用户名: 密码: 验证码:
钢管混凝土桥管节点疲劳性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国交通运输事业的进步,钢管混凝土桥作为一种较为新颖的桥型得到了快速发展。近二十年来,已建和在建的钢管混凝土拱桥已经超过200座。然而必须看到,对钢管混凝土桥设计理论的研究相对落后于工程实践,在设计规范方面尤其是针对管节点的疲劳设计不够完善。
     对钢管混凝土桥而言,管节点是承载荷载的关键部位,也往往是整个结构的薄弱环节。本文根据对国内外钢管混凝土桥疲劳问题的调研,通过理论分析和试验研究相结合的方法,对下述问题进行了研究。
     一、广泛收集调研国内外钢管混凝土典型焊接节点疲劳研究的相关成果,针对实际工程需求和有待解决的设计问题,提出本文研究的相关课题。
     二、通过钢管混凝土管节点静载试验,实测了钢管混凝土管节点的名义应力、热点应力,并由此得到钢管混凝土管节点的应力集中系数,同时还建立了精细的三维有限元模型,对试验构件进行应力计算,并与试验实测值进行对比验证。
     三、针对钢管混凝土管节点的应力集中和应力集中系数进行了研究,分析了应力集中的原因及相应的影响因素,对比研究了空心管节点和钢管混凝土管节点应力集中的差异性,提出了应力集中缓减系数q的概念,并运用APDL(参数化语言)的方法建立有限元模型,再通过NLSF(非线性最小平方拟合)的方法进行多个独立变量的拟合和相关系数的分析得到q的表达式,在空心管应力集中系数公式的基础上提出了钢管混凝土管节点应力集中系数的计算公式。
     四、通过对管节点模型的疲劳数据进行统计分析,提出了钢管混凝土表面裂纹长度达到3倍壁厚时管节点疲劳失效的判别准则。通过疲劳试验加载与对裂纹扩展的观测,对钢管混凝土节点来说,由于混凝土的约束作用,上述管节点疲劳失效的判别准则是安全的。
     五、通过基于试验的管节点的应力分析,提出了管节点力学模型和热点区域疲劳裂纹开裂位置的计算公式,该模型可解释空心管和钢管混凝土热点位置转移的力学现象,预测管节点疲劳起裂点的位置,并给出解析解。本文用该模型提出的公式计算了曹娥江大桥疲劳试验模型管节点的开裂位置,与试验结果吻合较好。
     六、运用传统的S-N曲线法和断裂力学的方法对钢管混凝土管节点的疲劳强度及裂纹扩展寿命进行研究,提出了钢管混凝土相应于空心管(DT类)的疲劳强度修正系数,并由此得到钢管混凝土管节点S-N曲线的修正方程;从断裂力学的角度提出了钢管混凝土管节点裂纹扩展的计算方法,并通过疲劳试验数据确定了裂纹扩展计算公式的参数取值。
     七、以曹娥江大桥为例,建立了全桥有限元模型,分别运用本文所提S-N曲线修正方程和断裂力学两种方法计算其疲劳寿命,两种方法互为验证,并由此建立钢管混凝土桥管节点疲劳寿命评估流程。
With the progress of China's transportation, Concrete-Filled Steel Tube(CFST) bridge as a relatively new type of bridge has been developed rapidly,more than200new such bridges have been built in recent20years, but it must be noted that the research works on CFST bridge design theory is relatively less compared with the engineering practices,the design codes are also imperfect,especially to the fatigue design of CFST.
     For CFST bridge, the tubular joint is not only the key part to loadcarring capacity, but also the weak link in the entire structure. Based on the existed research works on CFST bridge fatigue in China and abroad, the subjects as follows have been studied through theoretical analysis and experiments.
     1.The data of typical welded joints fatigue tests and extensive research results in China and abroad are collected.For actual project requirements and design issues to be resolved, the research subjects in this paper have been raised.
     2.By static load tests on the CFST welded joints, the nominal stress and hot spot stress are measured,the stress concentration factor of CFST welded joints are also obtained, and the refined three dimensional finite structure model to carry on the stress computation of specimen are established, and the calculated results are compared with the experimental results.
