用户名: 密码: 验证码:
旱区铁路混凝土桥梁耐久性及安全性评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合西北旱区铁路混凝土桥梁评估过程中面临的技术问题,研究在役铁路混凝土桥梁的材料和结构的性能变化特征及规律,提出合理的混凝土桥梁耐久性与安全性评估方法,对于保证桥梁使用安全及铁路可持续发展具有重要意义。
     对西北铁路的西格线、包兰线、柴支线及兰渝线等旱区桥梁混凝土强度检测发现,受干燥气候环境的影响,旱区长龄期桥梁混凝土强度与目前《规范》方法的换算强度间存在较大误差,甚至存在误判现象。针对旱区环境对长龄期混凝土强度评定带来的影响和高强混凝土检测过程中存在的问题,制作了长龄期同条件混凝土试块,在实验室开展了强度无损检测及抗压强度试验,提出了旱区回弹法、超声-回弹法的混凝土强度检测公式,并研发了旱区应力波法及应力波-回弹法进行强度评定的新方法,提高了强度测试精度,并可进行高强混凝土测试。
     旱区铁路桥梁混凝土碳化现象与其它气候环境地区具有明显不同的特征,通过对西北旱区铁路钢筋混凝土桥梁的保护层厚度、碳化深度测试及钢筋锈蚀状态调查,揭示了旱区铁路桥梁保护层混凝土碳化规律及钢筋锈蚀特点,分析了掺氯盐混凝土的材料劣化特征,提出了旱区铁路桥梁混凝土的设计要求并进行了实桥验证。
     随着服役期限的延长和我国铁路重载提速战略的实施,对量大面广的铁路重力式桥墩系统进行适用性及状态评估是一项繁重而持久的工作。通过铁路简支梁桥墩的振动试验方法的实测数据对比,分析了桥墩模态参数测试方法的适用性及要点。针对铁路简支梁桥的构造特点,在有限元分析及实桥试验的基础上,提出了简支梁桥动力分析的简化计算模型。针对铁路桥墩状态评估过程中参数敏感性方面存在的问题,结合理论分析,提出了基于健全度参数的重力式桥墩系统劣化评价指标。
     铁路桥梁的现存应力检测是结构承载力评定方面的一个技术难题,长龄期桥梁预应力状态影响着桥梁的修废决策。以铁路预应力空心薄壁桥墩现存预应力判定为背景,在开槽法有限元分析的基础上,通过研究荷载、切槽间距、槽长、切槽深度等条件变化造成的混凝土工作应力变化规律研究,提出了预应力箱式构件的应力释放过程中所需的切槽深度、间距等计算参数。结合铁路空心薄壁桥墩的现存预应力检测和桥墩振动测试,从应用方面解决了预应力判定和桥梁改造过程中存在的关键技术问题。
     铁路行车安全涉及桥梁、线路及车辆等因素,随着铁路提速及结构形式日趋多样化,在试验工作方面面临着判定依据选取的困难。以旱区钢筋混凝土拱桥为工程背景,通过有限元分析和加固前后的轮轨力试验测试,分析了结构状态变化对结构动力性能及行车安全性参数的影响。为寻找拱桥安全性判定的动力学指标,结合桥梁改造,进行了钢筋混凝土拱桥加固前后的脱轨系数和轮重减载率变化以及频率、振幅、加速度指标现场测试。试验结果表明,加固前后的线路轮轨力变化与桥梁动力学指标变化具有一定的关联性,所提出的等代梁法进行钢筋混凝土铁路拱桥行车安全限值的分析方法,弥补了《铁路桥梁检定规范》的行车安全限值的动力学判定方面的不足。
     作为铁路混凝土桥梁的重要组成部分,人行道系统随着行车速度的逐渐提高其安全性问题日渐突出。以宝中铁路桥梁人行道系统的现场病害为工程背景,通过结构分析、现场车桥振动测试及试验室的足尺寸模型试验,对人行道系统的承载力进行了评定,结合U型螺栓的断口金相分析及室内人行道系统的疲劳试验,分析了U型螺栓连接件疲劳寿命,指出了目前人行道系统静强度计算理论存在的缺陷及构件疲劳破坏特征,提出了在役桥梁的加固方法,并对加固系统的有效性进行了试验验证。
Combined with the technical problems of safety evaluation of the railway RCbridge in northwest arid region, the material and structure performance change featureand rule of the railway existing bridge in arid region were researched, and thereasonable evaluation methods for safety and durability of railway RC bridge were putforward. It is very significant to ensure the safety of railway RC bridge and thesustainable development of railway operation.
