用户名: 密码: 验证码:
螺旋摆动液压缸动态特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋摆动液压缸相对于传统的叶片式、齿轮齿条式、链条链轮式摆动液压缸,由于其采用了特有的双螺旋副结构,具有摆动角度大、承载性能高、结构紧凑、传动效率高等优点,广泛应用在工程机械、建筑机械、农林机械等设备上。由于国外对此技术的垄断,国内在这方面的研究起步较晚,设计制造重载、高压、高可靠性、高定位精度、长寿命的螺旋摆动液压缸技术,国内尚未完全掌握。因此,从结构特性、虚拟样机技术及流体润滑方面研究,获得较优的结构参数,具有重要的理论和工程应用价值。论文主要进行了以下研究工作:
     应用两级梯形螺旋副结构设计了摆动液压缸,进行了螺旋副的承载性能分析。确定了两级螺旋副的相关结构参数:螺旋升角、螺距、导程、牙型角、公称直径、工作长度等。进行了螺旋摆动液压缸整体结构的三维虚拟装配、各零件间的干涉检验。
     建立了两级螺旋机构的动力学数学模型,得到了两级螺旋机构的运动微分方程。分析了两级螺旋机构的运动学特性。进行了两级螺旋机构的动力学计算,揭示了螺旋牙型角对最低启动压力、输出螺杆角速度、空心螺杆径向位移和轴承支座反力的影响规律。结果表明螺旋牙型角增大输出扭矩提高。并对输出螺杆进行了有限元分析,校核了输出螺杆的抗剪切强度及刚度满足要求。
     推导出了缸体与空心螺杆间螺旋流动特征油膜的润滑状态方程。揭示了不同径向间隙的同心油膜和在一定偏心率条件下的不同径向间隙偏心油膜螺旋流的压力、速度、温度分布规律。研究了不同径向间隙、不同转速、在一定偏心率条件下的不同径向间隙、同径向间隙不同偏心距情况下的油膜承载性能及油腔的内泄漏,获得了性能较佳的同心油膜和偏心油膜厚度。引用膜厚比对流体润滑状态进行了判定,获得了完全流体润滑状态的加工表面粗糙度参数。
     揭示了空心螺杆与固定螺母间不同周向间隙和不同螺距油膜的压力、速度、温度分布规律。研究了周向间隙、液压油粘度、螺距、旋合长度对油膜的承载性能及油腔内泄漏的影响。以承载性能及传动效率为目标,获得了较好的螺旋副周向间隙值、螺距值、旋合长度值和液压油粘度值。揭示了两级螺旋副的结构参数和工艺参数对螺旋摆动液压缸传动效率的影响规律。建立了螺旋摆动液压缸传动的总效率模型。获得了螺旋摆动液压缸机械效率最大时的螺旋升角,空心螺杆与缸体间隙零泄漏时的最小空心螺杆轴向速度。
     对实验室现有的实验装置进行改造后,进行了螺旋摆动液压缸的最低启动压力测试,进行了不同输入液压力条件下的输出扭矩性能测试,不同输入液压力条件下的输出摆角速度测试,不同输入液压力条件下的传动效率实验研究。实验结果与理论分析及动力学仿真结果较吻合。
In comparison with traditional vane type, rack and gear type, chain and chain wheel type rotary cylinder, screw rotary cylinder with double screw pair are of much advantage as big rotation angle, over-loading performance, compact structure, high transmission efficiency etc. It is applied in engineering machinery, construction machinery, agriculture machinery and forestry machinery widely etc. Being the foreign monopoly of advanced technology while emerging late in China. The design and manufacturing technology of high performance screw rotary cylinder which is over-loading, high pressure, high-reliable, high positioning accuracy, long-life is limited. So, study in the structure characteristics, virtual prototyping technology, fluid lubrication and structure parameters optimization have significant theory and engineering practicality importance. The main work include following:
     Screw rotary cylinder with double trapezoidal screw pair's structure is designed. Screw pair's loading performance is analyzed. Double trapezoidal screw pair's structure parameters are defined, including pitch angle, pitch, lead, thread angle, nominal diameter, working length etc. Three dimensional virtual assembly of screw rotary cylinder's whole structure is executed, interference check of spare parts is executed.
     Dynamic model of double screw mechanism is established. Hereby, motion differential equation of double screw mechanism is deduced, kinematics analysis of double screw mechanism is executed. Dynamics calculation of double screw mechanism is executed. Screw thread angle's influence on starting pressure, export screw angle velocity, radial displacement of hollow screw and bearing's anti-force are revealed, bigger thread angle can acquire heavier output torque. Export screw's finite element analysis is executed; Shear strength and stiffness of export screw can meet the requirements.
