用户名: 密码: 验证码:
大豆蚜对吡虫啉的抗性监测及抗性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蚜Soybean aphid(Aphis glycines Matsumura)是大豆的重要害虫之一,吡虫啉自上世纪90年代推行以来,对大豆蚜良好的防治效果使其成为针对这一害虫效果最好、使用最广的当家杀虫剂,为了了解田间大豆蚜对吡虫啉抗性的发生动态,延长吡虫啉的田间使用寿命,本文通过田间抗性调查、室内抗性筛选及种群适合度研究、交互抗性研究及抗性现实遗传力研究,系统分析了大豆蚜对吡虫啉产生抗性的风险;利用室内筛选的抗性品系和敏感品系试虫为材料,分析了抗性产生的生化机制;利用分子生物学技术克隆了大豆蚜烟碱型乙酰胆碱受体基因和羧酸酯酶基因,并对羧酸酯酶基因进行了原核表达及活性分析;同时还利用荧光定量PCR技术,对大豆蚜羧酸酯酶基因mRNA水平的表达量进行了分析,取得了多项具有理论和实际意义的重要成果。
     一、大豆蚜对常规杀虫剂的敏感基线构建和田间吡虫啉抗性监测
     通过杀虫剂毒力测定方法建立了大豆蚜对7种常规杀虫剂的敏感基线,并以此为基准分别对2010年和2011年两年间全国大豆主要分布的5省区田间大豆蚜对吡虫啉的抗药性动态和哈尔滨地区田间大豆蚜对7种常规药剂的抗药性状况分别进行了监测,结果表明,5省(区)中除长春种群为低水平抗性外,其他4个省(区)地理种群大豆蚜抗性为中等水平抗性,7种药剂中,高效氯氟氰菊酯、吡虫啉和溴氰菊酯分别产生高、中、低等水平的抗性,其他四种药剂未产生抗药性。
     二、抗吡虫啉大豆蚜品系的选育及抗性风险评估
     采用浸渍法对室内连续饲养多年的的大豆蚜种群进行19代的抗性筛选,获得了抗性倍数最高为24.46倍的室内抗性品系。从抗性筛选的速度来看,大豆蚜对吡虫啉的抗性发展速度并不快,与棉蚜、桃蚜的吡虫啉抗性筛选相类似,从抗性筛选的结果来看,连续筛选的前6代抗性增长较缓慢,筛选的7到16代为快速增长期,16代后抗性基本稳定在23倍左右,进入了一个增长的平台期,总体呈现“S”型增长趋势。对室内筛选19代的大豆蚜对吡虫啉的抗性现实遗传力(h2)进行了测定,并推测出田间大豆蚜对吡虫啉的抗性提高10倍只需6-8代。这表明大豆蚜对吡虫啉的抗性增高后,持续的抗性筛选仍能使抗药性进一步上升。
     三、吡虫啉抗性对大豆蚜种群适合度的影响
     通过构建种群生命表,观察比较了筛选过程中吡虫啉抗性品系T9、T18和敏感品系的一系列生长发育和繁殖特征,就抗性对种群适合度的影响进行了研究。用内禀增长力来确定种群的相对适合度,结果表明,抗性品系T9和T18均表现出相对适合度下降,而且T18的相对适合度的下降幅度明显大于T9,生长发育和繁殖上也都表现出一系列的不利性。
     四、大豆蚜抗吡虫啉品系的交互抗性研究
     本研究以大豆蚜敏感品系为对照,测定了吡虫啉抗性品系T14和T18对6种常规杀虫剂的敏感性变化,以了解大豆蚜抗吡虫啉品系对其他药剂的交互抗性。结果表明,随着大豆蚜抗性的不断发展,抗性品系T14和T18对生产上常用的烟碱类杀虫剂和菊酯类杀虫剂均已经产生不同程度的交互抗性,但未对有机磷类杀虫剂产生交互抗性。
     五、大豆蚜对吡虫啉抗性的生化机制分析
     通过室内筛选获得大豆蚜的吡虫啉抗性品系,利用增效试验和解毒酶活力测定,对其抗性机理进行了研究。解毒酶活力测定表明:在抗感品系中,抗性品系的羧酸酯酶比活力明显高于敏感品系(2.1倍),而谷胱甘肽S-转移酶与抗性形成无关;增效试验结果表明:DEM在抗感品系中对吡虫啉都没有明显的增效作用,而TPP和PBO在两个品系中均有增效作用,但前者的作用更明显。综合分析认为羧酸酯酶活力增强在大豆蚜对吡虫啉的抗性形成中起重要作用。
     六、大豆蚜烟碱型乙酰胆碱受体基因的克隆
     昆虫烟碱型乙酰胆碱受体(nAChR)是以吡虫啉为代表的新烟碱类杀虫剂的作用靶标位点。本研究利用RT-PCR和RACE技术,从大豆蚜中成功克隆了6个烟碱型乙酰胆碱受体基因全序列,其中5个为α亚基基因,1个为β亚基基因,分别命名为:Agla1、Agla2、Agla3、 Agla4、Agla5和Aglβ1,其中Agla1亚基全长1456bp,编码427个氨基酸;Agla2亚基全长2463bp,编码592个氨基酸;Agla3亚基全长2158bp,编码537个氨基酸;Agla4亚基全长1792bp,编码532个氨基酸;Agla5亚基全长1850bp,编码549个氨基酸;Aglβ1亚基全长2406bp,编码509个氨基酸。其GenBank登录号分别为JQ690271、JF775487、JQ690273、 JN681173、JQ690274和JN681174。同时,还获得了Aglal的一个选择性剪接Aglal-2,全长为1396bp,编码406个氨基酸,GenBank登录号为JQ690272。同源性分析表明,以上亚基均具有昆虫nAChR亚基的典型特征,与其他昆虫nAChR亚基的同源性很高,说明克隆的基因确实是大豆蚜的nAChR基因。对大豆蚜nAChR亚基进行多态性分析,未发现氨基酸突变。该研究结果为今后进一步研究大豆蚜nAChR的天然亚基组成及功能,分析大豆蚜对新烟碱类杀虫剂的靶标抗性产生奠定了基础。
     七、大豆蚜羧酸酯酶基因CarE的克隆与原核表达
     利用RT-PCR和RACE技术,成功克隆了大豆蚜中的羧酸酯酶基因,命名为AgCarE,全长为1946bp,编码526个氨基酸,GenBank登录号为JF970181。通过序列比对和功能性分析,AgCarE具备羧酸酯酶的结构特征,如蛋白活性中心的催化三联体:Ser186, Glu313,His434,证明其属于羧酸酯酶家族。通过构建重组表达载体pET21b-AgCarE进行原核表达及Westem-blot鉴定,59.2kD的目的蛋白能够成功表达。以α-醋酸萘酯为底物的体外酶活性检测表明,其能够水解α-醋酸萘酯,说明表达产物具备羧酸酯酶活性。
     八、抗感大豆蚜品系羧酸酯酶mRNA表达量研究
     利用实时荧光定量PCR技术,以18SrDNA为内参基因,通过比较CT值法(即2-△△Ct法)获得了抗、感大豆蚜品系单头蚜虫羧酸酯酶mRNA的相对表达量。分析结果得出,抗性品系大豆蚜羧酸酯酶mRNA表达量平均比敏感品系大豆蚜羧酸酯酶mRNA表达量高出1.25倍,结合生化机理分析和原核表达活性分析认为,大豆蚜对吡虫啉的抗药性增加,与其体内羧酸酯酶基因mRNA水平的过量表达密切相关。
Soybean aphid(Aphis glycines Matsumura) is one of the most important pests on soybean. Imidacloprid is the key insecticide which has been widely used for control of this pest since1990s. So study on imidacloprid resistance is very important for sustainable control of A. glycines. In this paper, the resistance survey, resistance selection, insect fitness analysis, cross-resistance and realized heritability were carried out to evaluate the risk for A. glycines to develop high resistance to imidacloprid. With selected susceptible strain and resistant strains, the biochemical and molecular mechanisms for the resistance were also analyzed. Some valuable breakthroughs have been achieved.