     3.Regarding stress concentration and stress concentrations factors, the differences in stress concentration between hollow joints and CFST welded joints are given, the concept of stress concentration mitigation factor q are raised.the equations to calculate the factor q are obtained by a finite element model utilizing the APDL method and NLSF(non-linear least-squares fitting) method by which the independent variables and the relative coefficients are analysed. Based on the hollow joint welded tube stress concentration factor formula, the stress concentration factor formula of CFST joint are given.
     4.By analyzing the fatigue test data of CFST joints,the fatigue failure criterion that surface crack lengths up to3times the wall thickness of CFST joints are raised.Through fatigue test and the crack extending survey, it's proved that,due to the constraint of concrete, the criterion of fatigue failure for CFST joint is safe.
     5.By stress analysis to pipe joints based on fatigue tests, the pipe joints stress analysis mechanics model and the formula which can calculate the position of fatigue cracks in the hot spot region are proposed.This model can explain why the hot spot position of the hollow tube and the CFST may shift, and predict fatigue fracture initiation point of the pipe joints, and give analytical solution.Using the model's formula to calculate the crack position of Cao'e Jiang bridge fatigue model, the result is in good agreement with experiment ones.
     6.The traditional S-N curve and fracture mechanics methods are used to study fatigue strength and the crack growth life of CFST.and fatigue strength correction coefficient of the CFST corresponding to the hollow tube(DT kind) are raised,and the CFST S-N curve modified equations are also obtained.CFST crack growth computational methods of the fracture mechanics are proposed, and the parameter value of crack growth formula through the fatigue data are determined.
     7.Taking the Cao'e Jiang bridge as the example, the entire bridge finite element model are established,and the S-N curve modified formula that raised in this paper and the fracture mechanic methods are used to calculate the fatigue life of the bridge. Two methods are mutually the confirmations, and the CFST joints fatigue life assessment process are established.
引文
[1]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.
    [2]蔡绍怀.钢管混凝土结构.北京:中国建筑科学研究院,1992
    [3]陈宝春.钢管混凝士拱桥发展综述[[J].桥梁建设,1997,(2):8-12.
    [4]陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社,1999.
    [5]陈宝春.钢管混凝土拱桥实例集(一)[M].北京:人民交通出版社,2002.
    [6]陈宝春,杨亚林,钢管混凝土拱桥调查与分析[[J].世界桥梁,2006.(2):73-77.
    [7]严国敏译.青叶大桥的设计与施工(RC固端拱桥).铁道部大桥局设计院技术室,1996.
    [8]白宝鸿编泽.法国昂特纳斯钢管拱桥[J].国外桥梁,1998(3):5-6.
    [9]陈炳坤,胡贵琼.美国的17座新建大桥[[J].国外公路,2000(2),21-25.
    [10]刘玉擎编译.日本新西海钢管混凝土拱桥的设计概况[J].世界桥梁,2006(2),5-7.
    [11]范文理.管结构节点疲劳设计[c].中国土木工程学会桥梁及结构工程学会第十四届年会论文集,南京,2000.11
    [12]袁慧芳.桥梁管道结构节点应力集中及疲劳寿命[D].成都:四川大学,2000.
    [13]钱永久,蒲黔辉.钢管混凝土珩架的疲劳性能试验研究[C].四川省公路学会桥梁员会98年桥梁学术讨论会,成都,1998,86-90.
    [14]韩联燕.钢管混凝土空间析架组合梁式结构[M].北京:人民交通山版社,2000.05
    [15]范文理,艾智能,张家元.钢管混凝土节点疲劳验算的修止系数法[C].第十七全国桥梁学术会议,2006,914-918.
    [16]艾智能.钢管混凝土拱桥节点疲劳寿命研究[D].成都:西南交通大学,2005.
    [17]高波.钢管混凝土拱桥节点承载力试验研究ID].成都:西南交通大学,2003.
    [18]张家元.钢管混凝土拱桥管一板节点承载力试验研究[D].重庆:重庆交通大学,2006.
    [19]Szlendak J, Brodka J. Strengthening of T moment of RHS joints[J].Proc Instn Civ Engrs, Part 2,1985,79:717-727.
    [20]Fessler H. Mockford P B. Webster J J. Parametric equations for the flexibility matrices of single brace tubular joints in offshore structures[J]. Proc Instn Civ.Engrs,Part 2,1986.81:675-696.
