用户名: 密码: 验证码:
微小型水下航行器水动力性能分析及双体干扰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小型水下航行器以其体积、重量小、机动灵活等特点在海洋资源开发领域有着独特的优势,得到了广泛关注。微小型水下航行器工作时,将在复杂海洋环境中进行六自由度运动,而在微小型水下航行器从水面或水下搭载平台释放或回收的过程中,它将处于搭载平台扰动的复杂流场中。由于其推进与操纵系统功率有限,极易受到不规则海浪、海流、旋涡的影响,如何适应复杂的海洋环境,有效地控制自身的航行状态和保持自身的作业姿态,是微小型水下航行器必须面对的问题。要解决这一问题,就必须要了解微小型水下航行器在复杂流场中的水动力性能,包括其对不规则海浪、海流、旋涡的响应,并据此制定控制策略,因此,微小型水下航行器在复杂流场中的水动力性能研究是解决上述问题的基础。本文基于CFD技术计算了不同形式的微小型水下航行器在非均匀流场中的水动力性能,并进行了微小型航行器在复杂流场中的水动力性能试验,同时也进行了平板与钝物体间的流动干扰、对拍翼、串列翼推进性能等双体间水动力干扰研究,主要内容包括:
     (1)基于CFD技术预报了回转体、扁平体两种形式的微小型水下航行器在均匀流场中定常、非定常水动力性能,获得了相关水动力系数,并同实验结果进行对比验证,分析了湍流模型、网格数量对计算结果的影响,探讨了并行算法的计算效率。在此基础上,通过编写用户自定义函数,生成了线性分布的非均匀流场,计算了回转体、扁平体模型在非均匀流场中的直航、斜航、六自由度运动的水动力性能。
     (2)在哈尔滨工程大学大型试验水池中采用潜水泵局部射流,池内循环的方式生成了三维复杂喷流流场,采用多普勒流速仪对复杂流场多个位置进行了三维流速测量,比较了不同潜水泵频率、数量生成的复杂流场速度分布情况。采用三分力天平测量了回转体、扁平体模型在复杂流场中不同流速分布、不同漂角时的纵向力、横向力和转艏力矩,并同数值计算结果进行了对比分析。
     (3)基于非结构化网格对边界层内网格进行局部加密,采用不匹配网格划分方法实现了不同尺度网格的合理过渡,计算了微小型水下航行器距大型水下载体不同位置时的升力、阻力、俯仰力矩性能。
     (4)基于结构化网格分析了前置、后置平板对不同截面形状的钝物体(圆柱、方柱)流体动力性能的影响,结合布置平板前后流场参数以及钝物体受力变化研究了平板与钝物体间的流动干扰现象。
     (5)分别采用动网格和滑移网格方法计算了对拍翼、串列翼的推进性能,探讨了来流速度、相位差、频率、振幅对其推进性能的影响,系统的分析了对拍翼和串列翼较单翼拍动在推力和推进效率上的优势。采用动网格方法计算了二维、三维拍动平板的升力性能,分析平板运动参数对二维、三维平板升力系数影响;讨论了网格数量和时间步长对计算精度的影响。
By the virtue of its own characteristics such as small volume, light weight and goodmaneuverability, Mini-Underwater Vehicle has a promising future in ocean science research,and has been paid more and more attention. Mini-Underwater Vehicle will conduct six-degreeof freedom motion when working in complex marine environment, and will in the complexflow field perturbed by the carrying platform during release and recovery process. It is easilyinterfered by irregular wave, current and vortex because of propulsive and control systempower limited. How to adapt to the complex marine environment and control the navigationand work status are the problems Mini-Underwater Vehicle must face. To solve theseproblems, it is necessary to understand the hydrodynamic performance of Mini-UnderwaterVehicle in complex flow field, including motion response to irregular wave, current andvortex, and then establish the control strategies. So the hydrodynamic performance ofMini-Underwater Vehicle in complex flow field is the basis to solve these problems. Thispaper was based on the CFD technique to study the hydrodynamic performance of differenttypes of Mini-Underwater Vehicle in uneven flow field, and conducted experiment on theirhydrodynamic performance in complex flow field. The interaction between two bodies suchas plate and bluff body, propulsive performance of twin flapping wing and tandem wing werealso researched. The main content of this paper included:
     (1) The steady and unsteady hydrodynamic performance of Mini-Underwater Vehicle inuniform flow with the revolved body and flat body were predicted by the CFD technique;associated hydrodynamic coefficients were obtained and compared with experimentresults. The influence of turbulence model, grid quantity and parallel calculationefficiency were analyzed. Based on these calculations, the user defined functions werewritten to achieve uneven flow fields with linear velocity distribution, and thehydrodynamic performance of the revolved body and flat body conducted the straightmoving, oblique moving and six-degree freedom motion were numerically calculated inthese uneven flow field.