     1. Establishment of the relative susceptible baseline data to common insecticides and resistance monitoring in field populations of A. glycines
     The susceptibility of A. glycines to7common insecticides was determined with laboratory susceptible strain and the baseline data were obtained. Based on these data, five field populations (Jinan, Cangzhou, Chifeng, Changchun, Harbin) collected from main soybean producing provinces of China in2010and2011were monitored for resistance to imidacloprid, and the field population of Harbin collected in2010and2011were monitored for resistance to7common insecticides. The results revealed that the aphid of Changchun had developed low level of resistance to imidacloprid, and the other four areas had developed medium level of resistance to imidacloprid. Except imidacloprid, Lambda-cyhalothrin and Deltamethrin, A. glycines had no developed resistance to other insecticides.
     2. Imidacloprid resistance selected and resistance risk assessment in A. glycines
     An imidacloprid-resistant strain of A. glycines was developed by continuous selection for19generations with imidacloprid in laboratory. During the selection, imidacloprid resistance was found with a phased increase. From the1st to6th generation, the resistance developed very slowly, the rapid increase occurred from7th to16th generation, and leaving17th to19th as resistance developing plate. The estimate of realized heritability of19th generation showed that resistant ratio increased10-fold was only needed6-8generations when the continuous selection was used for A. glycines with imidacloprid. It was likely that the resistance level of A. glycines to imidacloprid would increase further if the selection had continued.
     3. The influence of imidacloprid resistance on the relative fitness of A. glycines
     The relative fitness of resistant strain (T9and T18) had been tested by constructing life tables and taking susceptible strain as control. The results showed that two resistant strains had obvious disadvantages in their development and reproduction. The relative fitness of resistant strain was determining by intrinsic rate of increase (rm) with susceptible strain as standard. The result showed that the relative fitness of resistant strain was decreased dramatically.
     4. Cross-resistance of the imidacloprid-resistant strain of A. glycines
     The cross-resistance of the imidacloprid-resistant strains (T14and T18) of A. glycines to6common insecticides was measured. The results showed that A. glycines with resistance to imidacloprid had no obvious cross-resistance to organophosphorus insecticides, and significant cross-resistance existed to the neonicotinoid insecticides and pyrethroid insecticides.
     5. Biochemical mechanisms for imidacloprid resistance in A. glycines
     The biochemical mechanisms of imidacloprid resistance in A. glycines were studied by synergism test and detoxification enzyme analysis. The results showed that triphenyl phosphate and piperonyl butoxide had significant synergism on imidacloprid in both resistant and susceputible strains, and the synergism ratio of triphenyl phosphate was much higher than the synergism ratio of piperonyl butoxide. Diethyl mateate did not show any synergism on imidacloprid in both strains. The results of detoxification enzyme analysis in two strains showed that the activity of carboxylesterase in resistant strain was much higher than the susceptible strain (2.1-fold), however the activity of glutathione S-transferase in resistant strain had no significantly enhanced. Thus, it was concluded that the enhancement of the activity of carboxylesterase should play an important role in the imidacloprid resistance of A. glycines.
     6. Cloning of nAChR genes from A. glycines
     Nicotinic acetylcholine receptors (nAChRs) are the target of imidacloprid which belong to neonicotinoid insecticides. With RT-PCR and RACE technique,6different subunits of nAChR had been successfully cloned from A. glycines, include5a subunits and1β subunit. They were named as Aglal, Agla2, Agla3, Agla4, Agla5and Aglβl, and their GenBank accession number were JQ690271, JF775487, JQ690273, JN681173, JQ690274and JN681174, respectively. The Aglal was1456bp in length, and the open reading frame encoded427amino acids; the Agla2was2463bp in length, and the open reading frame encoded592amino acids; the Agla3was2158bp in length, and the open reading frame encoded537amino acids; the Agla4was1792bp in length, and the open reading frame encoded532amino acids; the Agla5was1850bp in length, and the open reading frame encoded549amino acids; the Aglβl was2406bp in length, and the open reading frame encoded509amino acids. One alternative splice was found with the clone genes. Homology analysis demonstrated that these6subunits of nAChR had high amino acid sequence identity with other insect nAChR subunits previously reported. Polymorphism analysis demonstrated that there is no point mutation exited in resistant and susceptible strains. This work facilitated the further studies on natural subunit composition, function of nAChR and the molecular mechanisms of target resistance for neonicotinoid insecticides.
     7. Cloning and expression of carboxylesterase gene from A. glycines
     The carboxylesterase gene was cloned by using RT-PCR and RACE methods, and it was named as AgCarE. The AgCarE was1946bp in length, and the open reading frame encoded526amino acids, the GenBank accession number was JF970181. The AgCarE possesses a catalytic triad, consisting of a Ser, a His and a Glu residue (Ser186, Glu313and His434), which is characterized by carboxylic esters (EC:3.1.1.-). The AgCarE gene had been recombined into pET21b vector. Then the HIS fusion protein was expressed by the induction of IPTG. The result of SDS-PAGE and Western blot analysis showed that the AgCarE protein in A. glycines was expressed in E. coli BL21which induced by IPTG, and its MW was found to be about59kD, similar as the predicted result. The carboxylesterase activity of AgCarE was characterized with the a-NA as a substrate and its enzyme activity of AgCarE was analyzed.
     8. Relative expression of carboxylesterase mRNA in resistant and susceptible strains of A. glycines
     The relative expression of carboxylesterase mRNA in resistant and susceptible strains of A. glycines were estimated by Ct comprison method. It was found that the relative expression of carboxylesterase gene in resistant strain had much higher than the expression in the susceptible strain (2.25-fold). Combination of the previous results in biochemical mechanism analysis and enzyme activity analysis of AgCarE revealed that the over-expression of carboxylesterase might associate with the high resistance to imidacloprid in A. glycines.