     The concrete strength testing works of northwest railway RC bridge were carriedout according to Xining-Geermu Railway, Baotou-Lanzhou Railway, Diesel DaleRailway Line and Lan-Yu Railway Line. The concrete strength tests showed that, by theimpact of the dry weather, the concrete strengths of the long-age bridge in arid regionexisted great errors with the conversion strength of the criterion, even misadjusted.Considering the influence of environment on intensity evaluation, and the existingproblems of high strength concrete testing, the long-age concrete blocks are made in thesame condition, the strength nondestructive testing and compressive strength test ofconcrete block are made in the lab. The concrete strength detection formulas of reboundmethod and ultrasonic-rebound method in arid region were proposed. The new methodsof concrete strength assessment in arid region based on stress wave and stress-waverebound were proposed, these improved the strength test accuracy, and can be used tohigh strength concrete test.
     The carbonation phenomenon of concrete of bridge in arid region have significantdifferent characteristics with other region bridge, through the surveys of reinforcedconcrete protective layer thickness, depth of carbonation and reinforcement corrosion of the northwest railway bridges in arid region, the carbonation regular of protectiveconcrete and reinforcement corrosion characteristics of railway bridge in arid regionwere revealed, and the deterioration characteristic of mixed chloride sail concrete wasanalyzed, the design requirements of the railway bridge in arid region were proposed,and were verified by real bridge.
     With extension of the service period and implementation of the strategy ofOverload and speed up of the railways in our country, the applicability and conditionassessment to large number of gravity pier system is a heavy and lasting work. ByComparisons the testing data of vibration test of railway piers of simple-beam, theapplicability and main point of test method of pier modal parameter was analyzed.According to the structure characteristics of railway bridges of simple beam, based onthe finite-element analysis and real bridge test, the simplified calculation model ofdynamic analysis of simple-beam bridges was proposed. Respect to the problem ofparametric sensitivity of railway piers condition assessment, and combined withtheoretical analysis, the degradation evaluation index of gravity pier system based onthe integrity parameters was proposed.
     It is a technical difficult problem to test the existing stress in bridge pier of railwayon structure bearing capacity assessment. The pre-stress state of long-age bridge affectthe bridge maintain or disuse decision. To the existing pre-stressed decision ofthin-walled box pier as the background, based on the grooving method finite-elementanalysis, through the research of changing regularity of concrete working stress bycondition changed of load, groove spacing, groove long, cutting depth, the calculationparameters of groove spacing, cutting depth,etc which stress release needed of thepre-stressed box pier were proposed. Combined with the test of existing pre-stress ofthin-walled box piers and vibration test of railway bridges, the key technical problemsof pre-stress assessment and the modification of bridge were solved in practicalapplication.
     The railway bridge, line, vehicles, etc. factors affect the driving safety, with therailway traffic speed up and the railway bridge styles become more and more, therailway driving safety judgment bases are very difficult selected from test works. To theRC arch bridge of arid region as the background, through the finite-element analysis and the test of wheel/rail force before and after the bridge reinforced, the influence ofstructure dynamic performance and driving safety parameters with the structure statuschanged were analyzed. For looking for the dynamic index of the arch bridge safetyjudgment, combined with the bridge reinforcement, the site tests of the derailmentcoefficient and rate of wheel load reduction change and bridge frequency, amplitude,acceleration indicator before and after bridge reinforced have been done. The testsresults show that the wheel/rail force change before and after the bridge reinforcementhave some relevance with the bridge dynamic indicator change, the equal-substitutebeam method which analyzed the RC arch bridge driving safety limits were proposed, itmade up for the shortage of driving safety limits of the dynamic judgment in TestSpecification of Railway Bridge.
