胡晋,徐明海,朱军.基因型值多次聚类法构建作物种质资源核心库[J]生物数学学报,2000,15(1):103-109
    25.姜慧芳,任小平,廖伯寿等.中国花生核心种质的建立及与ICRISAT花生微核心种质的比较[J].作物学报,2008,34(1):25-30
    26.蒋彦波,揭雨成.中国苎麻属植物亲缘关系研究进展[J]..植物遗传资源学报,2005,6(1):114-118
    27.蒋彦波,揭雨成,周建林,邢虎成,佘玮.苎麻基因组微卫星的分离与鉴定[J].作物学报,2007,33,(1):158-162.
    28.揭雨成,周青文,陈佩度.苎麻不同基因型亲缘关系的RADP分析[J].中国麻作,1999,21(1):1-6
    29.揭雨成苎麻种质资源描述规范与数据标准[M],中国农业出版社,2007
    30.康冬丽,潘其辉,易自力,陈智勇,蒋建雄.基于ITS序列的苎麻属大叶苎麻组的系统发育研究[J].武汉植物学研究,2008,26(5):450-453
    31.康冬丽,潘其辉,易自力,蒋建雄.基于rbcL序列探讨荨麻科植物的系统发育关系[J].分子细胞生物学报,2008,41(4):255-264
    32.李保印,张启翔.我国园艺作物核心种质研究进展[J].果树学报,2007,24(2):204-209
    33.李长涛,石春海,吴建国等.利用基因型值构建水稻核心种质的方法研究[J].中国水稻科学,2004,18(3):218-222
    34.李国强.大白菜核心种质的构建与评价[硕士学位论文].北京:中国农业科学院研究生院
    35.李丽,何伟明,马连平等.用EST-SSR分子标记技术构建大白菜核心种质及其指纹图谱库[J].基因组学与应用生物学,2009,28(1):76-88
    36.李建春.萝卜种质资源遗传多样性的SSR分析和初级核心种质构建[硕士学位论文].重庆:西南大学,2006
    37.李建军,郭清泉,陈建荣.21份不同木质素含量的苎麻的RADP聚类分析[J].中国麻业,2006,28(3):120-186
    38.李树川.苎麻茎尖组织低温保存技术研究[J]..中国麻作,1992(1):7-11
    39.李银霞,安丽君,姜全,赵剑波,李天红.桃(Prunus Persica(L.)Batsch.)品种核心种质的构建与评价[J].中国农业大学学报,2007,12(5):22-28
    40.李银霞,高其洁,李天红.基于果实相关性状的桃品种初级核心种质取样策略研究[J].果树学报,2006,23(3):359-364
    41.李自超,张洪亮,曹永生等.中国地方稻种质资源初级核心种质取样策略研究[J].作物学报,2003,29(1):20-24
    42.李自超,张洪亮,曾亚文.云南地方稻种资源核心种质取样方案研究[J].中国农业科学,2000,33(5):1-7
    43.李自超,张洪亮,孙传清,王象坤.植物遗传资源核心种质研究现状与展望[J].中国农业大学学报,1999,4(5):51-62
    44.赖占钧,潘其辉.中国野生苎麻分类图谱[M],江西科学技术出版社,2000
    45.李长涛、石春海、吴建国等.利用基因型值构建水稻核心种质的方法研究[J].中国水稻科学,2004,18(3):218-222
    46.黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1999,4:19-22.