引文
[1]Liu J, Wu.K M, Keith R H, Zhao K J. Population Dynamics of Aphis glycines (Homoptera: Aphididae) and Its Natural Enemies in Soybean in Northern China[J]. Annals of the Entomological Society of America,2004,97(2):235-239.
    [2]王素云,暴祥致,孙雅杰,陈瑞鹿,翟保平.大豆蚜虫对大豆生产和产量影响的试验[J].大豆科学,1996,15(3):243-247.
    [3]王素云,孙雅杰,陈瑞鹿,翟保平,暴祥致.大豆蚜虫对大豆的危害与防治[J].植保技术与推广,1994,(2):5-6.
    [4]张慧杰.大豆有翅成蚜消长与大豆病毒病田间流行速率的关系[J].中国油料,1982,(3):59-61.
    [5]郭井泉,张明厚.大豆花叶病毒(SMV)主要介体及其传毒效率研究[J].大豆科学,1989,8(1):55-62.
    [6]罗瑞梧,尚佑芬,杨崇良,赵玖华,李长松.大豆花叶病流行因素和发生预测研究[J].植物保护学报,1991,18(3):267-271.
    [7]李尉民,濮祖芹.南京地区夏大豆田蚜虫的消长与大豆花叶病毒(SMV)病的流行[J].植物保护学报,1991,18(2):123-126.
    [8]Domier L L, Latorre I J, Steinlage T A, McCoppin N, Hartman G L. Variability and transmission by Aphis glycines of North American and Asian Soybean mosaic virus isolates[J]. Arch. Virol.,2003,148(10):1925-1941.
    [9]Burrows MEL, Boerboom C M, Gaska J M, Grau C R. The relationship between Aphis glycines and Soybean mosaic virus incidence in different pest management systems[J]. Plant Disease,2005,89(9):926-934.
    [10]陈其瑚,俞水炎主编,蚜虫及其防治[M].上海:上海科学技术出版社,1988:206-210.
    [11]刘文浩主编.大豆史话[M]。西安:陕西科学技术出版社,1981:1-78.
    [12]王绶,吕世霖主编.大豆[M].太原:山西人民出版社,1984:1-14.
    [13]张履鸿主编.农业经济昆虫学[M].哈尔滨:哈尔滨船舶工程学院出版社,1993:211-215.
    [14]Singh S R and van Emden H F. Insect pests of grain legumes[M]. Annu. Rev. Entomol,1979, 24:255-278.
    [15]Blackman R L, Eastop V F. Aphids on the world's crops:an identification and information guide[M],2nd ed. Wiley, New York,2000.
    [16]CAB. International. CropProtection. Ompendium. CD-ROM [M/OL]. http://www. aphis. usda.gov/npb/soybean/aphisglycines.
    [17]Van den Berg H, Ankasah D, Muhammad A, Rusli R, Widayanto H A et al. Appl[M]. Ecol., 1997,34:971-984.
    [18]Craig G, Bryan J, Scott M, John W. Soybean Aphid. Team Grains Publication [J/OL].2002, 1:1. http://ipcm.wisc.edu/news/pest/soybean_aphid_2002.pdf.
    [19]David W R, David J V, Robert J O. Soybean Aphid Biology in North America[J]. Ann. Entomol. Soc. Am.,2004,97(2):204-208.
    [20]Alleman R J, Grau C R and Hogg D B. Soybean aphid host range and virus transmission nef Tciency[J]. Proc. Wisc. Fertilizer Agline Pest Manage,2002.
    [21]Murray J F, Petter D. The soybean aphid, Aphis glycines, present in Australia[J/OL].2002, http://www.agric.nsw.gov.au/Hort/ascu/insects/aglycin.htm.
    [22]王承纶,相连英,张广学,朱弘复.大豆蚜Aphis glycines Matsumura的研究[M].昆虫学报.1962,11(1):31-43.
    [23]马振泉,张金明.鲁北豆田害虫治理策略的探讨[C].第二次中美大豆学术研讨会论文集,1984,301-302.
    [24]韩新才.大豆蚜虫及其天敌田间消长规律[J].湖北农业科学,1997,2:22-24.
    [25]于振民.1998年绥化地区大豆蚜大发生原因分析及防治对策[J].植保技术与推广,1999,19(6):17.
    [26]孙博,梁书宝,赵伟霞.1998年绥化地区大豆蚜大发生原因分析及防治对策[J].大豆通报,2000,(1):5.
    [27]王春荣,邓秀成,殷立娟,宋玉华,张冬英,沈海波.2004年黑龙江省大豆蚜虫暴发因素分析[J].大豆通报,2005,(3):19-20.
    [28]刘健,赵奎军.大豆蚜的生物学防治技术.昆虫知识,2007,44(2):179-185.
    [29]李长锁,刘健,赵奎军.哈尔滨地区大豆蚜在大豆田中的迁飞扩散研究[J].东北农业大学学报,2008,39(11):11-14
    [30]杨帅,刘健,戴长春,赵奎军.不同地理种群大豆蚜生长发育的形态指标[J].昆虫知识,2010,47(1):67-71.
    [31]戴长春,刘健,赵奎军等.大豆田中大豆蚜天敌昆虫群落结构分析[J].昆虫知识,2009,46(1):82-85.
    [32]黄存达,周剑峰,杨丹.吡虫啉防治大豆蚜[J].农药,1998,37(1):44-45.
    [33]付波,唐文海,王传士.2.5%功夫乳油防治大豆蚜虫试验[J].农药,1999,38(8):19.
    [34]刘慧平,韩巨才,李冬梅.溴氟菊酯防治大豆食心虫、大豆蚜、甘蓝夜蛾试验[J].农药,1996,35(9):37-39.
    [35]王其胜,单德安,马振泉.不同药剂对大豆苗期主要害虫及天敌种群数量的影响[J].昆虫知识,1993,30(3):333-335.
    [36]姚洪渭,叶慕银,程家安.同翅目害虫抗药性研究进展[J].浙江农业学报,2002,24(2):63-70.
    [37]Bai D, Lummis S C R, et al. Action of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone[J]. Pestic. Sci,1991, 33(2):197-204.
    [38]Liu M Y, Casida J E. High affinity binding of [3H] imidacloprid in the insect nicotinic acetycholine receptor[J]. Pestici. Bioehem. Physiolo,1993,46:40-46.
    [39]邱光,顾正远,刘贤进等.吡虫啉、扑虱灵对褐稻虱的作用机制及药效特征比较研究[J].华东昆虫学报,1997,6(2):79-84.
    [40]唐建军,陈欣,张传进等.超高效杀虫剂吡虫啉的特性及其应用[J].中国农学通报,1999,15(1):38-40.