     The sidewalk system is an important part of railway RC bridge, its safety becomemore and more serious with the train speed gradually increase. To the on-siteinvestigation of disease of sidewalk system of bridges of Bao-Zhong railway, throughstructure analysis, and the vibration test of bridge on site and the sidewalk system fullscale model test in lab, the capacity of sidewalk system were obtained. Combined withthe metallographic analysis of fracture of the U bolt and the fatigue experiment ofsidewalk system indoor, the fatigue life of the U bolt was analyzed. The defects of staticstrength calculation theory of sidewalk system and the fatigue damage characteristics ofsidewalk system were pointed out, the reinforcement method of existing bridgesidewalk system was proposed and the validity of the reinforced sidewalk system wasverified by experiment.
引文
[1]《回弹法检测混凝土抗压强度技术规程》(JGJ/T23-2001).
    [2]《超声回弹综合法检测混凝土强度技术规程》(CECS02:2005).
    [3]《钻芯法检测混凝土强度技术规程》(CECS03:2007).
    [4]《普通混凝土力学性能试验方法标准》(GB/T50081-2002).
    [5]《铁路桥梁检定规范》(铁运函[2004]120号).
    [6]《铁路桥涵设计基本规范》(TB10002.1-2005).
    [7]《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》(TB10002.3-2005).
    [8]铁道部专业设计院.混凝土桥.北京:中国铁道出版社,2000.
    [9]杨勇,王灿,朱新实.既有桥梁结构混凝土现存应力测量与分析.同济大学学报.1999,27(2)198-202.
    [10]何江陵,贺栓海,徐光辉.钢桥承载力评定的应力释放法.中国公路学报.1997,(3):72-77.
    [11]赵小星.钢桥使用应力测试方法研究.华东公路.1996,(2):9-10.
    [12]吴东云,杨树标,安新正.钢结构工作应力测定试验研究.煤矿设计.2000,(6):27-28.
    [13]《铁道车辆动力学性能评定和试验鉴定规范》(GB5599-85).
    [14]《铁道机车动力学性能试验鉴定方法及评定标准》(TB/T2360-93).
    [15]徐灏.疲劳强度设计.北京:机械工业出版社,1981.
    [16]汪守朴.金相分析基础.北京:机械工业出版社,1986.
    [17]《混凝土强度检验评定标准》(GB50107-2010).
    [18] Building Code Requirement for Structure Concrete.(ACI318-95).
    [19]《硬化混凝土回弹标准法》(C805-85).
    [20]《混凝土超声脉冲速度标准试验方法》(C597-83).
    [21]《后装拔出法检测混凝土强度技术规程》(CECS69:94).
    [22]王恒东.钢筋混凝土结构耐久性评估[D].大连理工大学博士学位论文,1996.
    [23]朱平华,金伟良,倪国荣.在役混凝土桥梁结构耐久性评估方法[J].浙江大学学报(工学版),2006,40(4):655-667.
    [24]涂永明,吕志涛.应力状态下混凝土的碳化试验研究[J].东南大学学报(自然科学版),2003,33(5):573-576.
    [25]屈文俊.既有混凝土桥梁的耐久性评估及寿命预测[D],西南交通大学博士学位论文,1995.
    [26]金祖权.西部地区严酷环境下混凝土的耐久性与寿命预测[D].东南大学博士学位论文,2006.
    [27]方憬,梅国兴,陆采荣.影响混凝土碳化主要因素及钢筋锈蚀因素试验研究[J].混凝土,1993(2):23-26.
    [28]张誉,蒋利学,等.混凝土碳化深度的计算与实验研究[J].混凝土,1996,(4):12-17.
    [29]刘志勇,孙伟.多因素作用下混凝土碳化模型及寿命预测.混凝土,2003,170(12):3-7.
    [30]阿列克谢耶夫著,黄可信,吴兴祖等译.钢筋混凝土结构中钢筋腐蚀与保护[M].北京:中国建筑工业出版社,1983.
    [31] Papadakis V.G, Vayenas C.G, Fardis M.N. Fundamental Modeling and Ex PerimentalInvestigation of Concrete Carbonation [J].ACI Materials Journal,1991-88(4):363-373.
    [32]岸谷孝一.铁筋混凝土的耐久性[M].日本:鹿岛建设技术研究所出版部,1963.