    47.梁燕理.广西普通野生稻(Oryza rufipogon Griff.)遗传多样性核心种质构建的研究,[硕士学位论文],南宁:广西大学,2008
    48.刘长友.中国绿豆种质资源遗传多样性分析及初选核心种质构建.[硕士学位论文],北京:中国农业科学院研究生院,2007
    49.刘峰,东方阳,邹继军等.应用SSR进行大豆种质多样性和遗传变异分析[J].遗传学报,2000,27(7):628-633
    50.刘新龙,蔡青,马丽,吴才文.甘蔗初级核心种质构建的取样策略[J],作物学报,2009,35(7):1209-1216
    51.刘旭,马缘生,谭富娟.小麦特殊遗传材料核心样品的建立[J].植物遗传资源科学,2000,1(2):1-8
    52.刘勇,孙中海,刘德春,吴波,周群.利用分子标记技术选择铀类核心种质资源[J].果树学报,2006,23(3):339-345
    53.刘宁宁.植物资源核心种质构建与评价新方法的研究.[硕士学位论文],杭州:浙江大学,2007
    54.刘瑛,潘其辉,孙学兵等.苎麻属野生种的研究与利用[J].植物遗传资源科学,2002,3(4):51-56
    55.卢浩然等.中国麻类作物栽培学[M].北京:农业出版社,1992
    56.栾明宝.海岛棉特定染色体的遗传效应及主要性状的QTL定位。[博士学位论文],北京:中国农业科学院研究生院,2008
    57.栾明宝,秦占军,陈建华,王晓飞,许英,孙志民 苎麻纤维发育相关基因FB27表达与纤维细度相关研究[J],中国麻业科学,2009,31(6):339-343
    58.明军,张启翔,兰彦平.梅花品种资源核心种质构建[J].北京林业大学学报,2005,27(2):65-69
    59.刘瑛.利用组织培养法保存野生苎麻资源的研究[J].中国麻业,2002,24(6):1-3.
    60.马静。安永平,王彩芬,张文银遗传多样性研究进展[J],陕西农业科学2010(1):126-130
    61.莫荣达.苎麻组织培养再生植株的研究[J].。植物生理学通讯,1982(3):39-41
    62.蒙祖庆,刘立军,彭定祥.利用RAPD和ISSR标记分析苎麻野生种质资源的遗传多样性.分子植物育种,2009,7(2):365-370.
    63.潘昌立,李树川,李育君.苎麻体细胞植株再生及其影响因素的研究[J]..中国麻作,1995,17(1):1-6
    64.潘其辉,赖占钧,孙学兵等.中国苎麻属野生种质资源的特性及利用[J]..江西农业学报,2000,12(2):11-16
    65.钱惠荣,等.DNA标记和分子育种[J].生物工程进展.1998,18(3):12-18.
    66.邱丽娟,曹永生,常汝镇等.中国大豆(Glycine max)核心种质构建1.取样方法研究[J].中国农业科学,2003,36(12):1442-1 449
    67.佘玮,邢虎成,揭雨成.苎麻茎皮cDNA文库的构建[J].中国麻业科学,2007,1:16-19,
    68.宋军,张中华,丁明忠等.苎麻雄性不育材料的两种同工酶初步分析[J].中国麻业科学,2008,30(3):141-143
    69.舒金树,饶均四.神农架及三峡地区苎麻属野生种考察与开发利用探讨[J].中国麻作,1990,12(2):1-3
    70.孙传清,李自超,王象坤.普通野生稻和亚洲栽培稻核心种质遗传多样性的检测研究河[J].作物学报,2001,27(3):313-318
    71.孙志民,张波,郑长清.苎麻属托叶形态学及其分类价值[J]..中国麻作,1999,21(1):17-19
    72.孙学兵.中国苎麻属植物野生种质资源研究的现状与展望[J]..种子,2006,25(11):57-60
    73.唐兆增,刘栋民.广西苎麻品种资源考察和研究[J].中国麻作,1987,1:26-28
    74.汤圣祥,江云珠,魏兴华,等.中国栽培稻同工酶的遗传多样性[J].作物学报,2002,28(2):203-207.
    75.田彬彬.寒地苹果种质资源RAPD分子标记及其核心种质初步构建.[硕士学位论文],长春:吉林农业大学,2007.
    76.田志坚,易蓉,陈建荣,郭清泉,张学文.苎麻纤维素合成酶cDNA克隆及表达分 析[J].作物学报,2008,34(1):76-83.