    [41]Cox L, Koskinen W C, Celis R, et al. Sorption of imidacloprid on soil clay mineral and organic compontents[J]. Soil Sci Am. L.,1998,62:911-915.
    [42]Nauen R, Bretschneider T. New modes of action of insecticides[J]. Pesticide Outlook,2002, 12:241-245.
    [43]Bass C, Lansdell S J, Millar N S, et al. Molecular characterisation of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalides felis (Siphonaptera:Pulicidae)[J]. Insect Biochem. Mol. Biol,2006,36(1):86-96.
    [44]吴世雄,王晓军.吡虫啉在我国的生产与应用[J].农药科学与管理,1999,20(1):37-38.
    [45]Denholm Ⅰ, Rowland M W. Tactics for managing pesticide in arthropods:theory and practice[J]. Ann Rev. EntomoL.,1992,37:91-112.
    [46]Mullins J W. Imidacloprid:a new nitroguanidine insecticide[M]. In Pest Control with Enhanced Enviromental Safety ACS Sym. Series 524(Eds. Duke S O, Menn J J, Plimmer J R). American Chemical Society, Washington D C,1993,183-198.
    [47]孙建中,方继朝,杜正文等.吡虫啉—一种超高效多用途的内吸杀虫剂[J].植物保护,1995,21(2):44-45.
    [48]Tomizawa M, Casida J E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annual Review of Entomology,2003,48: 339-364.
    [49]方继朝,朴永范,孙建中等.吡虫啉防治稻飞虱等害虫的毒理和技术研究[J].西南农业大学学报,1998,20(5):478-488.
    [50]Cahill M, Denholm I. Managing resistance in the chloronicotinyl insecticides-theory or reality[M]. Yamamoto I, Casdia J E. Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor,1999, Tokyo:Springer 253-270.
    [51]王建军,韩召军,王荫长.新烟碱类杀虫剂毒理学研究进展.植物保护学报,2001,28(2):178-182.
    [52]刘泽文.褐飞虱对吡虫啉的抗性及其机理研究[D].南京农业大学博士学位论文,2004.
    [53]姜兴印,王开运等.增效吡虫啉对4种蚜虫的毒力和对天敌的选择性[J].农药,2000,39(9):26-27.
    [54]罗屿,臧宇等.新型杀虫剂对蚯蚓的生化毒理学研究[J].南京大学学报(自然科学),2000,36(2):213-218.
    [55]王成菊,邱立红等。阿维菌素及其混配制剂对蜜蜂的安全性评价[J].农业环境科学学报,2006,25(1):229-231.
    [56]王玉波,何晓庆等.不同农药对丽蚜小蜂的安全性评价[J].中国蔬菜,2006,(8):21-22.
    [57]徐志英,王奎萍等.扑虱灵和吡虫啉对稻虱缨小蜂寄生率的影响[J].昆虫知识,2006,43(6):789-793.
    [58]Liu M Y, Casida J E. High affinity binding of [3H] imidacloprid in the insect nicotinic acetycholine receptor[J]. Pestici. Bioehem. Physiolo,1993,46:40-46.
    [59]Sone S, Nagata K, Tsuboi S, et al. The toxic symptoms and neural effect of a new class of Insecticide, imidacloprid, on the American cockroach, Periplaneta Americana[J]. J.Pestic sci., 1994,19:69-72.
    [60]Patrice D, Bernd G, Monique G.. The insecticide imidacloprid is partial agonist of the nicotinic receptor of honeybee kenyon cells[J]. Neuroseience letters,2002,32:13-16.
    [61]Sattelle D B, Buckingham S D, Wafford K A, et al. Actions of the insecticide 2 (nitromethylene) tetrahydro-1,3-thiazine on Insect and Vertebrate Nicotinic Acetylcholine Receptors[J]. Proc R Soc London Ser B.,1989,273:501.
    [62]Liu Z W, Martin S W, Stuart J L, et al. Identification of a nicotinic acetylcholine receptor point Mutation conferring target-site resistance to imidacloprid in the brown planthopper Nilaparvata lugens[J]. Proc Nat Acad Sci USA,2005,102(24):8420-8425.
    [63]Shimomura M, Satoh H, et al. Insect-vertebrate chimeric nicotinic acetylcholine receptors identify a region, loop B to the N-terminus of the Drosophila Da2 subunit, which contributes to Neonicotinoid sensitivity [J]. Neuroscience Letters,2005,385:168-172.
    [64]Tomizawa M, Yamarnoto I. Binding of nicotinoids and the related compounds to the insect nicotinic acetylcholine receptor[J]. J. Pestic. Sci.,1992,17(2):231-236.
    [65]Methfessel C. Action of imidacloprid on the nicotinergic acetylcholine receptors in rat muscle[J]. Pflanzenschutz-nachr Bayer,1992,45(3):369-380.
    [66]Yamamoto I, Yabuta G, Tamizawa M, Saito T, Miyamoto T, Kagabu S. Molecular mechanism for selective toxicity of nicotinoids and neonicotinoids[J]. Journal of Pesticide Science,1995,20:33-40.
    [67]Tomizawa M, Lee D L, Casida J E. Neonicotinoids insecticides:molecular features conferring selectivity for insect versus mammalian nicotinic receptors[J]. Journal of Agricultural Food Chemistry,2000,48:6016-6024.
    [68]Nanen R, Denholm I. Resistance of insect pests to neonicotinoid insecticides:current status and future prospects[J]. Arch Insect Biochem Physiol.,2005,58(4):200-215.
    [69]张彦英,张弘.吡虫啉抗性产生的可能与治理[J].农药,1999,38(4):22-23.
    [70]Devine G J, Harling Z K, Searr A W, et al. Lethal and sublethal effects of imidacloprid on nicotine-tolerant Myzus nicotianae and Myzus persicae[J]. Pestic. Sci.,1996,48:57-62.
    [71]Nauren R, Strobel J, Tietjen K, et al. Aphicideal activity of imidacloprid against a tobacco feeding strain of Myzus persicae from Japan closely related to Myzus nicotianae and highly resistant to carbamates and organophosphates[J]. Bull. Entomol. Research,1996,86(2): 165-171.
    [72]王开运,姜兴印,仪美芹等。山东省主要菜区瓜(棉)蚜(Aphis gossypii Glover)抗药性 [J].农药学学报,2000,2(3):19-24。
    [73]潘文亮,党志红,高占林等.几种蚜虫对吡虫啉抗药性研究[J].农药学学报,2000,2(4):85-87.
    [74]Foster S, Denholm I, Thompson R. Variation in response to neonicotinoid insecticides in peachpotato aphids Myzus persicae (Hemiptera:Aphididae)[J]. Pest Management Science, 2003,59:166-173.
    [75]李菁,韩召军.棉蚜对吡虫啉抗性的初步研究[J].农药学学,2007,9(3):257-262.