    [21]Fessler H. Mockford P B, Webster J J.Parametric equations for the flexibilit y matrices of multi-brace tubular joints in offshore structures[J].Proc Instn Civ.Engrs,Part 2.1986,81:659-673.
    [22]Ueda Y, Rashed S M H, Nakacho K. An improved joint model and equations for flexibility of tubular joints[J]. Journal of offshore Mechanics and Arctic Engineering,1990,112:157-168.
    [23]Hyde T H.Leen S B. Prediction of elastic-plastic displacement of tubular joints under combined loading using an energy-based approach[J]. Journal of S train Analysis.1997,32(6):435-453.
    [24]Hyde T H,Leen S B. On the prediction of elastic-plastic generalized load-displacement responses for tubular joints[J].Journal of Strain Analysis,2000,35(3):205-219.
    [25]刘鹏.方圆汇交平面钢管节点的刚度研究[D].上海:同济大学建筑工程系,2001.
    [26]Department of Energy(Den).Offshore installations:Guidance on design and construction [s]. HMSO, UK,1984
    [27]van Wingerde A.M,Wardenier J,packer J A.Commentary on the draft specification for fatigue design of hollow section joints[C].Proceedings of 8th International Symposium on Tubular Structures. Singapore,1998.117-127
    [28]International Institute of Welding(IIW).Recommended fatigue design procedure for hollow section joints:Part Ⅰ-Hot spot stress method for hollow section joints. International Institute of Welding, Subcommission XV-E,IIW Doc.XV-582-85[M].IIW Assembly, Strasbourg, France 1985.
    [29]A.M.van Wingerde J.A.Packer,New guidelines for fatigue design of hss connections, Journal of Structural Engineering,vol-122,1996
    [30]A.Romeijin,Stress and strain concentration factors of welded Multiplannar tubular joints,PhD Thesis,Delft University Press,The Netherlands(1994).
    [31]Zhao X L, Herion S, Packer J A, Puthli R, Sedlacek G,Wardenier J, Weynand K, van Wingerde A, Yeomans N.Design guide for circular and rectangular hollow section joints under fatigue loading [M]. CIDECT, TUV,Germany,2000.
    [32]Huang Z W. Stress intensity factor of cracked steel tubular T and Y-joints under complex loads [D]. PhD Thesis.Nanyang Technological University, Singapore,2002.
    [33]Soh A K, Soh CK. Stress concentrations of K tubular joints subjected to basic and combined loadings [J].Proceedings of the Institution of Civil Engineers-Structures and Buildings,1996,116: 19-28.
    [34]钟善桐.钢管混凝土统一理论.北京:清华大学出版社,2006.
    [35]Chang,E.,Dover,W.D.Stress concentration factor parametric equations for tubular X and DT joints. Int. J.Fatigue,1996,18(6):363-387.
    [36]Chang.E.,Dover,W.D.Prediction of stress distributions along the intersection of tubular Y and T-joints.Int.J.Fatigue,1999,21:361-381.
    [37]Morgan,M.R.,Lee,M.M.K.Prediction of Stress Concentrations and Degrees of Bending in Axially Loaded Tubular K-Joints.J.Construct. Steel Res.,1998,45(1):67-97.
    [38]Morgan, M.R., Lee, M.M.K. Stress concentration factors in tubular K-joints under in-plane moment loading. ASCE Journal of Structural Engineering,1998,124 (4):382-390.
    [39]Morgan,M.R.,Lee, M.M.K.Parametric equations for distributions of stress concentration factors in tubular K-joints under out-plane moment loading. Int.J. Fatigue,1998,20 (6):449-461.
    [40]Romeijn,A.,Puthli,R.S.,Wardenier,J. Guidelines on the numerical determination of stress concentration factors of tubular joints. Proc.Sth Int.Symposium on Tubular Strucures. Nottingham,U.K.,1993,625-639.
    [41]Underground Engineering Group (UEG).Design of tubular joints for offshore structures,UEG, London,1985,1.
    [42]Fung,T.C.,Soh,C.K. Stress Concentration Factors of Doubler Plate Reinforced Tubular T Joints. Journal of Structural Engineering,2002,128(11).