    [33]许丽萍,黄士元.预测混凝土中碳化深度的数学模型[J].上海建材学院学报,1991,4(4):347-356.
    [34]朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992,(6):18-22.
    [35]邸小坛,周燕.旧建筑物的检测加固与维修[M].北京:地震出版社,1992.
    [36]张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论[M].上海:上海科学技术版社,2003.
    [37]蒋利学,张誉.混凝土部分碳化区长度的分析与计算[J].工业建筑,1999,29(1):4-7.
    [38]牛荻涛.混凝土结构耐久性与寿命预测[M].科学出版社,2003.
    [39] K.R.Jay, Structured assessment of pile supported piers,1999.
    [40] Myung-Kwan Song, Hyuk-Chun Noh, A New Three-dimension Finite Element Analysismodel of High-speed train-bridge interactions, Engineering Structures,Vol.25,P1611-1626,2003.
    [41] M.Klasztorny, Vertical Vibration of a multi-span Beam Steel Bridge Induced by Superfastpassenger Train, Structural Engineering and Mechanics,Vol.12(3),P267-281,2001.
    [42] A.J.Cameron, The Response of Reinforced Concrete Bridge Piers to seismic motions.Research report, Christchurch, New Zealand,1975.
    [43] L.A.William, Dynamic Structural Response of a Massive Pier. Alberta Research Council,1979.
    [44]冷伍明,何群等.铁路桥梁群桩基础桥墩自振频率计算分析几何应用研究[J].铁道学报,1999.
    [45]周海林,冷伍明等.群桩基础墩的自振特性计算[J].中国铁道科学,2001.
    [46]陈兴冲.桥墩自振频率的能量公式[J].土木工程学报,1999.
    [47]岳祖润.铁路桥梁三维耦合振动仿真与墩台状态评估[D].铁道部科学研究院博士学位论文,2002.
    [48]《铁路工程抗震设计规范》(GB50111-2006).
    [49] Majid Kabiri. Toward More Accurate Residual-Stress Measurement by the Hole-DrillingMethod:Analysis of Relieved-Strain Conefficients.Experimental Mechanics,1986,(3),14-20.
    [50] Sasaki K,Kishida M,Itoh T.The Accuracy of Residual Stress Measurement by theHole-drilling Method.Experimental Mechanics,1997,37(3),250-257.
    [51] Nobre J P,Kornmeier M,Dias A M,Scholtes B. Use of the Hole-drilling Method for MeasuringResidual Stresses in Highly Stressed Shot-peended Surfaces. Experimental Mechanics,2000,40(3),289-297.
    [52] Fushuai Li,Guobiao Yang,Ruhua Fang.Stress anlysis of shell of blast furnace using a digitalcorrelation method[D].PIE,2002.
    [53] Schajer G S,Tootoonian M.A New Rosette Design for More Reliable Hole-drilling ResidualStress Measurements.Experimental Mechanics,1997,37(3):299-306.
    [54]陆才善.残余应力测试一小孔释放法.西安交通大学出版社.1991.
    [55]袁发荣,伍尚礼.残余应力测试与计算.湖南大学出版社,1987.8.
    [56]陆才善,陈明亮,候德门.钻阶梯形孔测量深层平面残余应力.西安交通大学学报,1989,23(1):55-61
    [57]沈旭凯.开槽法测试混凝土工作应力试验与研究[D].浙江大学硕士学位论文.2007.5.
    [58]王柏生.开槽法测试混凝土工作应力试验研究[J].浙江大学学报(工学版),2010,44(9):1754-1759.
    [59]翁冠群.桥梁预应力损失检测技术及安全评估.2001年全国公路桥梁维修与加固技术研讨会.
    [60] Aktan.A.E., Farhey.D.N., Helmicki.D.J., et al. Structural identification for conditionassessment: experimental arts [J]. Journal of Structural Engineering, ASCE,1997,123(12):1674-1684.
    [61] Aktan.A.E., Catbas.F.N., Turer.A., et al. Structural identification, analytical arts [J]. Journal ofStructural Engineering, ASCE,1998,124(7):817-829.
    [62] Lee.J.W, Kim.J.D., Health-monitoring method for bridges under ordinary traffic loadings [J].Journal of Sound and Vibration,2002,257(2):247-264.