    [76]Denholm I, Cahill M, Byme F J, et al.1995. Progress with documenting and combating insecticide resistance in Bemisia[A]. Gerling D, Mayer R T. Bemisia 1995:Taxonomy, Biology, Damage, Control and Management [CM]. Andove, UK:Intercept.577-603.
    [77]Cahill M, Gornan K, Day I, et al. Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae)[J]. Bull Entomol. Res.,1996,86: 343-349.
    [78]Prabhaker N, Toscamo N C, Castle S J, et al. Selection for imidacloprid resistance in silverleaf whiteflies from the imperial valley and development of a hydroponic bioassay for resistance monitoring[J]. Pesticide Science,1997,51(4):419-428.
    [79]何玉仙,翁启勇,黄健等.烟粉虱田间种群的抗药性[J].应用生态学报,2007,18(7):1578-1582.
    [80]Bi J L, Toscano N C. Current status of the greenhouse whitefly, Trlialeurodes vaporariorum, susceptibility to neonicotinoid and conventional insecticides on strawberries in southern California[J]. Pest Management Science,2007,63:747-752.
    [81]Gorman K, Devine G, Bennison J, et al. Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)[J]. Pest Management Science,2007,63:555-558.
    [82]马崇勇,高聪芬,韦华杰等.灰飞虱对几类杀虫剂的抗性和敏感性[J].中国水稻科学,2007,21(5):555-558.
    [83]刘泽文,董钊,王荫长等.安庆地区褐飞虱、白背飞虱抗药性监测[J].安徽农业科学,2002,4(30):488-489.
    [84]Gao B L, Wu J, Huang S J, et al. Insecticide resistance in field populations of Laodelphax striatellus Fallen (Homoptera: Delphacidae) in China and its possible mechanisms[J]. Int J Pest Manag.,2008,54(1):13-19.
    [85]Zhao J Y, Bishop B A, Grafius E J. Inheritance and synergism of resistance to the imidacloprid in Colorado potato beetle (Coleoptera:Chysomelidae)[J]. J. Appl. EntomoL. 2000,93(5):1508-1514.
    [86]Mota-sanchez D, Hollingworth R M, Grafius E J, et al. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)[J]. Pest Management Science,2006,62: 30-37.
    [87]Elzen G W. Changes in resistance to insecticides in tobacco budworm populations in Mississippi,1993-1995. Southwest Entomology,1997,22:61-72.
    [88]Zhao G, Liu W, Brown J M, et al. Insecticide resistance in field and laboratory strains of western flower thrips (Thysanoptera: Thripidae)[J]. J Econ Entomol.,1995,88(6): 1164-1170.
    [89]Dennehy T J, Roussell J S. Susceptibility of lygus bug populations in Arizona to acephate(Onthene) and bifenthrin (Capture) with related contrast of other insecticides[C]. Nashville TN. Proceedings Beltwide Cotton Conferences,1996,2:771-776.
    [90]Sone S, Hattori Y, Tsuboi S, et al. Difference in susceptibility to imidacloprid of the population of the small brown planthopper, Laodelphax stiatellus Fallen, from various localities in Japan[J]. Japan J Pestic Sci.,1995,20:541-542.
    [91]Choi B R, Lee S W, Yoo J K. Resistance mechanisms of green peaeh aphid, Myzus persicae (Homoptera:Aphididae), to imidacloprid[J]. Korean J Appl Entomol.,2001,40(3):265-271.
    [92]张存政,刘贤进,顾正远等.褐飞虱生物型监测及抗药性初析[J].江苏农业科学,2002,1:41-43。
    [93]Wang N, Korczyn A, et al. The role of neuronal nicotinic acetylcholine receptor subunits in autonomic ganglia: lessons from knockout mice[J]. Progress in Neurobiology,2002,68: 341-360.
    [94]刘泽文,韩召军.褐飞虱对马拉硫磷的抗性遗传和交互抗性研究[J].华东昆虫学报,2003,12(1):19-23。
    [95]Liu Z W, Han Z J, Wang Y C, et al. Selection for imidacloprid resistance in Nilaparvata lugens(Stal):cross-resistance patterns and possible mechanisms[J]. Pest Manag Sci.,2003,59: 1355-1359.
    [96]于彩虹,林荣华,王开运等.棉蚜对吡虫啉等杀虫剂抗药性品系的室内选育及抗药性风险评价[J].植物保护学报,2004,31(4):401-405.
    [97]陈亮,吴兴富,陈若霞等.桃蚜抗吡虫啉品系和敏感品系某些生物学特性比较[J].昆虫知识。2006,43(4):504-508.
    [98]李菁,韩召军.棉蚜对吡虫啉抗性的初步研究[J].农药学学报,2007,9(3):257-262.
    [99]邱高辉。麦长管蚜对吡虫啉抗性及其机理研究[D].南京农业大学博士学位论文,2007.
    [100]杨焕青,王开运,王红艳,等。抗吡虫啉棉蚜种群对吡蚜酮等药剂的交互抗性及施药对其生物学特性的影响[J].昆虫学报,2009,52(2):175-182.
    [101]Liu N N, Yue X. Insecticide resistance and cross-resistance in the house fly (Diptera: Museidae)[J]. J Econ. Entomol.,2000,93(4):1269-1275.
    [102]Elbert A, Nauen R. Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids[J]. Pest Manag. Sei.,2000,56:60-64.
    [103]刘泽文,韩召军,王荫长等.褐飞虱抗有机磷品系的交互抗性及适合度研究[J].南京农业大学学报,2001,24(4):3740。
    [104]Wang K Y, Liu T X, Jiang X Y, et al. Cross-resistance of Aphis gossypii to selected insecticides on cotton and cucumber[J]. Phytoparasitica,2001,29(5):393-399.
    [105]Wei Y P, Appel A G, Moar W J, et al. Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica[J]Pest Management Science,2001,57(11): 1055-1059.
    [106]Sanchez M D, Hollingworth R M, Grafius E J. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle Leptinotarsa decemlineata (Say) (Coleoptera:Chrysomelidae)[J]. Pest Management Science,2006,62: 30-37.
    [107]Welling W, Paterson G D.1985. Toxicodynamics of insecticides.pp:603-645. In Comprehensive insect physiology. Biochemistry and pharmacology Vol.12 (Eds. Kerkur G A, Gilbert LI). Pergamon, Oxford.
    [108]翟启慧.昆虫分子生物学的一些进展:杀虫剂抗性的分子基础[J].昆虫学报,1995,4:493-501.
    [109]唐振华.昆虫抗药性及其治理[M].北京:中国农业出版社,1993.
    [110]Forgash A J. Mechanisms of Resistance in Diazinon-Selected Multi-Resistant Musca domestica[J]. J Econ. Entomol.,1962,55:544-551.
    [111]孙耘芹,冯国蕾,袁家圭等.棉蚜对有机磷杀虫剂抗性的生化机理.昆虫学报,1987,30(1):13-19.