    [43]Healy, B.E., Buitrago, J. Extrapolation procedures for determinng SCFs in mid-surface tubular joints models. Proc.6th. Int. Symposium on Tubular Structure.Melbourne, Australia.1994,651-659.
    [44]Dijkstra, OD. Comparison of strain distribution in three X joints determined by strain gauge measurements and finite element calculations. Paper TS6.2. Steel in Marine Structures, Paris, October. 1981.
    [45]Efthymiou, M., Durkin, S. Stress concentration in T/Y and gap/overlap K-joints.Behavior of offshore structures, Amsterdam, The Netherlands,1985,429-440.
    [46]Moe, Einar, T. Stress Steel in Marine Structures,analysis and fatigue tests on overlapped K joints. Proc., Amsterdam, The Netherlands,1987,395-404.
    [47]Gho, W.M. Structural behavior of completely overlap tubular joints. PhD thesis,Nanyang Technological Univ, Singapore,2001.
    [48]朱俊.圆钢管混凝土T型焊接节点疲劳性能研究,硕士学位论文,同济大学,2007.4
    [49]陈铁云.近海钻井平台管状接头应力分析的进展[J]力学进展,1985,15(4):425-433
    [50]陈伯真.海洋平台管节点应力分析研究工作展望[J]力学进展,1987,17(3):331-336
    [51]陈铁云,朱正宏.海洋平台T,Y,K及搭接K型管接头的弹塑性有限元分析[[J]海洋工程,1992,10(2)8-15
    [52]Herion S,Mang F,Puthli R. Parametric study on multi-planar K-joints with gap made of circle hollow sections by means of the finite element method [C]Proceeding of the Sixth International Offshore and polar Engineering Conference,Los Angeles,CA,1996,IV:68-73
    [53]Cao J J,Yang G J, Packer J A. F E mesh generation forcircular tubular joints with or without cracks [C]Proceedings of the Seventh International Offshore andPolar Engineering Conference, Honolulu,1997, IV:98-105
    [54]Shao Y B.Fatigue behaviour of uni-planar CHS gapK-joints under aerial and in-plane bending loads [D].Ph.D.Thesis,Nanyang Technological University,Singapore,2005
    [55]Wong S M.Model and mesh generation of cracked Y-tubular joints for SIF and SCF studies[D].MEngThesis.Nanyang Technological University.Singapore,2001
    [56]郭勇,孙柄楠,郭健等.节点板连接K型应力集中系数.建筑结构,2004,34(06):5154
    [57]杨铮,金伟良.Y型管节点应力集中系数有限元分析.中国海洋平台,2004,19(4):1721
    [58]Efthymiou M, Durkin S. Stress concentrations in T/Y and Gap/overlap K-joints.Behaviour of Offshore Structures,Netherlands; 1985.429-440.
    [59]张宝峰,曲淑英,邵水波等.轴向载荷下X型管节点应力集中系数研究.工程力学,2007,24(7):161-166
    [60]A.B.PoLvin,J·G·Kuung, R. D. Leick&J. L.Kahlich. Stress Concentration in Tubular Joints[C].Society of Petroleum Engineering Journal, Augest,1977.
    [61]M.B. Gibstein. Parametric Stress Analysis of T Joints[C].EOSRS, Paper 26,1978.
    [62]A.K.Hellier.M.P.Connolly & W.D.Dover.Stress Concentration Factors for Tubular Y and T-Joints [J].Int.J.Fa-tigue,1990,12(1).
    [63]J.K.Kuang, A.B. Potvin&R. D. Leick. Stress Concentration in Tubular Joints[C].0TC2205.1975.
    [64]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [65]邢静忠,土永岗,陈晓霞等编著AN SYS分析实例与应用教程,机械工业出版社,2004年
    [66]龚曙光,谢杜兰编著,ANSYS操作命令与参数化编程,机械工业出版社,2003年
    [67]Rules for the design construction and inspection of offshore structures,1977, Appendix C, steel structures,1979, DNV。
    [68]余寿文,关于管节点疲劳寿命估算的断裂力学分析方法的研究,清华大学工程力学系,1985,亦见Chinesisch-Deutscher Austauschkreis fur das Bauingenierwesen,1986,Brauns chweig,B.1. Heft 2,170-182。
    [69]李少甫.近海钢平台结构管节点的两种疲劳分析方法,清华大学土木工程系,1984.