     (2) The experiments of hydrodynamic performance of Mini-Underwater Vehicle in complexflow field were conducted in Harbin Engineering University basin. The three dimensional complex flow fields were generated by underwater pump; the flow wascirculated in the basin. The three dimensional velocities were measured by Dopplercurrent profiler. The velocity distribution of complex flow fields generated by differentpump frequency and quantity were compared. The influence of complex flow field onthe hydrodynamic performance including longitudinal force, lateral force and yawingmoment of the revolved body and flat body versus velocity distribution and drift anglewere measured by the three component balance, and the experiment results were alsocompared with the CFD calculation results.
     (3) Based on the unstructure mesh, refined the mesh in boundary layer, and transition ofdifferent scale mesh were achieved by Non-Conformal grid algorithm; the lift, drag andpitching moment performance were calculated when the distance between theMini-Underwater Vehicle and the large underwater carrier was changed.
     (4) The fluid dynamic performance interaction between bluff body (circular cylinder, squarecylinder) and upstream and downstream plate were calculated based on the structuremesh. The flow interference phenomenon between bluff body and plate were researchedbased on the force of bluff body and flow parameter variety before and after plate placed.
     (5) The dynamic mesh and sliding mesh methods were adopt to calculated the propulsiveperformance of twin flapping wing and tandem wing, the influence of velocity, phase lag,flapping frequency and amplitude on propulsive performance were discussed. Theadvantages of twin flapping wing and tandem flapping wing on thrust and thrustefficiency than single flapping wing were analyzed systematically. Lift performance oftwo-and three-dimensional flapping plate were calculated by dynamic mesh method. Theinfluence of flapping parameters to lift coefficients of two-and three-dimensional wereanalyzed; and the grid quantity and time step sensitive test were conducted.
引文
[1]苏玉民,万磊,李晔,庞永杰,秦再白.舵桨联合操纵微小型水下机器人的开发.机器人.2007,29(2):151-154页
    [2]徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望.智能系统学报.2006,1(1):9-16页
    [3]胡志强,林扬,谷海涛.水下机器人粘性类水动力数值计算方法研究.机器人.2007,29(2):145-150页
    [4] Dochan Kwak,Cetin Kiris,Chang Sung Kim. Computational challenges of viscousincompressible flows. Computers&Fluids,2005(34):283–299P
    [5] Qiuxin Gao. Numerical simulation of free surface flow around ship hull. Journal of ShipMechanics,2002,6(3):11-13P
    [6]王言英.基于阻力性能船体型线精细优化的CFD方法.大连理工大学学报.2002,42(2):127-133页
    [7] Zhirong Zhang,Feng Zhao,Baiqi Li. Numerical calculation of viscous free-surface flowabout ship hull. Journal of Ship Mechanics,2002,6(6):10-17P
    [8]张志荣,赵峰,李百齐. k-湍流模式在船舶粘性流场计算中的应用.船舶力学.2003,7(1):33-37页
    [9]张志荣,李百齐,赵峰.船舶粘性流动计算中湍流模式应用的比较.水动力学研究与进展A辑.2004,19(5):637-642页
    [10]张怀新,刘应中,缪国平.带自由面三维船体周围粘性流场的数值模拟.上海交通大学学报.2001,35(10):429-1432页