    77.瓦维洛夫(董玉琛译).主要栽培植物的世界起源中心[M].北京,农业出版社,1982.5
    78.王文采,陈家瑞中国植物志[M](第二十三卷第二分册),北京,中国科学技术出版社,1955
    79.王文采.中国苎麻属植物校订[J].云南植物研究,1981,3(3):307-328
    80.王文采.中国苎麻属植物校订(续)[J].云南植物研究,1981,3(4):401-416
    81.王红霞.核桃遗传多样性分析及核心种质的构建.[博士学位论文]。保定:河北农业大学,2006
    82.王庆芬.抗寒梨种质资源RAPD的分子标记及其核心种质初步构建.[硕士学位论文],长春:吉林农业大学,2007
    83.王建成,胡晋,张彩芳等.建立在基因型值和分子标记信息上的水稻核心种质评价参数[J].中国水稻科学,2007,21(1):51-58
    84.吴鑫,雷天刚,何永睿,刘小丰,许兰珍,彭爱红,陈善春.柑桔SRAP和ISSR分子标记技术体系的建立与优化[J].分子植物育种,2008,6(1):170-176
    85.吴子龙.山葡萄种质遗传多样性的sSR分析及核心种质初步构建.[硕士学位论文],哈尔滨:东北林业大学,2007
    86.魏利斌;张海洋;郑永战等.芝麻EST-SSR标记的开发和初步研究[J]。作物学报,2008,34(12):2077-2084
    87.魏兴华,汤圣祥,余勇汉.浙江粳稻地方品种核心样品的构建方法[J].作物学报,2001,27(3):324-328
    88.魏兴华,汤圣祥,江云珠等.中国栽培稻选育品种等位酶多样性及其与形态学性状的相关分析[J].中国水稻科学,2003.17(2):123—128.
    89.魏志刚,高玉池,杨传平.白桦核心种质构建的取样方法[J]。东北林业大学学报),2009,37(7):14
    90.肖瑞芝.青叶苎麻染色体核型和Giemsa带型的初步分析[J].中国麻作,1992,14(2):1-2
    91.熊和平.麻类作物育种学[M].北京:中国农业科学技术出版社,2008.
    92.熊和平,臧巩固,李俊等.秦岭、大别山地区野生苎麻开发利用考察[J]..中国麻作,1987,2:21—22
    93.熊兴耀.苎麻原生质体再生植株及影响因子的初步研究[J].农业生物技术学报,1997,4(2):147-152
    94.徐海明,胡晋,邱英雄.利用分子标记和数量性状基因型值构建作物核心种质库的研究[J].生物数学学报,2005,20(3):351-355
    95.徐海明,李晓玲,李金泉等.整合质量数量性状构建作物核心种质的策略研究[J].浙江大学学报,2005,31(4):362-367
    96.徐海明,邱英雄,胡晋,王建成.2004.不同遗传距离聚类和抽样方法构建 作物核心种质的比较[J].作物学报.30(9):932-936
    97.徐海明,胡晋,朱军.构建作物种质资源核心库的一种有效抽样方法[J].作物学报,2000,26(2):157-162
    98.杨菁,迟德钊,刘玉皎等.基于形态性状的青海蚕豆核心种质的初步构建[J].分子植物育种,2009,7(3):599-606
    99.杨素丽,明军,刘春.基于EST信息的百合SSR标记的建立.园艺学报,2008,35,(7):1069-1074.