    [112]Gunning R V, Devonshire A L, Moores G D. Metabolism of Esfenvalerate by Pyrethroid-Susceptible and-Resistant Australian Helicoverpa armigera (Lepidoptera: Noctuidae)[J]. Pesticide Biochemistry and Physiology,1995,51:205-213.
    [113]吴益东,沈晋良,尤子平.棉铃虫对氰戊菊酯的抗性机理研究[J].南京农业大学学报,1995,18(2):63-68.
    [114]刘永杰,沈晋良.甜菜夜蛾对氯氟氰菊酯抗性的表皮穿透机理[J].昆虫学报,2003,46(3):288-291.
    [115]Park H M, Lee Y D. The absorption and metabolism of fenobucarb and carbofuranby susceptible and carbamate insecticide-selected strains of the brown planthopper (Nilaparvata lugens)[J]. Kor. J. APPI. Entomol.,1991,30(1):10-17.
    [116]沈晋良,吴益东.棉铃虫抗药性及其治理[M].北京:中国农业出版社,1995.
    [117]Vulule J M, Beach R F, Atieli F K. Elevated oxidase and esterase levels associated with permethrin tolerance in Anopheles gambiae from Kenyan villages using permethrin-impregnated nets[J]. Med. Vet. Entomol.,1999,13:239-244.
    [118]Devonshire A L. The properties of a carboxylesterase from the peach-potato aphid Myzus persicae (Sulz.), and its role in conferring insecticide resistance[J]. Bioehem J.,1977,167: 675-683.
    [119]Gunning R V, Graham D, Devonshire A L. Esterases and esfenvalerate resistance in Australian Helicoverpa armigera (Hubner) Lepidoptera:Noctuidae[J]. Pesticide Biochemistry and Physiology,1996,54:12-23.
    [120]李飞.棉蚜的杀虫剂神经靶标分子生物学研究[D].南京农业大学博士论文,2003.
    [121]Wen Y C, Liu Z W, Bao H B, Han Z J. Imidacloprid resistance and its mechanisms in field populations of brownplanthopper, Nilaparvata lugens (Stal) (Homoptera:Delphacidae) in China[J]. Pestieide Biochemistry and Physiology,2009,94:36-42.
    [122]Devonshire A L, Field L M, Foster S P, et al. The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae[J]. Philos. Trans. R. Sco. Lond. B. Biol. Sci.,1998,353: 1677-1684.
    [123]Raymond M, Beysaat-Arnaouty V, Mouches C, et al. Diversity of the amplification of various esterases B responsible for organophosphate resistance in Culex mosqultoes[J]. Biochem Genet,1989,27:417-423.
    [124]Small G J, Hemingway J. Differential glycosylation produces heterogeneity in elevated esterases associated with insecticide resistance in the brown planthopper Nilaparvata lugens Stal[J]. Insect Biochemistry and Molecular Biology,2000,30:443-453.
    [125]Miyazaki M, Kamiie. K, Soeta S, Taira H, Yamashita T. Molecular cloning and characterization of a novel carboxylesterase-like protein that is physiologically present at high concentrations in the urine of domestic cats (Felis catus)[J]. Biochemical Journal,2003, 370(1):101-110.
    [126]Tomomi F, Masakiyo H, Tetsuo S, Kan C. Synergistic role of specificity proteins and upstream stimulatory factor 1 transactivation of the mouse carboxylesterase 2/microsomal acylcarnitine hydrolase gene promoter[J]. Biochemical Journal,2004,384:101-110.
    [127]Satoh T, Hosokawa M. The mammalian carboxylesterases:from molecules to functions[M]. Annual Review of Pharmacology and Toxicology,1998,38:257-288.
    [128]Marshall S D, Putterill J J, Plummer K. M, Newcomb R D. The carboxylesterase gene family from Arabidopsis thaliana[J]. Journal of Molecular Evolution,2003,57:487-500.
    [129]滕霞,孙曼霁.羧酸酯酶研究进展[J].生命科学,2003,15(1):31-35.
    [130]Cygler M, Schrag J D, Sussman J L, Harel M, Silman Ⅰ, Gentry M K, Doctor B P. Relationship between sequence conservation and three dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science,1993,2(3):366-382.
    [131]Li X, Schuler M A, Berenbaum M R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics[J]. Annual Review of Entomology,2007,52:231-253.
    [132]Pan Y O, Guo H L, Gao X W. Carboxylesterase activity, cDNA sequence, and gene expression in malathion susceptible and resistant strains of the cotton aphid, Aphis gossypii[J]. Comparative Biochemistry and Physiology:Part B,2009,152:266-270.
    [133]Newcomb R D, Campbell P M, Ollis D L, Cheah E, Russell R J, Oakeshott J G. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance in a blowfly[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(14):7464-7468.
    [134]Merlin C, Rosell G, Carot-Sans G, Francois M C, Bozzolan F, Pelletier J, Jacquin-Joly E, Guerrero A, Maibeche-Coisne M. Antennal esterase cDNAs from two pest moths, Spodoptera Littoralis and Sesamia Nonagrioides, potentially involved in odourant degradation[J]. Insect molecular biology,2007,16(1):73-81.
    [135]Cai Q N, Han Y, Cao Y Z, Hu Y, Zhao X, Bi J L. Detoxification of gramine by the cereal aphid Sitobion avenae[J]. Journal of chemical ecology,2009,35:320-325.
    [136]Biswas S, Reinhard J, Oakeshott J, Russell R, Srinivasan M V, Claudianos C. Sensory regulation of neuroligins and neurexin I in the honeybee brain[J]. PLoS ONE,2010,5(2): e9133.
    [137]Biswas S, Russell R J, Jackson C J, Vidovic M, Ganeshina O, Oakeshott J G, Claudianos C. Bridging the synaptic gap:neuroligins and neurexin I in Apis mellifera[J]. PLoS ONE,2008, 3(10):e3542.
    [138]Blackman R L, Spence J M, Field L M. Inheritance of the amplified esterase genes responsible for insecticide resistance in Myzus persicae (Homoptera:Aphididae)[J]. Heredity, 1996,77(2):154-167.
    [139]陈茂华,蓝家样,韩召军,乔宪凤,曲明静.禾谷缢管蚜羧酸酯酶基因cDNA片段的克隆与序列分析[J].麦类作物学报,2006,26(4):145-148.
    [140]张霞,郭巍,李国勋,宋水山.甜菜夜蛾羧酸酯酶基因cDNA的克隆、表达及序列分析[J].昆虫学报,2008,51(7):681-688.
    [141]刘小民,李杰,郭巍,张霞,李新娜.棉铃虫羧酸酯酶基因cDNA的克隆、表达及活性分析[J].中国农业科学,2011,44(4):730-737.
    [142]黄水金,秦文婧,陈琼.斜纹夜蛾羧酸酯酶基因的克隆、序列分析及表达水平[J].昆虫学报,2010,53(1):29-37.