    [70]Tilley, D. R., Radon, J. C. and Turner, C.E., European offshore steel re-search seminar, UK Dept. of Energy. V/PE-1-V/PE-9。
    [71]European Committee for Standardization. Eurocode 3:Design of steel structures-PartI-9:Fatigue (EN 1993-1-9:2005)。
    [72]中国机械工程学会焊接学会.焊接手册(第三卷,焊接结构).北京:机械工业出版社,2001.
    [73]American Welding Society.ANSIlAWS D1.1M-2008 Standard Specification for Welded Highway and Railway Bridges. American Welding Society,2008。
    [74]American Petroleum Institute. Recommended practice for planning, designing and constructing fixed offshore platforms.API.14th edition,1984。
    [75]Det Norske Veritas.Rules for the design, construction and inspection of fixed offshore structures. DNV,1977。
    [76]方华灿.海洋石油钢结构的疲劳寿命:模糊概率断裂与损伤力学的应用[M].山东:石油大学出版社,1990。
    [77]徐灏.疲劳强度[M].北京:高等教育出版社,1988。
    [78]Ranganthan N.Fatigue propagation under block loading analysedin terms of equivalent loading concepts[J].Engineering Fracture Mechanics,1992,42(1):59-71.
    [79]高仁良,陈廷国.管节点疲劳裂纹扩展规律和寿命估算。大连理工大学学报,1995,4。
    [80]罗学富,刘玉岚,余寿文。管节点表面裂纹疲劳扩展的数值模拟[J]工程力学,1994,11(1):1-8.
    [81]卫欣,杨卫,余寿文。利用线弹簧模型计算含表面裂纹的板壳结构的复合型应力强度因子[J]计算结构力学及其应用,1991,8(3):257-265。
    [82]Chiew SP, Lie ST, Lee CK, Huang ZW.Stress intensity factors of a surface crack in a tubular T-joint[J].International Journal of Pressure Vessels and Piping,2001,78(10):677-685.
    [83]Shao Yongbo,Lie Seng-Tjhen.Parametric equation of stress intensity factor tubular K-joint under balanced axial load[J].International Journal of Fatigue,2005,27(6):666-679.
    [84]Albrecht P, and Yamada K. (1977).Rapid calculation of stress intensity factors.Journal of the Structural Division,ASCE,103(2),377-389.
    [85]冷建兴,管德清,汪广海。海上平台管节点疲劳寿命估算方法。海上平台管节点疲劳与断裂研究文集,1991。
    [86]W.D.Dover. S.Dharmavason, Fatigue Analysis of Tubular Joints using Fracture Mechan-ics, Offshore China,1983.
    [87]Murakami Y. Stress intensity factors handbook. Oxford:Pergamon Press; 1987.
    [88]Albrecht P, and Yamada K. (1977). Rapid calculation of stress intensity factors.Journal of the Structural Division, ASCE,103(2),377-389.
    [89]Hobbacher A. Stress intensity factors of welded joints. Eng Fract Mech 1993:46(2):173-82.
    [90]Hobbacher.A.(1993).Stress Intensity Factors of Welded Joints. Engineering Fracture Mechanics, Vol.46, No.2, pp.173-182
    [91]中国航空研究院.应力强度因子手册.北京:科学出版社,1993.
    [92]Newman. J. C., Raju, I.S.(1981).An Empirical Stress Intensity Factor Equation for the Surface Crack. Engng Fract Mech,15(1/2), pp.185-192.
    [93]陆毅中.工程断裂力学.西安:西安交通大学山版社,1987.
    [94]孙志雄.焊接断裂力学.西安:西北工业大学山版社,1990.
    [95]范大佑.断裂理论基础.北京:科学山版社,2003.
    [96]刘元杰、刘素琴等.管节点疲劳强度的概率断裂力学研究,1984
    [97]Vosikovsky.O., Bell. R., Burns. D. J. and Mohaupt. U. H., Fracture Mechan-ics Assessment of Fatigue Life of Welded Plate T-Joints. Proc. of 4th BOSS'85, Ed. by J. A. Battjes, Elsevier,453-464.