    100.杨瑞芳,郭清泉,程尧楚等.七份苎麻野生资源的核型及GiemsaC—带带型研究[J]..中国麻作,2000,22(2):6-11
    101.余萍,李自超,张洪亮.中国普通野生稻初级核心种质取样策略[J].中国农业大学学报,2003,8(5):37-41
    102.章荣德.苎麻花粉母细胞成熟分裂[J].中国麻作,1988(4):31-33
    103.章秋平,刘威生,刘宁.杏种质资源初级核心种质的构建与评价[J]。果树学报,2009,26(6):819-825
    104.赵崇耀,李建设,舒志明等.秦巴山区苎麻资源评价[J].西北农业学报,1998,8(4):116-118
    105.赵立宁.苎麻属分类学问题探讨[J]..中国麻业,2004,26(3):141-144
    106.赵立宁,臧巩固,陈建华.中国苎麻属植物性别表现及演化[J]..中国麻作,2003,25(5):209-212
    107.赵雪,谢华,马荣才.植物功能基因组研究中出现的新型分子标记[J].中国生物工程杂志,2007,27(8):104-110
    108.赵庆华,颜昌敬,潘昌立等.苎麻叶片组织培养的研究[J].,中国麻作,1984(4):9-12
    109.张波,赵立宁,臧巩固等.中国苎麻属植物野生种考察报告[J].中国麻作,1995,17(4):1-6
    110.张波,郑长清,臧巩固等.中国苎麻属植物比较形态学研究[J].中国农业科学,1998,31(2):56-62
    111.张波,郑长清,臧巩固等.中国苎麻属组群分类及演化研究[J]..作物学报,1998,24(6):775-781
    112.张波,郑长清,臧巩固等.中国苎麻属野生近缘种的主要性状和纤维细胞结构的比较研究[J].中国麻作,1996,18(3):1-6
    113.张春雨.新疆野苹果(Malus sieversii)群体遗传结构与核心种质构建方法.[博士学位论文].济南:山东农业大学,2008
    114.臧巩固.苎麻属三组五种核型研究[J]..中国麻作,1993,15(1):1-6.
    115.臧巩固.苎麻属无融合生殖种质资源的初步研究[J]..中国麻作,1991(2):6
    116.臧巩固,赵立宁.中国苎麻属无融种综发现初报[J]..中国麻作,1996,18(1):19
    117.臧巩固,赵立宁,孙敬三.赤苎无融合生殖细胞胚胎学研究[J].植物学报,1997,39(3):210-213
    118.张洪亮,李自超,曹永生等.表型水平检测水稻核心种质的参数比较[J].作物学报,2003,29(2):252-257
    119.张洪亮.云南地方稻种资源核心种质研究.[硕士学位论文],北京:中国农业大学,2000,
    120.张军,武耀廷,郭旺珍.棉花微卫星标记的PAGE/银染快速检测.棉花学报,2000,12(5):267-269.
    121.张秀荣,郭庆元,赵应忠.中国芝麻资源核心收集品研究[J].中国农业科学,1998,31(、3):49-55
    122.张旭婧,于林清,贾志斌.苜蓿核心种质及其构建方法[J].中国草地学报,2007,29(1):98-103
    123.郑思乡,鄢明芳,李宗道等.不同倍性苎麻同工酶及光合作用研究[J].中国麻作,1999,21(2):1-4
    124.中国粮食和农业植物遗传资源状况报告(1996-2007)[M],农业部,2008
    125.中国农业科学院麻类研究所所志[M].北京:中国农业科学技术出版社,2008:69-72
    126.邹园秀,廖志强,赖占钧.中国苎麻属野生植物的搜集与研究进展[J]..江西农业学报,2008,20(1):17-20
    127.周建林,揭雨成,蒋彦波,胡翔,张健.用微卫星标记分析苎麻品种的亲源关系[J].作物学报,2004,30(3):289-292.