    [143]Cao C W, Zhang J, Gao X W, Liang P, Guo H L. Overexpression of carboxylesterase gene associated with organophosphorous insecticide resistance in cotton aphids, Aphis gossypii (Glover)[J]. Pesticide Biochemistry and Physiology,2008,90:175-180.
    [144]Kasai S, Weerashinghe I S, Shono T. P450 monooxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus Say larvae[J]. Arch. Insect Bioehem. Physiol.,1998,37:47-56.
    [145]Liu N, Scott J G. Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly[J]. Insect Biochem. Mol. Biol.,1998,28:531-535.
    [146]Berge J B, Feyereisen R, Amiehot M. Cytochrome P450 monooxygenases and insecticide resistance in insects[J]. Phil. Trans. R. Soc. Lond. B.,1998,353:1701-1705.
    [147]Amiehot M, Tares S, Brun-Barale A. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 CyP6a2 enable DDT metabolism[J]. Eur. J. Biochem.,2004, 271:1250-1257.
    [148]吴益东,杨亦桦,陈进,沈晋良.棉铃虫对氰戊菊酯和顺式氰戊菊酯抗性水平的比较.南京农业大学学报,1997,20(4):40-43.
    [149]Tang A H, Yue Y, Hua R. The relationships among MFO, Glutathion S-Transferases, and Phoxim resistance in Helicoverpa armigera[J]. Pestic. Biochem. Physiol.,2000,68:96-101.
    [150]Qu M, Han J, Xu X, et al. Triazophos resistance mechanisms in the rice stem borer (Chilo suppressalis Walker)[J]. Pestic. Biochem. Physiol.,2003,77:99-105.
    [151]帅霞,王进军,任艺,李戎.桃蚜的抗性选育及其两种解毒酶活性研究[J].西南农业学报,2005,18(3):264-268.
    [152]陈亮,吴兴富,陈若霞等.桃蚜抗吡虫啉品系和敏感品系某些生物学特性比较[J].昆虫知识,2006,43(4):504-508.
    [153]王义平,吴鸿.昆虫抗药性的分子机理研究进展[J].中国森林害虫,2002,21(5):34-36.
    [154]Perry T, Mekenzie J A, et al. A Dα6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad[J]. Insect Biochemistry and Molecular Biology,2007, 37:184-188.
    [155]Matsuda K, Buckingham S D, Kleier D, Rauh J J, Grauso M, Sattelle D B. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors[J]. Trends. Pharmacol. Sci., 2001,22:573-580.
    [156]Breer H, Sattelle D B. Molecular properties and functions of insect acetylcholine receptors[J]. J. Insect Physiol.,1987,33:771-790.
    [157]Corringer P J, Le-Novere N, Changeux J P. Nicotinic receptors at the amino acid level[J]. Annu. Rev. Pharmacol. Toxicol.,2000,40:431-458.
    [158]Galzi J L, Changeux J R. Neuronal nicotinic receptors:molecular organization and regulations [J]. Neuropharmacology,1995,34:563-582.
    [159]Hucho F, Tsetlin V I, Machold J. The emerging three-dimensional structure of a receptor:the nicotinie acetylcholine receptor[J]. Euopean Joural of Biochemis,1996,239:539-557.
    [160]Arias H R. Topology of ligand binding sites on the nicotinic acetylcholine receptor[J]. Brain Res. Rev.,1997,25:133-191.
    [161]Brejc K, van Dijk W J, Klaassen R, Schuurmans M, van der Oost J, Smit A B, Sixma T K. Crystal structure of AChBP reveals the ligand binding domain of nicotinic receptors[J]. Nature,2001,41:269-276.
    [162]Prince R J, Sine S M. The ligand binding domains of the nicotinic acetylcholine receptor[M], in Barrantes FJ (ed) The Nicotinic Acetylcholine Receptor: Current Views and Future Trends[M],1998. Springer, New York, pp31-59.
    [163]Arias H R. Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors[J]. Neurochem. Int.,2000,36:595-645.
    [164]Grutter T, Changeux J P. Nicotinic receptors in wonderland. Trends Biochem. Sci.,2001,26: 459-463.
    [165]Smit A B, Syed N I, Schaap D, van Minnen J, et al. A glial-derived acetylcholine binding protein that modulates synaptic transmission. Nature,2001,411:261-268.
    [166]Adams M D, Celniker S E, Holt R A. The genome sequence of Drosophila melanogaster[J]. Science,2000,287:2185-2195.
    [167]Jones A K, Grauso M, Sattelle D B. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae[J]. Genomics,2005,85:176-187.
    [168]Jones A K, Raymond-Delpech V, Thany S H, Gauthier M, Sattelle D B. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera[J].Genome Res.,2006, 16:-1422-1430.
    [169]Shao Y M, Dong K, Zhang C X. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori. BMC Genomics.8:324 doi:10.1186/1471-2164-8-324.2007.
    [170]Jones A K, Sattelle D B. The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum. BMC Genomics 8:327 doi:10.1186/1471-2164-8-327. 2007.
    [171]Lansdell S J, Millar N S. The influence of nicotinic receptor subunit composition upon agonist, a-bungarotoxin and insecticide (imidacloprid) binding affinity[J]. Neuropharmcol, 2000,39:671-679.
    [172]Lansdell S J, Millar N S. Molecular characterisation of Dα6 and Dα7 nicotinic acetylcholine receptor subunits from Drosophila:formation of a high-affinity a-bungarotoxin binding site revealed by expression of subunit chimeras[J]. J. Neurochem.,2004,90:479-489.
    [173]Huang Y, Williamson M S, Devonshire A L, et al. Molecular characterization and imidacloprid selectivity of nicotinic acetylcholine receptor subunits from the peach-potato aphid Myzus Persieae[J]. J Neurochem.,1999,73:380-389.
    [174]Liu Z W, Yao X M, Zhang Y X. Insect nicotinic acetylcholine receptors (nAChRs):Important amino acid residues contributing to neonicotinoid insecticides selectivity and resistance[J]. African Journal of Biotechnology,2008,7(25):4935-4939.
    [175]Xu X Y, Bao H B, Shao X S, Zhang Y X, Yao X M, Liu Z W, Li Z. Pharmacological characterization of cis-nitromethylene neonicotinoids in relation to imidacloprid binding sites in the brown planthopper, Nilaparvata lugens. InsectMol. Biol.,2010,19:1-8.
    [176]Huang Y, Williamson M S, Devonshire A L, et al. Cloning, heterologous expression and co-assembly of Mpβ1, a nicotinic acetylcholine receptor subunits from the peach-potato aphid Myzus Persieae[J]. Neuroscience Letters,2000,284:116-120.