    [11] Huaixin Zhang, Yingzhong Liu, Guoping Miao. Numerical simulation ofthree-dimensional viscous flow with free surface about a Ship. Journal of Ship Mechanics,2003,7(3):33-39P
    [12] Li Tingqiu,Jerzy M.,Reijo L. Numerical simulation of viscous flows with free surfacearound realistic hull forms with transom.International Journal for Numerical Methods inFluids,2001(37):601–624P
    [13] Tingqiu Li. Computation of turbulent free-surface flows around modern ships.International Journal for Numerical Methods in Fluids,2003(43):407-430P
    [14]常煜,张志荣,赵峰.多块结构化网格在含附体水面船模粘性流场数值计算中的应用.船舶力学.2004,8(10):19-25页
    [15]顾民,吴乘胜,蒋耀军,缪泉明.箱形船水动力特性的数值计算.船舶力学.2003,7(4):15-20页
    [16]张志荣,李百齐,赵峰.螺旋桨/船体粘性流场的整体数值求解.船舶力学.2004,8(5):19-26页
    [17]许辉,邹早建.基于FLUENT软件的小水线面双体船粘性流数值模拟.武汉理工大学学报.2004,28(1):8-10页
    [18] Min Gu,Chengsheng Wu. CFD calculation for resistance of a ship moving near thecritical speed in shallow water. Journal of Ship Mechanics,2005,9(6):40-47P
    [19]陈康,黄德波.CFD技术在三体船阻力性能研究中的应用.哈尔滨工程大学学报.2006,27(3):362-366页
    [20]陈康.影响船舶CFD模拟的因素分析与三体船阻力计算改进探讨.哈尔滨工程大学博士论文.2008
    [21]王中,卢晓平,付攀.三体船升沉和纵倾计算及其对兴波阻力的影响.上海交通大学学报.2010,44(10):1388-1392页
    [22]张楠,杨仁友,沈泓萃,姚惠之,应良镁.数值拖曳水池与潜艇快速性CFD模拟研究.船舶力学.2011,15(1-2):17-24页
    [23]张楠,沈泓萃,姚惠之.潜艇阻力与流场的数值模拟与验证及艇型的数值优化研究.船舶力学.2005,9(1):1-13页
    [24]张楠,沈泓萃,姚惠之.用雷诺应力模型预报不同雷诺数下的潜艇绕流.船舶力学.2009,13(5):688-696页
    [25] Nan Zhang,Liangmei Ying,Huizhi Yao,Hongcui Shen,Qiuxin Gao. Numericalsimulation of free surface viscous flow around submarine. Journal of Ship Mechanics,2005,9(3):29-39P
    [26]张楠,沈泓萃,姚惠之.潜艇近海底与近水面绕流数值模拟研究.船舶力学.2007,11(4):498-507页
    [27]张楠,沈泓萃,姚惠之.潜艇流水孔阻力数值计算与回归分析研究.船舶力学.2004,8(4):5-15页
    [28]张楠,沈泓萃,姚惠之.潜艇喷流流场数值模拟研究.船舶力学.2007,11(1):10-21页
    [29]张楠,沈泓萃,姚惠之.阻力和流场的CFD不确定度分析探讨.船舶力学.2008,12(2):211-224页
    [30] Baoshan Wu, Fu Xing, Xiaofeng Kuang, Quanming Miao. Investigation ofhydrodynamic characteristics of submarine moving close to the sea bottom with CFDmethods. Journal of Ship Mechanics,2005,9(3):19-28P
    [31] Baoshah Wu,Ziying Pan,Xian Xia,Fangwen Hong. Investigation of the HydrodynamicCharacteristics of Body of Revolution with Stern Ring-wing. Journal of ShipMechanics,2003,7(6):54-59P
    [32]黄振宇,周连第.带全附体潜艇尾流场的数值预报研究.中国造船.2001,42(4):6-11页
    [33]黄振宇,缪国平.大涡模拟在水下航行体周围黏性流场计算中的初步应用.水动力学研究与进展A辑.2006,21(2):190-197页
    [34]张怀新,潘雨村.圆碟形潜水器阻力性能研究.上海交通大学学报.2006,40(6):978-987页
    [35]胡仞与,薛雷平.水下滑翔机垂直面定常运动数值研究.水动力学研究与进展A辑.2010,25(6):743-749页
    [36]张新曙,缪国平,黄国梁,尤云祥.碟形潜水器水动力性能研究.上海交通大学学报.2003,37(8):1186-1188页
    [37]傅慧萍,鲁传敬,吴磊.回转体空泡流特性研究.水动力学研究与进展A辑.2005,20(1):84-89页
    [38]曹嘉怡,鲁传敬,李杰,吴磊.潜射导弹水下垂直自抛发射过程研究.水动力学研究与进展A辑.2006,21(6):752-759页
    [39]邱辽原,石仲堃,侯国祥.轴对称回转体绕流场数值模拟.华中科技大学学报.2004,32(10):46-48页
    [40]邱辽原,石仲堃,周凌,马运义.回转体三维绕流场数值计算.中国造船.2006,47(4):1-7页
    [41]李佳,黄德波,邓锐.载人潜器阻力的数值计算方法分析.船舶力学.2010,14(4):333-339页
    [42] Xianzhao Yu,Yumin Su. Hydrodynamic performance calculation on mini-automaticunderwater vehicle.2010IEEE International Conference on Information and Automation,Harbin,2010:1319-1324P
    [43] Xianzhao Yu,Yumin Su. Hydrodynamic performance calculation of mini-AUV inuneven flow field.2010IEEE International Conference on Robotics and Biomimetics,Tianjin,2010:868-872P