    128. Bar-Hen A., A. Charcosset, M. Bourgoin, J. Guiard,. Relationship between genetic markers and morphological traits in maize inbred lines collection.Euphytica,1995.84:145-154
    129. Blume C. L.Museum Bot. Lugd[J].1856,2:194-227
    130. B. Gouesnard, T. M. Bataillon, G. Decoux, etc. MSTRAT:An Algorithm for Building Germ Plasm Core Collections by Maximizing Allelic or Phenotypic Richness[J]. The Journal of Heredity,2001,92(1):121-126
    131. Barrett S. C. H., Eckert C. G. Variation, evolution of mating systems in seed plants[M]. In:Kawano S(ed.)Biological Approaches, Evolutionary Trends in Plants. London:Academic Press,1990:229-254
    132. Bisht I. S., Mahajan R. K., Patel D. P. The use of characterization data to establish the Indian mungbean core collection and assessment of genetic diversity[J], Genetic Resources and Crop Evolution,1998,45:127-1331
    133. Brown A.H. D. Core collection:a practical approach to genetic resources management[J]. Genome,1989,31:818-824
    134. Brown A.H.D. The case for core collection[A]. Brown A. H. D, Frankel O. H., Marshall R. D.. The Use of Plant Genetic Resources[D]. Cambridge:ambridge University Press,1989.136-156
    135. Brown A. H. D. Isozymes, plant population genetic structure and genetic conservation[J]. Theoretical and Applied Genetics,1978,52:145-157
    136. Brown A H D, D J Sehoen. Conservation genetics[M]. Switzerland: 1994.357-369.
    137. Chandra S., Huaman Z, Hari Krishua S., Ortiz R. Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data-a simulation study[J]. Theoretical and Applied Genetics,2002,104:1325-1334
    138. Bueher,R.E., Mcdonaid, M.B.Soybean cultivar identification using high performance liquid chromatography of seed proteins[J].Crops Science,1989,29:32-37
    139. Burrout, T., Bietz, J.Identification of wheat cultivars and prediction of quality by reversed-phase high performance liquid chromatographic analysis of endosperm storage proteins [J].Seed Sci & Technol,1987,15:79-99.
    140. Chase M W, Soltis D. E, Olmstead R. G et al. Phylogenetics of seed plants:an analysis of nucleotide sequences from the plastid gene rbcL[J] Ann. Missouri. Bot Gard,1993,80:528-580.
    141. Corley,C.H., William,F.A.E valuation of a core collection to identify resistance to late leaf spot in peanut[J]. CropSci,1995,35:1700-170
    142. Darlingfon C.D, Wylie A.P.. Chromosome Atlas of Flowering Plants[M].2ed ed. London. George Allen & Unwin Ltd.1955:185
    143. D H Basigalup, D K Barnes, R E Stucker. Development of a core collection for perennial Medicago plant introduction[J]. Crop Science.1995,35:1163-1168.
    144. Diwan N., Mcintosh M.S, Bauchan G. R. Methods of developing a core collection of annual Medicago species[J]. Theoretical Applied Genetics,1995,90(6): 755-761.
    145. Diwan N., Bauchan G. R., Mcintosh M S. A core collection for the United States annual medicago germplasm collection[J]. Crop Science,1994,34:279-285
    146. Donis-Kellen, H. A genetic linkage map of the human genome[J]. Cell 1987(51): 319-337.
    147. Dunemann F., Kahnau R., Schmidt H. Genetic relationships in Malus evaluated by RAPD'fingerprinting'of cultivars and wild species[J]. Plant Breeding,1994, 113:150-159.
    148. Erskine, W, Muehlbauer, F. J. Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm. [J].Teor Appl. Gener,1991,83:119-125
    149. Esposito M. A., Martin E. A., Cravero V. P., Cointry E. Characteration of pea accessions by SRAP's markers. Scientia Horticulturae,2007,113(4):329-335
    150. Ferriol M., Pico B., Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SRAP markers[J]. Genetic Resources and Crop Evolution,2003,50(3):227-238.