    [63] Dutta.A., Talukdar.S., Damage detection in bridges using accurate modal parameters [J].Finite Elements inAnalysis and Design,2004,40:287-304.
    [64] Sohn.H., Farrar.C.R., Hemez.F.M, et al. A review of structural health monitoring literature:1996-2001[R]. Los Alamos National Laboratory Report LA-13976-MS. USA: Los AlamosNational Laboratory,2003.
    [65] Salawu.O.S., Detection of structural damage through changes in frequency: a review [J].Engineering Structures,1997,19(9):718-723.
    [66] Farrar.C.R., Baker.W.E., Bell.T.M., et al. Dynamic characterization and damage detection inthe I-40bridge over the Rio Grande [R]. Los Alamos National Laboratory ReportLA-12767-MS. USA: Los Alamos National Laboratory,1994.
    [67] Law.S.S., Zhu.X.Q., Dynamic behavior of damaged concrete bridge structures under movingvehicular loads [J]. Engineering Structures,2004,26:1279-1293.
    [68]翟婉明.货物列车动力学性能评定标准的研究与建议方案(续一)—轮轨横向力评定标准.铁道车辆.Vol.(40),2,2002.2.
    [69]翟婉明.货物列车动力学性能评定标准的研究与建议方案(续完)—轮轨垂向力及车钩力的评定标准.铁道车辆.Vol.(40),2,2002.2.
    [70]松浦章夫.高速铁路车辆与桥梁相互作用.铁道技术研究资料,1974,3l(5):14-17.
    [71]松浦章夫.新干线铁路桥梁竖向允许挠度.铁道技术研究报告.1974,3l(10):445-449.
    [72]松浦章夫.高速铁路桥梁动力问题的研究.日本土木学会论文报告集,197612,No256:35-47.
    [73]松浦章夫.长大桥的列车走行性.JREA.1982,25(8):14474-14477.
    [74]阿部英彦,谷口纪久.钢铁道设计标准的改订.日本土木学会论文报告集,1984,(4):27-37.
    [75] K.H.Chu,V.K.Garg,C.L.Dhar, Railway-Bridge Impact:Simplified Train and Bridge Model.Journal of the Structural Division.ASCE,1979,105(9):1823-1844.
    [76] K.H.Chu,V.K.Garg,A.Wiriyachai, Dynamic Interaction of Railway Train and Bridges,VehicleSystem Dynamics,1980,9(4):207-236.
    [77] D.S.Garivaltis,V.K.Garg, Dynamic Response of a Six-axle Locomotive to RandomIrregularities, Vehicle System Dynamics,1980,9(3):117-147.
    [78] C.L.Dhar, A Method of Computing Bridge Impact. Ph.D. Thesis, Illinois Institute ofTechnology, Chicago,Illinois,1978.
    [79] A.Wiriyachai, K.H.Chu, V.K.Garg, Bridge Impact due to Wheel and Track Irregularities,Journal of Engineering Mechanics Division,1982,108(4):648-666.
    [80] M.H.Bhaui, Vertical and Lateral Dynamic response of Railway Bridges due to nonlinearVehicle and Track Irregularities, Ph.D. Thesis, Illinois Institute of Technology, Chicago,Illinois,1982.
    [81] G.Diana, F.Cheli, Dynamic Interaction of Railway Systems with Large Bridges, VehicleSystem Dynamics,1989,18(1):71-106.
    [82] M.Olsson, Finite Element Model Co-ordinate Analysis of Structures Subjected to MovingLoads, Journal of Sound&Vibration,1985,99(1):1-12.
    [83] M.Olsson, On the Foundational Moving Load Problems, Journal of Sound&Vibration,1991,145(2):299-307.
    [84] Makoto Tanabe, Yoshiaki Yamada, Modal Method for Interaction of Train and Bridge,Computer&Structures,1987,27(1):119-127.
    [85] M.F.Green, D.Cebon, Dynamic Response of Highway bridges to Heavy Vehicles Loads:Theory and Experimental Validation, Journal of Sound&Vibration,1994,170(1):51-78.
    [86] M.F.Green, D.Cebon, David.J. Cole,Effects of Vehicle Suspension Design on Dynamics ofHighway Bridges. Journal of Structural Engineering, ASCE,1995,12l(2):272-282.