    [44]李刚,段文洋.复杂构型潜器水动力特性的试验研究.船舶力学.2011,15(1-2):58-65页
    [45]林超友,朱军.潜艇近海底航行附加质量数值计算.船舶工程.2003,25(1):26-29页
    [46]朱军,陈强,高俊吉,黄昆仑.扁平潜器微速与倒航水动力试验研究.水动力学研究与进展A辑.2004,19(3):401-406页
    [47]黄昆仑,庞永杰,苏玉民,朱军.潜器线性水动力系数计算方法研究.船舶力学.2008,12(5):697-703页
    [48]吴利红,俞建成,封锡盛.水下滑翔机器人水动力研究与运动分析.船舶工程.2006,28(1):12-16页
    [49]刘玉秋,于开平,张嘉钟.水下非流线型航行体减阻的数值模拟与比较.工程力学.2007,24(2):178-182页
    [50]吴方良,吴晓光,许建,马运义,何汉保.潜艇主艇体三维粘性流场数值计算方法研究.中国造船.2009,50(2):12-22页
    [51]刘祖源,林小平,周朝晖.潜艇指挥台位置对水动力的影响研究.海军工程大学学报.2006,18(6):30-33页
    [52] Mae L.,Seto,Watt G.D. The interaction dynamics of a semi-submersible towing alarge towfish. Proceeding of the eighth international offshore and polar engineeringconference,Montreal,1998:263-270P
    [53] Watt G.D. Modelling and simulating unsteady six degrees-of-freedom submarine risingmaneuvers. DRDC Technical Report,2007-008,Canada
    [54] Watt G.D. Estimating the hydrodynamic characteristics of the dorado remoteminehunting vehicle. DRDC Technical Memorandum,2002-177,Canada
    [55] Watt G.D. ANSYS CFX-10RANS normal force predictions for the series58model4621unappended axisymmetric submarine hull in translation. DRDC TechnicalMemorandum,2006-037,Canada
    [56] Watt G.D.,Baker C.R.,Gerber A.G.,Fouts C. Scripted hybrid mesh adaption forhigh incidence RANS flows about axisymmetric shapes.44th AIAA Aerospace SciencesMeeting and Exhibit,2006,Reno Nevada,AIAA2006-886
    [57] Bettle M.C.,Gerber A.G.,Watt G.D. Unsteady analysis of the six DOF motion of abuoyantly rising submarine. Computer&Fluids,2009(38):1833-1849P
    [58] Jeans T.L.,Watt G.D.,Gerber A.G.,Holloway A.G.L.,Baker C.R. High-resolutionReynolyds–Averaged Navier-Stokes flow predictions over axisymmetric bodies with taperedtails. AIAA Journal,2009,47(1):19-32P
    [59] Jagadeesh P.,Murali K.,Idichandy V.G. Experiment investigation of hydrodynamicforce coefficients over AUV hull form. Ocean Engineering,2009(36):113-118P
    [60] Jones D.A.,Clarke D.B.,Brayshaw I.B.,Barillon J.L.,Anderson B. TheCalculation of Hydrodynamic Coefficients for Underwater Vehicles. DSTO-TR-1329,2002
    [61]谢楠,郜焕秋.波浪中两个浮体水动力相互作用的数值计算.船舶力学.1999,3(2):7-15页
    [62]庞永杰,贺敬席,戴捷,倪绍毓.水下运动物体相互接近过程中的水动力计算.船舶工程.1997,(5):8-10页
    [63]曾一非,朱继懋.水下运动物体间的相互作用力的计算探讨.海洋工程.1994,11(2):40-48页
    [64]程丽.双体流体动力干扰的研究.哈尔滨工程大学博士学位论文.2006
    [65]程丽,张亮,吴德铭,陈强.无升力双体水动力干扰计算.哈尔滨工程大学学报.2005,26(1):1-6页
    [66] Liang Zhang, Li Cheng, Fenglai Li, Qihu Sheng, Yu Wang. Experiment onhydrodynamic interaction between2D oval and wall. Journal of ship Mechanics,2006,10(6):1-10P
    [67]程丽,张亮,吴德铭,汪玉.二维Rankine体升力受邻近壁面干扰的简化算法.哈尔滨工程大学学报.2006,27(1):42-47页
    [68]程丽,罗庆杰,张亮,吴德铭.三维钝体的近壁面受力.水动力学研究与进展A辑.2008,23(2):149-157页
    [69] Liao Guojun,Xue Jiaxing. Moving meshes by the deformation method.Journal ofComputational and Applied Mathematics,2006,(195):83-92P
    [70]郭正,李晓斌,瞿章华,刘君.用非结构网格方法模拟有相对运动的多体绕流.空气动力学报.2001,19(3):310-316页
    [71]郭正,刘君,瞿章华.非结构动网格在三维可动边界问题中的应用.力学学报.2003,35(2):140-146页
    [72] Cavallo P.A.,Neerai Sinha,Feldman G.M. Parallel unstructured mesh adaptationmethod for moving body applications. AIAA Journal,2005,43(9):1937-1945P