    151. Ferriol M., Pico B., Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers[J]. Theoretical and Applied Genetics.2003,107:271-282
    152. Frankel O.H, Brown A. H. D. Current plant genetic resources acritical appraisal[M]. Genetics:New Frontiers V01. IV. Oxford and IBH Publishing, 1984a
    153. Frankel O. H, Brown A. H. D. Plant genetic resources today:a critical appraisal[M]. In:Hoden H W, Williams JT(eds)Crop genetic resources: conservation and evaluation. Geoge Allen and Unwin, London, UK,1984b, PP 249-257
    154. Gayle M. V, Christopher M R, Reilley A. A, Adam D H. Ex situ conservation of
    vegetatively propagated species:Development of a seed-based core collection for Malus sieversii[J]. Journal of the American Society for Horticultural Science, 2005,130:203-210
    155. Ghislain M, Zhang D. P, Fajardo D, Huaman Z, Hijmans R. Z. Marker-assisted sampling of the cultivated Andean potmo Solanum Phureja collection using RAPD markers[J]. Genet. Genetic Resources and Crop Evolution,1999,46: 547-555
    156. Gizlicel, Z. Geneticbase for North American public soybean cultivars released between 1947-1988[J]. CropScience,1994,34:1143-1147.
    157. Greniera Harnonb P, Bramel C P G Collection of Sorghum ll. Comparison of Three Random Sampling Strategies[J], Crop Science,2001,41:241-246
    158. Grodzicker, T., Williams, J., Sharp, P. Physical mapping of temperature-sensitive mutations of adenoviruses [J]. Cold Spring Harb Symp Quant Biol 1975,39(1):439-446.
    159. H. A. Weddell in Da Candolle[J], Prodrumus systematis naturalis regni vegetabilis.1869,16(1):195-216
    160. Hamon, S., Sloten, D. H. V. (1989). Characterization and evaluation of Okra. Paper presented at:The use of plant genetic resources(.England,C ambridge Univpress)
    161. Hamrick J L. Gene flow distribution of genetic variation in plant populations[M]. In:Urbanska K. Differentiation patterns in higher plants. New York:Academ Press.1987,53-57
    162. Han Z, Wang C, Song X (2006). Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. TAG,112: 430-439.
    163. He T. M, Chen X. S., Xu Z., etc. Using SSR markers to determine the population genetic structure of wild apricot(Prunus armeniaca L.)in the lly Valley of West China[J]. Genetic Resources and Crop Evolution,2007,54: 563-572
    164. Hintum Van T. J. L. Comparison of market system and construction of a core collection in a pedigree of European spring barley[J]. Theoretical and Applied Genetics,1994,89:991-997
    165. Hokanson S. C, Lamboy W. F, Szewc-McFadden A. K, McFerson J.R., Microsatellite(SSR) variation in a collection of Malus sieversii(apple)species and hybrids[J]. Euphytica,2001,18:281-294
    166. Hokanson S. C, Szewc-McFadden A. K, Lamboy W.F., McFerson J.R., Microsatellite(SSR) markers reveal genetic identities, genetic diversity and relationships in a Malusxdomestiea borkh. core subset collection[J]. Theoretical and Applied Genetics,1998,97:671-683
    167. Hutchinson J. The genera of flowering Plants[J].1967,2:188
    168. Hu J, Zhu J, Xu H. M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops[J]. Theoretical and Applied Genetics,2000,101(122):264-268
    169. Huaman Z, Orliz R, Comez R. Selecting a Solanum tuberosum subsp andifena core collection using morphological, geographical disease and pest descriptors[J]. American Journal of Potato Research.2000,77(3):183-190
    170. Huaman Z, Aguilar C, Ortiz R. Selecting a peruvia sweetpotato core collection on the basis of morphological, eco-geographical, and disease and pest reaction data[J]. Theoretical and Applied Genetics,1999,98:840-844
    171. Islam F M. A., K. E. Basford, R. J. Redden, A.V Gonzalez, P. M. Kroonenberg and S.3 Beebe. Genetic variability in cultivated common bean beyond the two major gene Genet. Resour. and Crop Evol,2002,49:271-283
    172. Jansen J and van Hintum Th. Genetic distance sampling:a novel sampling method for obtaining core collections using genetic distances with an application to cultivatied lettuce[J]. Theoretical and Applied Genetics,2007,114:421-428
    173. Joobear T, Pexiam N, de Vicente M C, King G J, Ms P. Development of a second generation linkage map for almond using RAPD and SSR markers[J]. Genome, 2000,43(4):649-655
    174. Kantety RV, Rota ML, Matthews DE, Sorrells ME (2002). Data mining for simple sequence repeats in expressed sequence tags from barely, maize, rice, sorghum and wheat. Plant Mol. Biol.,48:501-510.