    [98]Yamada, K.,and Nagatsu, S.(1989). Evaluation of Scatter in Fatigue Life of Welded Details Using Fracture Mechanics. Struct. Engrg./Earthquake Engrg.,6(1),13-21
    [99]O.C.Zienkiewicz.The Finite Element Method in Structural and Continuum Mechanics[M].Publ McGraw-Hi 11.London.1967.
    [100]R.H.Gallagher.Finite-element Analysis Fundamentals[M].Public Prentics-Hall,Englewood Clifs, IVJ,1975.
    [101]H.R.Schwarz.The Finite Element Method[M].Publ Teubner Verlag,Stutgart,1980.
    [102]盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社,2001.
    [103]牟廷敏,庄卫林,梁建,范碧琨.公路钢管混凝土桥梁设计与施工指南.北京:人民交通出版社,2008.
    [104]Fisher, J. W., Mertz, D. R.,and Zhong, A. (1983).Steel Bridge Members Under Variable Amplitude Long Life Fatigue Loading. NCHRP 267, Transportation Research Board, Washington,D.C.
    [105]Fisher, J. W.,Nussbaumer,A. and Keating, P B. (1993). Resistance of Welded Details Under Variable Amplitude Long-Life Fatigue Loading.NCHRP 354, Transportation Research Board, Washington. D.C.
    [106]Albrecht, P, and Rubeiz,C.(1987).Variable-Amplitude Fatigue Behavior of Steel Girders.Rep. No. FHWA/RD-87/06, Federal Highway Administration, McLean,Va.
    [107]Matsuishi.M. and Endo, T (1968). Fatigue of Metals Subjected to Varying Stress-Fatigue Lives under Random Loading. Preliminary Proceedings of the Kyushu District Meeting, The Japan Society of Mechanical Engineers,pp.37-4.0.
    [108]bowling, N. E. (1972). Fatigue Failure Predictions for Complicated Stress-Strain Histories.Journal of Material, Vol.7, No.1, Pp.71-87.
    [109]英国标准学会.钢桥、混凝十桥及结合桥(英国标准BS5400).成都:西南交通大学出版社.1987.
    [110]American Association of State Highway and Transportation Officials (AASHTO).(1990). Guide Specifications for Fatigue Evaluation of Existing Steel Bridges. Washington, D.C.
    [111]Synder, R. E., Likins, G. E., and Moses, F (1985). Loading Spectrum Experienced by Bridge Structures in the United States. Report FHWA/RD-85/012, Bridge Weighing Systems Inc., Warrensville. Ohio.
    [112]Smith,I.PC.and Hirt.M.A.(1983).Method of Improving the Fatigue Strength of Welded Joints. Publication ICOM 114.
    [113]Laman,J.A.and Nowak, A. S.(1996).Fatigue-Load Models for Girder Bridges.Journal of Structural Engineering,ASCE,122(7):726-733.
    [114]Laman, J. A. Fatigue Load Models for Girder Bridges. (1995). Doctoral Dissertation.Ann Arbor, MI:University of Michigan.
    [115]Harry Cohen, Gongkang Fu. (2003). Predicting Truck Load Spectra Under Weight Limit Changes and Its Application to Steel Bridge Fatigue Assessment. Journal of Bridge Engineering.
    [116]Chotickai Piya. (2004). Fatigue Reliability-based Analysis Methods for the Rvaluation of Steel Bridge Structures. PhD Dissertation, Purdue University.
    [117]中华人民共和国交通部标准.公路桥涵钢结构及术结构设计规范(JTJ025-86)[S],北京:人民交通出版社,1986.
    [118]童乐为,沈祖炎,陈忠延.城市道路桥梁的疲劳荷载谱[J].土木工程学报,1997.Vol.30(5):2027.
    [119]王荣辉,池春,陈庆中,甄晓霞.广州市高架桥疲劳荷载车辆模型研究[J].华南理工大学学报(自然科学版),2004,Vol.32,No.12:94-96.
    [120]徐磊,铆接桁架桥剩余使用寿命分析与评估[D],上海:同济大学士木工程学院,2003.
    [121]王春生.铆接钢桥剩余寿命与使用安全评估[D].上海:同济大学土木工程学院,2003.
    [122]ASTM Standard E1049-85(1997). Standard Practices for Cycles Counting in Fatigue Analysis. American Society for Testing and Materials.