     Screw flow oil film between cylinder body and hollow screw's lubrication state equations are deduced. Concentric oil film of different radial gap and eccentric oil film of different radial gap with identical eccentricity's pressure field, velocity field, and temperature field are revealed. On condition that different radial gap, different rotational rate, different radial gap with identical eccentricity, different eccentric distance with identical radial gap, research are made about oil film's loading performance and oil cavity's internal leakage. Regardless of identical oil film and eccentric oil film, oil film thickness of best performance is acquired. Fluid lubrication state is judged by use of film thickness ratio, surface roughness values are acquired under entire fluid lubrication state.
     Different circumferential gap and different pitch between hollow screw and fixed nut oil film's pressure field, velocity field, and temperature field are revealed. On condition that different circumferential gap, different hydraulic oil viscosity, different pitch, different length of thread engagement, research are made about oil film's loading performance and oil cavity's internal leakage. In order to acquire high loading performance and transmission efficiency, preferable circumferential gap value, preferable pitch value, preferable thread engagement length value, preferable hydraulic oil viscosity value are disclosed. Influence rules between transmission efficiency and screw pair's structure parameters, process parameters are disclosed. Transmission efficiency model of screw rotary cylinder is established. Helix angle under maximum torque efficiency of screw rotary cylinder is acquired. Minimum axial velocity of hollow screw under zero internal leakage is acquired.
     Through the reshape of current experimental facility, lowest starting pressure experiment of screw rotary cylinder is carried out. export torque experiment, export angular velocity of rotation experiment and transmission efficiency experiment of screw rotary cylinder under different import hydraulic pressure are carried out. Experiment results are consistent with theoretical value and dynamics simulation results.
引文
[1]周海强,陈道良.摆动油缸内部结构改进设计[J].液压气动与密封,2007.27(6):32-34.
    [2]孟繁民.单叶片式摆动油缸[J].液压与气动.1990.14(1):51-52.
    [3]金忠,张将.摆动油缸组合密封的建模与计算[J].液压与气动,2007.31(10):18-22.
    [4]黄桂英,杨锦斌.单叶片摆动油缸的参数设计及应用[J].功能部件,2009.15(5):123-127.
    [5]李利君.摆动油缸机构的优化设计[J].工程机械,1993.30(9):22-24.
    [6]张源焕.摆动油缸叶片的固定密封及泄漏分析[J].石家庄铁道学院学报,1998.11(2):94-98.
    [7]石延平,扬力.大摆角360。旋转油缸的设计[J].液压与气动,1999.23(6):5-7.
    [8]金志民.动力与精确的天合之作—HKS摆动油缸[J].液压气动与密封,2004.24(8):40-41.
    [9]李祖昌.摆动液压马达及其选用[J].液压与气动,1999.23(2):37-38.
    [10]Bob Flitney. Alternatives to chrome for hydraulic actuators[J]. Sealing Technology,2007.37(10):8-12.
    [11]Mikko Siuko, M Pitkaho. Water hydraulic actuators for ITER maintenance devices[J]. Fusion Engineering and Design,2003.69(4):141-145.
    [12]N Brown, R M Parkin. Simulation of a modified rotary timber machining process to improve surface form[J]. Mechatronics,2002.12(3):489-502.
    [13]George k Nikas. Theoretical study of solid back-up rings for elastomeric seals in hydraulic actuators[J]. Tribology International,2004.37(9):689-699.
    [14]P Sekhavat, N Sepehri, Q Wu. Impact stabilizing controller for hydraulic actuators with friction:Theory and experiments[J]. Control Engineering Practice,2008.206(14):1423-1433.
    [15]Mark Karpenko, Nariman Sepehri. On quantitative feedback design for robust positon control of hydraulic actuators[J]. Control Engineering Practice,2010.18(3) 289-299.
    [16]G Constantinesco, Rotary motor actuated by alternating fluid-currents, United States, Utility Patent Grant. US1334291.1920-03-23.
    [17]F A Jimerson, Fluid-actuated rotary machine.United States, Utility Patent Grant. US1566095.1925-12-15.
    [18]R L Davis. Apparatus for actuating rotary movements of lamps and the like. United States, Utility Patent Grant. US1833156.1931-11-24.
    [19]H M Geyer, Rotary actuator. United States, Utility Patent Grant.US2945387. 1960-07-19.
    [20]H A Block.Fluid actuator for linear and rotary movements. United States, Utility Patent Grant. US2955579.1960-10-11.
    [21]J Loecy. Hydraulic rotary actuator.United States, Utility Patent Grant.US2889816 1959-06-09.
    [22]R L Wengerd. Fluid motor rotary actuator. United States, Utility Patent Grant. US3444784.1969-05-20.
    [23]Akkerman. Actuator for converting linear to rotary motion. United States, Utility Patent Grant.US4225110.1980-09-30.