    175. Li C. T., Shi C..H., Wu J. G., Xu H. M., etc. Methods of developing core collections based on the predicted genotypic value of rice(Oryza sativa L.) [J]. Theoretical and Applied Genetics,2004,108:1172-1176
    176. Li Z.Geographic distribution and multilocus organization of isozyme variation of rice (Oryzasativa L)[J].Theoretical and Applied Gendtics,2000,101:379-387.
    177. Maguire T. L, Peakall R, Saenger P. Comparative analysis of genetic diversity in the mangrove species Avicennia marina(Forsk)Vierh. (Avicenniaceae)detected by AFLPs and SSRs[J]. Theoretical and Applied Genetics,2002,104:388-398
    178. Marshall D. R, Brown A. H. D. Optimum sampling strategies in genetic conservation[M]. In Frankel OH, Hawkes JD(eds)Crop genetic resources for today and tomorrow. Cambridge:Cambridge University Press,1975,53-80
    179. Monro A K, et al. The revision of species-rich genera:a phylogenetic framework for the strategic revision of Pilea (Urticaceae) based on cpDNA, nrDNA,and morphology[J]. Am. J. Bot,2006,3(93):426-441.
    180. Morgante M, Olivieri AM (1993). PCR-amplified microsatellites as markers in plant genetics. Plant J.,3:175-182.
    181. Muths, K. B., Faloona, F. A specific synthesis of DNA in vitro was a polymerase chain reaction [J]. Methods Enaymol,1987,156:335-338.
    182. OKABE S. Chromosome numbers and apomixis in Boehmeria[J].. The Japanese Journal of Genetics.1956,31:308.
    183. Powell W, Morgante M, Andre C. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite)markers for germplasm analysis[J]. Molecular Breeding,1 996,2(3):225-238
    184. PS Virk, BV Ford-Lloyd.. MT Jackson, et al. Use of RAPD for the study of diversity within plant germplasm collection[J]. Heredity,1995,74:170-179
    185. Saghai, Maroof M. A, Biyashev R. M, Yang G. P. Extraodinaryly polymorphic microsatellite DNA in barley:species diversity, chromosomal location, and population dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America,1994,91:5466-5470
    186. Scall. B. A et al. Comparison of methods for ascending genetic variation in plant conservation biology, In Falk D. A. and K. EHoldinger[J]. Genetics and conservation of rare plants. New York:Oxford University Press.1991,123-124.
    187. Scott K. D, Eggle P, Seatox G Rossetto M, Abler L, Lee S, Henry R. J. Analysis of SSRs derived from grape ESTs[J]. Theoretical and Applied Genetics,2000, 100(5):723-736
    188. Sharon D, Cregan P. B, Mhameed S, Kusharska M, Hillel J, Lahav E, Lavi U. An integrated genetic linkage map of avocado[J]. Theoretical and Applied Genetics,1997,95:911-921
    189. Singh,P.S., Gutierrez, J.A., al, A.M.e.Genetic diversity in cultivated common bean:II Marker-base analysis of morphological and agronomic traits[J].CropSci,1991,31:23-29.
    190. Slifverberg. Dilworth E, Matasi C. L, Van de W. E Weg, Van Kaauwen M. P. W. Microsatellite markers spanning the apple(Malusxdomestica Borkh.)genome[J]. Tree Genetics & Genomes,2006,2(4):202-224
    191. Sokal R. R., Michener C. D. A statistical method for evaluating systematic relationships[J]. University of Kansas Science Bulletin,1958,38:1409-143 8
    192. Spagnoletti,Z.P.L.Qualset CO. Evaluation of five strategies for obtaining a core subset from a large genetic resources collection of durum wheat [J] Theoretical Applied Genetics,1993,87:295-304.