    [87] Yeong-Bin Yang, Bing-Houng Lin, Vehicle-Bridge Interaction Analysis by DynamicCondensation Method, Journal of Structural Engineering, ASCE,1995,121(11):1636-1643.
    [88] Van Bogaert, Dynamic Response of Trains crossing Large Span Double-track Bridges,Journalof Constructional Steel Research,1993,24(1):57-74.
    [89]李国豪著.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992.
    [90]陈英俊.车辆荷载下桥集振动基本理论的演变.桥梁建设,1975,(2):21-35.
    [91]胡人礼.普通桥梁结构振动[M].北京:中国铁道出版社,1988.
    [92]胡人礼.桥梁力学[M].北京:中国铁道出版社,1999.
    [93]何度心.列车动载.地震工程与工程振动,1988,8(4):78-98.
    [94]何度心.桥梁振动研究[M].北京:地震出版社,1989.
    [95]王荣辉,郭向荣等.高速列车—钢桁梁桥系统横向振动随机分析.铁道学报,1996,18(1):90-95.
    [96]曹雪琴.列车通过时桥梁结构竖向振动分析.上海铁道学院学报,1981,2(3):1-15.
    [97]曹雪琴,陈晓.轮轨蛇行引起桥梁横向振动随机分析.铁道学报,1986,8(1):89-97.
    [98]张煅,柯在田.既有线提速至160km/h桥梁评估的研究.中国铁道科学,1996,17(1):9-20.
    [99]刘汉夫,杨孚衡等.对铁路上承式钢板梁横摆振动的剖析.中国铁路,1999,(5):29-32.
    [100]谢毅,严普强等.准高速行车下铁路桥梁振动特性的试验研究.振动与冲击,1998,17(1):53-57.
    [101]曹雪琴,刘必胜,吴鹏贤.桥梁结构动力分析[M].北京:中国铁道出版社,1987.
    [102] R.W.克拉夫,J.彭津,王光远译.结构动力学[M].北京:科学出版社,1981.
    [103] Miner.M.A, Cumulativedamageinaftigue. J Appl Mech,1945,12(3):A159-A164.
    [104]卜炎.螺纹连接的设计与计算[M].北京高等教育出版社,1995.
    [105]赵少汴.抗疲劳设计——方法与数据[M].北京:机械工业出版社,1997.
    [106]崔广椿,王德俊,董遇泰.疲劳强度设计及数据统计处理,东北工业大学,1984.
    [107]冯振宇等,随机载荷下疲劳寿命的估算,MECHANICALAND TECHNOLOGY,1996.
    [108]吴新璇.混凝土无损检测技术手册[M].北京:人民交通出版社,2003.
    [109]商涛平,童寿兴.混凝土超声检测中含水率对声速影响的研究[J].无损检测,2003(4):189~191.
    [110] Powers T.C. Structure and physical properties of hardened Portland cementpaste[J].Am.Ceram.Soc.,1958,41,No.1,1-6.
    [111] Thomas M.D.A. The effect of curing on the hydration and pore structure of hardened cementpaste.Adv.Cem.Res.,1989,2,No.8,181-188.
    [112]《硅酸盐水泥、普通硅酸盐水泥》(GB175-1999).
    [113]《混凝上结构工程施工及验收规范》(GB50204-92).
    [114]《建筑用砂》(GB/T14684-2001).
    [115]《普通混凝土用砂质量标准及检验方法》(JGJ52-1992).
    [116]《建筑用卵石、碎石》(GB14685-2001).
    [117]《普通混凝土用碎石或卵石质量标准及检验方法》(JGJ53-1992).
    [118]《用于水泥和混凝土的粉煤灰》(GB/T1596-2005).
    [119]《混凝土外加剂》(GB8076-1997).
    [120] CARINO N J.Laboratory Study of Flaw Detection in Concrete by the Pulse Echo Method[M]·USA:American ConcreteInstitute,1984:557-579·
    [121] CARINO N J, SANSALONE M, HSUNN. Flaw Detection in Concrete by FrequencySpectrum Analysis of Impact-echoWaveforms [J].International Advances in NondestructiveTesting,1986(12):117-146.