    [24]Takeuchi.Electronic controls for linear and rotary actuators. United States, Utility Patent Grant.US5635807.1997-06-03.
    [25]Chai.Cheng-Chung.Pneumatic rotary actuator. United States, Utility Patent Grant. US20080282878.2008-11-20.
    [26]Karimi.Application of a flexible structure artificial neural network on a servo hydraulic rotary actuator [J]. International Journal of Advanced Manufacturing Technology,2008.39(5-6):559-569.
    [27]Ye.Qian, Meng.Guoxiang. Reducing influence of eccentric load on dynamic characteristics of rotary actuator[J]. International Journal of Fluid Power.2007. 8(2):17-24.
    [28]刘国民,黄海东.摆动液压缸机构设计的一种新方法[J].机床与液压.1998.26 (1):19-21.
    [29]郭大勇,梁利华,李英,等.基于摆动油缸的电液力矩伺服控制系统设计[J].机床与液压.2002.30(1):22-25.
    [30]余宏,冯正进,王旭永.可旋转液压缸中动密封的改进设计及其效果[J].新技术新工艺,2003.23(2):18-19.
    [31]胡金林.旋转油缸的设计[J].机械制造.2005.55(11):51.
    [32]马春祥,李占宝,李嘉树.立式车床主轴旋转液压缸的技术改造[J].液压气动与密封.2009.29(1):61-62.
    [33]熊光楞,李伯虎,柴旭东.虚拟样机技术[J].系统仿真学报,2000.13(1):114-117.
    [34]廉自生,李文英,刘混举.VP技术在液压支架设计中的应用探讨[J].煤矿机械,1998.18(9):12-14.
    [35]彭力明,王耘,赵国华.基于ADAMS/Hydraulics的连续阀口流量数学模型的建立[J],液压与气动,2004.27(3):11-13.
    [36]张书诚,鲍俊瑶.挖掘机液压元件的建模及仿真[J].传动技术,2002.20(2):19-22
    [37]杨得军,林柏忠,管欣,等.用于开发型驾驶模拟器的17自由度汽车动力学仿真的数学模型及算法[J].汽车技术,2002.33(12):6-10
    [38]朱永有,周容,张维,等.虚拟样机技术在泥浆泵仿真中的应用[J].机械工程师,2005.37(10):83-84
    [39]杨智炜,徐兵,张斌.基于虚拟样机技术的轴向柱塞泵特性仿真[J].液压气动与密封,2006.23(3):33-36.
    [40]徐云辉,高殿荣.基于PRO/E与ADAMS的锥形螺旋叶轮血泵虚拟样机建模及动态仿真[J].液压气动与密封,2008.25(4):34-38.
    [41]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004:3-5.
    [42]J X Zhang, C M Rodkiewicz. On the Design of Thrust Bearings Using a CFD Technique.Tribology Transactions.1997,40(32):403-412.
    [43]于贺春,马温琦,王祖温,等.基于FLUENT的径向静压气体轴承的静态特性研究[J].润滑与密封,2009.34(12):78-91.
    [44]王洋,何文俊.基于Fluent的无过载离心泵改型设计[J].农业机械学报,2009. 40(9):85-88.
    [45]叶晓琰,张军辉,丁亚娜,等.海水淡化泵水润滑轴承间隙的优化设计[J].排灌机械工程学报,2010,28(2):117-121.
    [46]石延平.凿岩钻车螺旋回转变幅机构设计[J].矿山机械,1999.27(11):27-29.
    [47]尚久明,李国斌,赵歧华.一种新型千斤顶的设计[J].起重运输机械,2007.47(12):102-103.
    [48]王跃辉,宋振成.螺旋角的设计计算[J].机械工程师,2004.36(3):56-57.
    [49]陈德生,曹志锡.螺旋升降柱[J].起重运输机械,2004.43(1):39-40.
    [50]王建军,李文革.螺旋传动的参数设计与检验[J].计测技术,2006.49(5):56-58.
    [51]陶海军.61°螺旋齿轮的加工[J].机械制造,2002,62(5):18.
    [52]成大先.机械设计手册第四版第3卷[M].北京:化学工业出版社,2002.12-3—12-9.
    [53]柯坚,刘思宁,许明恒,等.水压泵用材料.机床与液压,2001.29(3):104-105.
    [54]赵继松.海水泵滑靴副污染磨损及控制方法研究[D].武汉:华中科技大学,2005
    [55]晏小伟,海水液压泵污染磨损机理及其实验的初步研究[D].武汉:华中科技大学,2004.
    [56]Souchon F, Renaux P, Berthier Y. Helical scan head and tape contact behavior: optimization of tribological and magnetic aspects[J]. Tribology International, 1998,31(8):479-484.