    [73] Baker T.J. Adaptive modification of time evolving meshes. Computer methods inapplied mechanics and engineering,2005(194):4977-5001P
    [74] Baker T.J. Mesh Movement and Metamorphosis. Engineering with Computers,2002,18(3):188–198P
    [75] Baker T.J. Mesh deformation and modification for time dependent problems.International Journal for Numerical Methods in Fluids,2003,43:747-768P
    [76] Baker T.J.,Cavallo P.A. Dynamic adaptation for deforming tetrahedral meshes.AIAA Paper99-3253,1999
    [77] Cavallo P.A.,Dash S. M. Aerodynamics of multi-body separation using adaptiveunstructured grids. AIAA Paper2000-4407,2000
    [78] Murayama M.,Nakahashi K.,Matsushima K. Unstructured dynamic mesh for largemovement and deformation. AIAA Paper2002-0122,2002
    [79] Nathan C.P., Davy M.B., Shyy W. Parallel computing of overset grids foraerodynamic problems with moving objects. Progress in Aerospace Sciences,2000,36:117-172P
    [80] Roy Koomullil,Gary Chenga,Bharat Soni,Ralph Noack,Nathan Prewitt. Moving-bodysimulations using overset framework with rigid body dynamics. Mathematics and Computersin Simulation,2008(78):618–626P
    [81] Weihs D.,Ringel M.,Victor M. Aerodynamic Interactions Between Adjacent SlenderBodies.AIAA Journal,2006,44(3):484-484P
    [82] Alexander V.F.,Vitaly G.S.,Norman D.M. Theoretical Modeling of Two-BodyInteraction in Supersonic Flow. AIAA Journal,2010,48(2):258-266P
    [83]于宪钊,苏玉民,王兆立.近尾迹中平板对钝物体的干扰.哈尔滨工程大学学报.2011,32(3):271-275页
    [84] Jeongyoung Park,Kiyoung Kwon,Haecheon Choi. Numerical Solutions of Flow Past aCircular Cylinder at Reynolds Numbers up to160. KSME International Journal,1998,12(6):1200-1205P
    [85] Williamson C.H.K. Defining a universal and continuous Strouhal-Reynolds numberrelationship for the laminar vortex shedding of a circular cylinder. Physics of Fluids,1988(31):2742-2744P
    [86] Liu T.C.,Ge Y.J.,Cao F.C.,Zhou Z.Y.,Wang W. Reynolds number effects onthe flow around square cylinder based on lattice Boltzmann method. Proceedings of the FifthInternational Conference on Fluid Mechanics,China,Shanghai,2007
    [87] Strouhal V. Ueber eine besondere art der tonerregung. Annual review of physics andchemistry (New Series),1878(5):216-251P
    [88] Norberg C. Flow around a circular cylinder:aspects of fluctuating lift. Journal of Fluidand Structures,2001(15):459-469P
    [89] Norberg C. Fluctuating lift on a circular cylinder: review and new measurements.Journal of Fluids and Structures,2003(17):57-96P
    [90] Cao S.,Ozono S.,Hirano K.,Tamura Y. Vortex shedding and aerodynamic forces ona circular cylinder in linear shear flow at sub critical Reynolds number. Journal of Fluids andStructures,2007,23:703-714P
    [91]李光正.绕圆柱非定常周期性涡旋脱落的数值模拟.水动力学研究与进A辑.2000,15(4):493-504页
    [92]王亚玲,刘应中,缪国平.圆柱绕流的三维数值模拟.上海交通大学学报.2001,35(10):1464-1469页
    [93] Saha A.K.,Biswas G.,Muralidhar K. Three-dimensional study of flow past a squarecylinder at low Reynolds numbers. International Journal of Heat and Fluid Flow,2003(24):54-66P
    [94] Muammer Ozgoren. Flow structure in the downstream of square and circular cylinders.Flow Measurement and Instrumentation,2006(17):225-235P