    [122] SANSALONE M, CARINO N J.Impact-echo Method [M].USA: Concrete International,1988:38-46·
    [123]苏航,林维正.冲击回波检测方法及其在土木工程中的应用[J].无损检测,2003,25(2):81~83.
    [124]《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)
    [125]《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》(TB10002.3)
    [126]张建荣,黄鼎业.混凝土保护层的设计及构造建议[J].同济大学学报,2000,28(6):641645.
    [127]蒋清野,王洪深,路新瀛.混凝土碳化数据库与混凝土碳化分析.攀登计划-钢筋锈蚀与混凝土冻融破坏的预测模型1997年度研究报告,1997,12.
    [128]牛荻涛,董振平,甫津修.混凝土碳化的概率模型及碳化可靠性分析.工业建筑,1999,29(9):41-45.
    [129]《混凝土结构耐久性评定标准》(CECS220-2007)
    [130]于德介,李佳升.一种基于实测模态参数的结构损伤诊断方法.湖南大学学报,1995.22(4).122-128.
    [131]张开银,孙峙华,邹晓军等.桥梁结构损伤识别的曲率模态技术.武汉理工大学学报,2004.28(6).855-855.
    [132] Cawley,Adams.R.D., The location of defects in structures from measurements of the naturalfrequencies[J]. Journal of StrainAnalysis.1979,14(2):49-57.
    [133] Hearn.G..,Testa.R.B., Modal analysis for damage detection in struetores[J]. Journal ofStructural Engineering,1991,117(11):3042-30.
    [134]高芳清,金建明,高淑英.基于模态分析的结构损伤检测方法研究[J].西南交通大学学报,1998,33(1):108-113.
    [135]谢峻,韩大建.一种改进的基于频率测量的结构损伤识别方法[J].工程力学,2004,21(l):21-25.
    [136]邓焱,严普强.桥梁结构损伤振动模态检测.振动、测试与诊断,1999,19(3):157-163.
    [137] Stubbs.N and Kin.J.T., Damage localation in structures without baseline modal Parameters.AIAAJoumal.1996,34(8):1644-1649.
    [138]朱晞,朱东生.诊断桥墩损伤参数识别法研究[J].兰州铁道学院学报,1998,17(14):1-7.
    [139]万小朋,李小聪,鲍凯等.利用振型变化进行结构损伤诊断的研究[J].航空学报,2003,24(5):422~426.
    [140]战家旺.既有铁路桥墩健全度评估和试验方法研究[D].北京交通大学博士学位论文,2006.
    [141]刘永淼.环孔法测试混凝土工作应力试验研究[D].浙江大学硕士学位论文.2006,5.
    [142]向洪.钢筋混凝土柱工作应力试验与研究[D].湖南大学硕士论文.2005,4.
    [143] Ross C A,Jerome D M,Tedesco J W,et al.Moisture and strain rate effects on concrete strength[J]ACI Material J,1996,93(3):293-300.
    [144] YamanIO,Hearn,AktanHM.Activeandnon-active porosity in concrete,Part I:Experimentalevedance[J].Materical and structure,2002,35(3):102-109.
    [145] YamanIO,Hearn,AktanHM.Activeandnon-active porosity in concrete,Part II:Evaluation ofmodels existing[J].Materical and structure,2002,35(3):110-116.
    [146]王海龙,李庆斌.饱和混凝土的弹性模量预测.清华大学学报(自然科学版).2005,45(6)761-763.
    [147]黄克智,黄永刚.固体本构关系[M].清华大学出版社,1999.
    [148]任锋,陈营明,曲华明.对混凝土弹性模量影响因素的探讨.济南大学学报.1997,7(02),91-93.
    [149]《新建时速200公里客货共线铁路设计暂行规定》(铁建设函[2005]285号).
    [150]《轮轨水平力、垂直力地面测试方法》(TB/T2489-94).
    [151]余丹丹.在役拱桥可靠性综合评估及加固方案优选研究[D].武汉:汉理工大学.2006.
    [152]杨庆雄,局部应力应变法寿命计算中材料疲劳特性选用的评论,第五届全国疲劳学术会议的论文集,1991:230-235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700