    [123]郑修麟.金属材料的疲劳.西安:西北工业大学出版社,1987.
    [124]钱冬生.钢桥疲劳设计.成都:西南交通大学出版社,1986.
    [125]Gurney T.R. Fatigue of Welded Structures. Cambridge, UK:Cambridge University Press,1979.
    [126]管德清.焊接钢结构疲劳强度与寿命预测理论的研究.湖南大学博士学位论文,2003.
    [127]任伟平.焊接钢桥结构细节疲劳行为分析及寿命评估.西南交通大学博士学位论文,2008.
    [128]王东海,戴仰山,崔宏斌.船舶结构疲劳寿命两种分布格式的比较[J].船舶工程,1998(3):12-14.
    [129]陈惟珍.老钢桥疲劳剩余寿命的计算方法[C].第十四届全国桥梁学术会议论文集,2000:535-541.
    [130]贾法勇,霍立兴,张玉风等.热点应力有限元分析的主要影响因素[J].焊接学报,2003.(3):27-30.
    [131]S.Suresh材料的疲劳[M].北京:国防工业出版社,1993
    [132]管德清.焊接结构疲劳断裂与寿命预测[M].长沙:湖南大学出版社,1996.11.
    [133]郑学祥主编.船舶及海洋工程结构的断裂与疲劳分析[M].北京:海洋出版社,1988.5
    [134]李志安.压力容器断裂理论和缺陷评定[M].大连:大连理工大学出版社,1994.
    [135]蒋志岩.船舶结构疲劳评估及其应力分析方法研究[D]大连:大连理工大学,2004
    [136]郝文化主编ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [137]施丽娟,崔维成.集装箱船舱口角隅应力集中系数的有限元分析的精度[J].中国造船,Vo1.44,No.1:31-38.
    [138]刘国庆,杨庆东ANSYS工程应用教程——机械篇[M].北京:中国铁道出版社,2003.01
    [139]J.A.Packer, J.E.Henderson曹俊杰.空心管结构连接设计指南[M].北京:科学出版社,1997.
    [140]中国工程建设标准化协会.《钢管混凝士结构设计与施工规程》(CECS28:90)[5].北京:中国计划出版社.1990.
    [141]中华人民共和国电力行业标准.《钢—混凝土组合结构设计规程》(DL5099-97)[S].北京:中国电力出版社.1999.
    [142]国家建筑材料工业局标准.《钢管混凝士结构设计与施工规程》(JCJ01-89)[S].上海:同济大学出版社,1989.
    [143]崔军.大跨度钢管混凝十拱桥受力性能分析[D].杭州:浙江大学,2003.
    [144]韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [145]陈开利,林亚超.钢管混凝土拱桥力学特性试验研究[J].桥梁建设,2007(01):16-20.
    [146]陈铁云,张惠元.近海平台空间多支管接头的应力集中[J].上海交通大学学报,VOL28,No5:1-8.
    [147]中华人民共和国交通部标准.公路桥涵钢结构及木结构设计规范(JTJ025-86),北京:人民交通出版社,1986.
    [148]赵建平,黄文龙,朱薇.用等效载荷方法估算变幅载荷下的疲劳寿命[J].机械强度,1997.03,Vol.19(3):42-44.
    [149]赵建平,黄文龙,朱薇.非恒幅载荷下含表面裂纹对焊接头疲劳寿命的估算[J].南京化工大学学报,1996,VOI.18,No.2:64-70.
    [150]沈祖炎.直接焊接结构节点极限承载力计算.钢结构,1991,No 4
    [151]詹深,沈祖炎二圆钢管节点的强度计算公式.钢结构,1999,No 1
    [152]中国船级社《海上固定平台入级与建造规范》.北京:人民交通出版社,1992
    [153]海上固定平台规划、设计和建造的推荐作法—工作应力设计法(SY/T 10030-2004).北京:石油工业出版社,2004
    [154]海上固定平台规划、设计和建造的推荐作法一荷载抗力系数设计法(SY/T 10009-2002).北京:石油工业出版社,2002
    [155]祝效华,余志祥ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社,2004.10.
    [156]李扬海,鲍卫刚等.公路桥梁结构可靠度与概率极限状态设计.人民交通出版社,1997
    [157]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析[M].北京:人民交通出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700