    [95] Okajima,Atsushi,Nagahisa,Taroh,Rokugoh,Akira. A numerical analysis of flowaround rectangular cylinders. JSME International Journal Series II,1990(33):702-711P
    [96] Okajima A. Strouhal numbers of rectangular cylinders. Journal of Fluid Mechanics,1982(123):379-398P
    [97] Sohankar A.,Norberg C.,Davidson L. Simulation of three-dimensional flow around asquare cylinder at moderate Reynolds numbers. Physics of Fluids,1999,11(2):288-306P
    [98] Sohankar A.,Norberg C.,Davidson L. Numerical simulation of unsteady low-Reynoldsnumber flow around rectangular cylinders at incidence. Journal of Wind EngineeringIndustrial Aerodynamics,1997(69-71):189-201P
    [99] Ian Taylor,Marco Vezza. Prediction of unsteady flow around square and rectangularsection cylinders using a discrete vortex method. Journal of Wind Engineering and IndustrialAerodynamics,1999(82):247-269P
    [100] Knisely C.W. Strouhal numbers of rectangular cylinders at incidence:A review andnew data. Journal of Fluids and Structures,1990,l.4(4):371-393P
    [101] Norberg C. Flow around rectangular cylinders:Pressure forces and wake frequencies.Journal of Wind Engineering and Industrial Aerodynamics,1993,49(1-3):187-196P
    [102] Cheng M.,Whyte D.S.,Lou J. Numerical simulation of flow around a squarecylinder in uniform-shear flow. Journal of Fluids and Structure,2007(23):207-226P
    [103] Manbub A.Md.,Moriya M.,Takai K.,Sakamoto H. Fluctuating fluid forces actingon two circular cylinders in a tandem arrangement at a subcritical Reynolds number. Journalof Wind Engineering and Industrial Aerodynamics,2003(91):139-154P
    [104] Zhou Y.,Feng S.X.,Mahbub A.Md.,Bai H.L. Reynolds number effect on the wakeof two staggered cylinders Physics of Fluids,2009(21):1251051-12510514P
    [105] Mahbub A.Md., Sakamoto H. Investigation of Strouhal frequencies of two staggeredbluff bodies and detection of multistable flow by wavelets. Journal of Fluids and Structures,2005(20):425-449P
    [106] Mahbub A.Md.,Zhou Y. Phase lag between vortex shedding from two tandem bluffbodies. Journal of Fluids and Structures,2007(23):339-347P
    [107] Mahbub A.Md.,Zhou Y. Strouhal numbers,forces and flow structures around twotandem cylinders of different diameters. Journal of Fluids and Structures,2008(24):505-526P
    [108] Zhao Ming,Cheng Liang,Teng Bin,Liang Dongfang. Numerical simulation of viscousflow past two circular cylinders of different diameters. Applied Ocean Research,2005(27):39-55P
    [109] Lam K.,Gong W.Q.,So R. M. C. Numerical simulation of cross-flow around fourcylinders in an in-line square configuration. Journal of Fluids and Structures,2008(24):34-57P
    [110] Tamotsu Igarashi,Nobuaki Terachi. Drag reduction of flat plate normal to air stream byflow control using a rod. Journal of Wind Engineering and Industrial Aerodynamics,2002(90):359–376P
    [111] Zhang P.F.,Wang J.J.,Huang L.X. Numerical simulation of flow around cylinderwith an upstream rod in tandem at low Reynolds numbers. Applied Ocean Research,2006(28):183–192P
    [112] Zhou L.,Cheng M.,Hung K.C. Suppression of fluid force on a square cylinder byflow control. Journal of Fluids and Structures,2005(21):151-167P