    193. Steven D. T, McCouch S. R. Seed bank and molecular maps:unlocking genetic potential from the wild[J]. Science,1997,277:1063-1066
    194. Sytsma K J, Morawetz J, Pires J. C et al. Urticalean rosids: circumscription,rosid ancestry, and phylogenetics based on rbcL,trnL-F and ndhF sequences[J]. Am.J.Bot,2002,9(89):1531-1546.
    195. Tai P. Y. P, Miller J. D. A Core Collection for Saccharum spontaneum L. from the World Collection of Sugarcane[J]. Crop Science,2001,41:879-885
    196. Tautz D。Renz M. Simple sequence are ubiquitous repetitive components of eukaryotic genemos[J]. Nucleic Acids Research.1984。12:4127-4138.
    197. Thomas M. R, Scott N. S. Sequence-tagged size markers for microsatellites: amplified technique for rapidly obtaining flanking sequence[J]s. Biology Reporter,1994,12(1):58-64
    198. Th J I van Hintum, Brown A H D. C Spillane. Core collections of plant genetic resources[A]. IPGRI technical bulletin No.3[C]. UK Chichester: Wiley&Sons,2000.23-34.
    199. Tohme, J., Gonzalez,D., al, M.D.e. AFLP analysis of gene pools of a wild bean core collectionfJ].CropSci,1996,36:1375-1371 1384.
    200. Uptmoor R, Wenzel W, Friedt W, Donaldson G, Ayisi K, Ordon F. Comparative analysis on the genetic relatedness of Sorghum Bicolor accessions from Southern Africa by RAPDs, AFLPs and SSRs[J]. Theoretical and Applied Genetics,2003, 106:1316-1325
    201. Van Treuren R Tchoudinova I, Van Soest L. J. M, Van Hintum Th. J. L. Marker-assisted acquisition and core collection formation:a case study in barley using AFLPs and pedigree data[J]. Genetic Resources and Crop Evolution,2006, 53:43-52.
    202. Volk G. M, Richards C.M, Reilley A.A, Henk A.D, Forsline P. L, Aldwinckle H. S.2005. Ex situ conservation of vegetatively propagated species: Development of a seed-based core collection for Malus sieversii[J]. Journal of the American Society for Horticultural Science,130(2):203-215'
    203. Wang J. C, Hu J, Xu H. M, Zhang S. A strategy on constructing core collections by least distance stepwise sampling[J]. Theoretical and Applied Genetics,2007, 115:1-8.
    204. Williams J P K. Kubelik A R. Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic marks[J]. Nucleic Acids Research, 1990.18:6531-6535.
    205. YAHARA T. A biosystenmatic study on the local populations of some species of the genus Boehmeria with special reference to apomixes[J].. J. Facul. Sci., Univ. Tokyo, Sect.1983,3:217-226.
    206. YAHARA T. Distribution of sexual and agamosponnous populations of Boehmeria sylvestrii and its three ralatives(Urticaceas) [J].. Memoirs of The National Science Museum.1986,19:121-132.
    207. Y.F. Zhang, Q.L. Zhang, Y. Yang, Z.R. Luo. Development of Japanese Persimmon core collection by genetic distance sampling based on SSR markers[J]. Biotechnology,2009,23(4):1474-1478
    208. Y. Satake. Boehmeria Japonica Journ[J]. Fac. Sci. Univ. Tokyo, Sect. 1936,4:467-542
    209. Zerega N.J.C. et al.Biogeography and divergence times in the mulberry family (Moraceae) [J]. Mol. Phylogenet. Evol,2005,2(37):402-416.
    210. Zewdie Y, Tong N, Bosland P. Establishing a core collection of Capsicum using a cluster analysis wim enlightened selection of accessions[J]. Genetic Resources and Crop Evolution,2004,51:147-151
    211. Zhang X. R, Zhao Y. Z, Establislmem of sesame germplasm core collection in China[J]. Genetic Resource and Crop Evolution,2000,47:273-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700