    [177]Liu Z W, Han Z J, Zhang Y X, Song F, Yao X M, Liu S H, Gu J H, Millar N S. Heteromeric co-assembly of two insect nicotinic acetylcholine receptor a subunits:Influence on sensitivity to neonicotinoid insecticides[J]. J Neurochem.,2009,108:498-506.
    [178]Schulz R, Bertrand S, Chamaon K, Smalla K H, Gundelfinger E D, Bertrand D. Neuronal nicotinic acetylcholine receptors from Drosophila:Two different types of a subunits co-assemble within the same receptor complex. J Neurochem.,2000,74:2537-2546.
    [179]Zhang Y X, Liu Z W, Han Z J, Song F, Yao X M, Shao Y, Li J, Millar N S. Functional co-expression of two insect nicotinic receptor subunits (Nla3 and Nla8) reveals the effects of a resistance associated mutation (Nlα3Y151S) on neonicotinoid insecticides [J]. J Neurochem., 2009,110:1855-18621.
    [180]Li J, Shao Y, Ding Z P, Bao H B, Liu Z W, Han Z J, Millar N S. Native subunit composition of two insect nicotinic receptor sub types with differing affinities for the insecticide imidacloprid[J]. Insect Biochem. Mol. Biol.,2010,40:17-22.
    [181]FAO. Recommended methods for measumerent of pest resistance to pesticipes[M]. In FAO Plant Production and Protection Paper 21. Rmoe:FAO,1980, pp:-103-106.
    [182]张桂林.害虫抗药性:蚜虫抗药性的测定方法[J].昆虫知识,1982,19(3):48.
    [183]刘树生.天敌动物对害虫控制作用的评估方法及其应用策略[J].中国生物防治,2004,20(1):1-7.
    [184]Tabashnik B E. Resistance risk assessment: realized heritability of resistance to Baeillus thuringiensis in diamondback moth (Lepidoptera: plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and colorado potatobeetle (Coleoptera: chrysomelidae)[J]. J Econ Entomol.,1992,85:1551-1559.
    [185]Han Z J, Moores G D et al. Association between biochemical marks and insecticide resistance in the cotton aphid, Aphis gossypii[J]. Pestic. Biochem. Physiol.,1998,62: 164-171.
    [186]Oppenoorth F J. Glutathione S-transferase and hydrolytic activity in tetrachlorvinphos resistant strain of housefly and their influence on resistance[J]. Pestic Biochem Physiol.,1979, 11:176-178.
    [187]Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analyt. Bioehem.,1976,72: 248-254.
    [188]史晓斌,石绪根,王红艳,夏晓明,王开运.抗吡虫啉棉蚜对其他新烟碱类药剂的交互抗性及相关酶的活性变化[J].昆虫学报,2011,54(9):1027-1033.
    [189]林昌善.动物种群数量变动的理论与试验研究:Ⅱ.赤拟谷盗Tribolium confusun (H.)内禀增长力(rm)的研究[J].动物学报,1964,16(3):323-338.
    [190]Jervis M, Kidd N. Insect Natural Enemies:Practical Approaches to Their Study and Evaluation[J]. London:Chapman & Hall,1996,491.
    [191]唐振华,韩罗珍,张朝远.抗马拉硫磷淡色库蚊不同基因型的自然内禀增长率及其对抗性演化的影响[J].昆虫学报,1990,33(4):385-392.
    [192]陈长琨,李秀峰,韩召军,李国清,王荫长.二化螟抗药性监测方法及相对敏感基线[J].南京农业大学学报,2000b,23(4):25-28.
    [193]慕卫,吴孔明,郭予元,张文吉.甜菜夜蛾对菊酯类杀虫剂敏感基线的建立[J].植物保护学报,2003,30(2):221-222.
    [194]陈长混,李国清,卢丹,郭慧芳,韩召军.新疆棉铃虫自然敏感种群对常用杀虫剂浸叶法的毒力基线.植物保护学报,2000a,27(2):168-172.
    [195]潘怡欧,秦正睿,席景会.大豆蚜玻璃管药膜法敏感毒力基线的建立[J].大豆科学,2010,29(3):483-485.
    [196]顾春波,王刚,王开运,马惠,郭庆龙.我国西南烟区桃蚜Myzus persicae(Sulzer)的抗 药性水平[J].植物保护学报,2006,33(1):77-80.
    [197]杨峰山,吴青君,徐宝云等.小菜蛾对Bt毒素Cry1Ac和Bt制剂抗性的选育及其抗性种群的生物学适应性[J].昆虫学报,2006,49(1):64-69.
    [198]Firko M J, Hayes J L. Quantitative genetic tools for insecticide resistance risk assessment: estimating the heritability of resistance[J]. J. Econ. Entomol.,1990,83(3):647-654.
    [199]庄永林,沈晋良.稻褐飞虱对噻嗪酮抗性的检测技术[J].南京农业大学学报,2000,23(3):114-117.
    [200]Soneda S, Tsumuki H. Studies on glutathione S-transferase gene involved in chlorfluazuron resistance of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae)[J]. Pestic.Bioehem.Physiol,2005,82:94-101.
    [201]慕卫,吴孔明,郭予元,张文吉.甜菜夜蛾对菊酯类杀虫剂敏感基线的建立[J].植物保护学报,2003,30(2):221-222.
    [202]于彩虹,赵飞,卢丹,王晓军,姜辉,林荣华.高效氯氟氰菊酯对亚洲玉米螟汰选及海藻糖酶活性的影响[J].植物保护学报,2009,36(3):257-260.
    [203]孙磊,谢慧琴,许慧敏,杨德松.新疆玛纳斯河流域棉蚜抗药性测定[J].中国农学通报,2011,27(27):299-302.
    [204]陈亮,吴兴富,邓建华,叶恭银.抗吡虫啉桃蚜种群的选育及交互抗性研究[J].农药学学报,2005,7(3):289-292.
    [205]Grauso M, Reenan R A, Culetto E, et al. Novel Putative Nicotinic Acetylcholine Receptor Subunit Genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a New and Highly Conservative Target of Adenosine Deaminase Acting on RNA-Mediated A-to-I Pre-mRNA Editing[J]. Genetic,2002,160(4):1519-1533.
    [206]方国飞.三种农药对红裸须摇蚊毒力和羧酸酯酶活性的影响[J].生态学报,2011,31(17):4914-4918.
    [207]Li X, Schuler M A, Berenbaum M R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics[J]. Annu. Rev. Entomol.,2007,52:231-253.
    [208]Ollis D L, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken S M. The α/β hydrolase fold[J]. Protein Engineering,1992,5(3):197-211.
    [209]Field L M, Williamson M S, Moores G D, Devonshire A L. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer)[J]. Biochemistry Journal,1993,294:569-574.
    [210]Vaughan A, Hemingway J. Mosquito Carboxylesterase Est alpha 21 (A2). Cloning and sequence of the full length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus[J]. The Journal of Biological Chemistry,1995,270(28): 17044-17049.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700