    [113] You D.,Choi H.,Choi M.,Kang S. Control of flow-induced noise behind a circularcylinder using splitter plates. AIAA Journal,1998,36(11):1961-1967P
    [114] Huseyin Akilli,Besir Sahin,Filiz Tumen N. Suppression of vortex shedding of circularcylinder in shallow water by a splitter plate. Flow Measurement and Instrumentation,2005(16):211–219P
    [115] Chuan Ping S.,QingDing W. Control of vortex shedding from a square cylinder.AIAA Journal,2008,46(2):397-407P
    [116] Doolan C.J. Flat-plate interaction with the near wake of a square cylinder.AIAAJournal,2009,47(2):475-478P
    [117] Pines D.J.,Bohorquez F. Challenges facing future micro-air-vehicle development.Journal of Aircraft,2006,43(2):290–305P
    [118] Barrett D.S. Propulsive efficiency of a flexible hull underwater vehicle.PhDthesis.MIT.1996
    [119] Kumph J.M.,Triantafyllou M.S., Nugent D., Santos M.D. Fast-starting andmaneuvering vehicles:Robopike and Robomuskie. Papers of11th International symposiumon UUS technology.Autonomous Undersea Systems Institute,1999:439-445P
    [120] Grasmeyer J.M.,Keennon M.T. Development of the black widow micro air vehicle.AIAA Paper2001-0127,2001
    [121] Pornsin-Sirirak T.N.,Tai Y.C.,Ho C.M.,et al. Microbat:A palm-sized electricallypowered ornithoper. http://ho.seas.ucla.edu/publications/conference/2001/jpl10_2001.pdf
    [122] Hao L. Integrated modeling of insect flight:From morphology,kinematics toaerodynamics. Journal of Computational Physics,2009(228):439-459P
    [123] Jones K.D.,Platzer M.F. Flapping-wing propulsion for a micro air vehicle.38thAerospace Sciences Meeting&Exhibit,Reno,NV,2000
    [124] Platzer M.F.,Jones K.D.,Young J.,et al. Flapping-wing aerodynamics: progressand challenges. AIAA Journal,2008,46(9):2036-2149P
    [125] Jones K.D.,Dohring C.M.,Platzer M.F. Wake Structures behind Plunging Airfoils:A Comparison of numerical and experiment results. AIAA Paper96-0078,1996
    [126] Jones K.D.,Platzer M.F. Numerical computation of flapping-wing propulsion andpower extraction. AIAA Paper97-0826,1997
    [127] Jones K.D., Platzer M.F. An experimental and numerical investigation offlapping-wing propulsion. AIAA Paper99-0995,1999
    [128] Jones K.D.,Castro B.M.,Mahmoud O.,Platzer M.F. A numerical and experimentalinvestigation of flapping-wing propulsion in ground effect. AIAA Paper2002-0866,2002
    [129] Pengfei Liu. Propulsive performance of a twin-rectangular-foil propulsor in acounterphase oscillation. Journal of Ship Research,2005,49(3):207–215P
    [130]王兆立,苏玉民,李彦丽,杨亮,王晓飞.非定常流场中机械胸鳍的水动力性能分析.哈尔滨工程大学学报.2009,30(5):536-541页
    [131]杨亮,苏玉民.粘性流场中摆动尾鳍的水动力性能分析.哈尔滨工程大学学报.2007,28(10):1073-1078页
    [132] Wang ZhaoLi,Su YuMin,Yu XianZhao,Wang XiaoFei. Experimental and numericalstudy on pectoral-fin propulsive system. China Ocean Engineering,2010,24(3):513-522P
    [133]王兆立,苏玉民,王晓飞,于宪钊,秦再白.仿胸鳍推进系统的水动力实验研究.哈尔滨工业大学学报.2010,42(7):1141-1144页
    [134] Zhaoli Wang,Yumin Su,Liang Yang. Hydrodynamic analysis of the pectoral-fins inviscous flows. Chinese Journal of Hydrodynamics,2009,24(2):141-149P
    [135] Yanli Li,Zhaoli Wang,Yumin Su,Zaibai Qin. Hydrodynamic performance of anunsteady flapping foil. Journal of Harbin Engineering University,2009,30(12):1339-1343P
    [136] Usherwood J.R.,Ellington C.P. The aerodynamics of revolving wings I.Modelhawkmoth wings. Journal of Experimental Biology,2002(205):1547–1564P
    [137] Green M.A.,Smith A.J. Effects of three-dimensionality on thrust production by apitching panel. Journal of Fluid Mechanics,2008(615):211–220P
    [138] Buchholz J.H.,Smits A.J. The wake structure and thrust performance of a rigidlow-aspect-ratio pitching panel. Journal of Fluid Mechanics,2008(603):331–365P
    [139] Sane S.P.,Dickinson M.H. The aerodynamic effects of wing rotation and a revisedquasi-steady model of flapping flight. Journal of Experimental Biology,2002(205):1087–1096P
    [140] Ansari S.A.,Knowles K.,Zbikowski R. Insectlike flapping wings in the hover.Part1:Effect of wing kinematics. Journal of Aircraft,2008,45(6):1945–1954P
    [141] Hsieh C.T.,Chang C.C.,Chu C.C. Revisiting the aerodynamics of hovering flightusing simple models. Journal of Fluid Mechanics,2009,623:121–148P
    [142] Sudhakar Y.,Vengadesan S. Flight force production by flapping insect wings ininclined stroke plane kinematics. Computer&Fluids,2010,39:683-695P
    [143] Soueid H.,Guglielmini L.,Airiau C.,et al. Optimization of the motion of a flappingairfoil using sensitivity functions. Computers&Fluids,2009(38):961-874P
    [144] Shyy W.,Liu H. Flapping Wings and Aerodynamic Lift:The role of leading-edgevortices. AIAA Journal,2007,45(12):1–3P
    [145] Shyy,W.,Trizila,P.,Kang,C.,Aono,H.Can tip vortices enhance lift of a flappingwing? AIAA Journal,2009,47(2):289-293P
    [146] Trizila P.,Kang C.,Visbal M.,Shyy W. A surrogate model approach in2D versus3D flapping wing aerodynamic analysis. AIAA Paper2008-5914,2008
    [147] Trizila,P.,Kang C.K.,Aono H.,Visbal M.,Shyy W. Fluid physics and surrogatemodeling of a low Reynolds number flapping rigid flat plate.28th AIAA AppliedAerodynamics Conference,2010,Chicago,Illinois
    [148] Matthew J.R.,M.J.Milano M.,Gharib M. Role of the tip vortex in the forcegeneration of low-aspect-ratio normal flat plates. Journal of Fluid Mechanics,2007(581):453–468P
    [149] Sun M.,Lan S.L. A computational study of the aerodynamic forces and powerrequirements of dragonfly hovering. Journal of Experimental Biology,2004(207):1887–1901P
    [150] Yamamoto M.,Isogai K. Measurement of unsteady fluid dynamic forces for amechanical dragonfly model. AIAA Journal,2005,43(12):2475–2480P
    [151] Maybury W.J.,Lehmann F.O. The fluid dynamics of flight control by kinematicphase lag variation between two robotic insect wings. Journal of Experimental Biology,2004(207):4707–4726P
    [152] Warkentin J., DeLaurier J. Experimental aerodynamic study of tandem flappingmembrane wings. Journal of Aircraft,2007,44(5):1653–1661P
    [153]毛丞弘,杨建民,彭涛,汪学锋.海洋深水试验池造流系统整流装置数值计算与分析.水动力学研究与进展A辑.2007,22(4):483-490页
    [154]吕海宁,杨建民,彭涛.海洋深水试验池造流系统中穿孔压力墙参数的研究.水动力学研究与进展A辑.2006,21(2):198-204页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700