    [57]Rossignac J, Kim J J, Song S C, et al. Boundary of the volume swept by a free form solid in screw motion[J]. Computer-Aided Design,2007,39(9):745-755.
    [58]朱浩.基于多体动力理论的车辆主动悬挂的控制策略研究[D].长沙:中南大学,2006.
    [59]郭卫东.虚拟样机技术与ADAMS应用实例教程[M].北京:北京航空航天大学出版社.2007:4-10.
    [60]巫世晶,王晓笋,胡建正,等.车辆行星传动系统虚拟样机技术研究与实践[J].中国机械工程,2005.16(3):550-553.
    [61]丁飞,张强.基于ADAMS的行星齿轮减速器建模与仿真研究[J].煤炭工程, 2009.56(6):84-86.
    [62]李三群,贾长治,武彩岗,等.基于虚拟样机技术的齿轮啮合动力学仿真研究[J].系统仿真学报,2007.20(2):901-904.
    [63]刘春景,曹卫彬.基于PRO/E与ADAMS的齿轮泵设计及动态仿真[J].机床与液压,2005.33(11):187-188.
    [64]杜中华,王兴贵.Pro/E和ADAMS传递过程中曲线丢失问题的处理办法[J].机械工程师,2001.43(11):27-28.
    [651杜中华,狄长春,王兴贵.Pro/E与ADAMS建立的虚拟样机结构尺寸优化[J].机电工程技术,2002.32(4):31-32.
    [66]李晓娟Pro/E与ADAMS联合建模方法的研究[J].装备制造技术,2008.36(12):31-33.
    [67]张星.基于Pro/E的凸轮参数化设计及ADAMS仿真[J].科技经济市场,2008.24(2):11-12.
    [68]田会方,林喜镇,赵恒.基于Pro/E和ADAMS齿轮啮合的动力学仿真[J].机械传动,2006.30(6):66-69.
    [69]李昌,韩兴,孙志礼.基于Pro/E和ADAMS的齿轮啮合精确动力学仿真[J].机械与电子,2008.24(1):55-58.
    [70]田广才,徐进友.基于Pro/E和ADAMS的高速比减速器的运动学仿真[J].精密制造与自动化,2008.44(2):39-41.
    [71]侯国柱,张晓峰.基于Pro/E和ADAMS的机器人虚拟设计与仿真[J].机械设计与制造,2009.47(3):183-185.
    [72]杨丽华,李晓豁.基于Pro/E和ADAMS的连续采煤机截割滚筒的运动仿真[J].辽宁工程技术大学学报,2007.29(2):210-212.
    [73]姚晓光,郭晓松,冯永保,等.基于Pro/E和ADAMS联合仿真的夹钳机构设计与优化[J].机床与液压,2006.34(6):233-235.
    [74]陈志刚,吴雪飞.基于Pro/E及Adams圆柱齿轮减速器的参数化建模及运动仿真[J].机械研究与应用,2005.18(2):105-109.
    [75]芮执元,程林章.基于Pro/E与ADAMS结合的虚拟样机动态仿真[J].现代制造工程,2005.27(1):56-58.
    [76]刘春景,胡天翔.基于Pro/E与ADAMS蜗轮蜗杆传动仿真研究[J].林业机械与木工设备,2007.42(10):44-49.
    [77]赵丽娟,李世旭,刘杰.基于Pro/E与ADAMS协同仿真中的图形数据交换[J].机械与电子,2006.22(12):78-80.
    [78]Ryu J, Kim H, Wang S. A method for improving dynamic solutions in flexible multibody dynamics[J]. Computers & Structures,1998,66(6):765-776.
    [79]Van Staeyen K, Tijskens E, Ramon H. A multibody dynamic approach for colliding particles[J]. Journal of Sound and Vibration,2003,266(3):481-491.
    [80]Zhao X, Mair P, Wu J. A new multibody modelling methodology for wind turbine structures using a cardanic joint beam element[J]. Renewable Energy,2007, 32(3):532-546.
    [81]Wasfy T M, Noor A K. Modeling and sensitivity analysis of multibody systems using new solid, shell and beam elements [J]. Computer Methods in Applied Mechanics and Engineering,1996,138(1-4):187-211.
    [82]Flores P. Modeling and simulation of wear in revolute clearance joints in multibody systems [J]. Mechanism and Machine Theory,2009,44(6):1211-1222.
    [83]Bauchau O A, Ju C. Modeling friction phenomena in flexible multibody dynamics[J]. Computer Methods in Applied Mechanics and Engineering,2006, 195(50-51):6909-6924.
    [84]Bei Y, Fregly B J. Multibody dynamic simulation of knee contact mechanics[J]. Medical Engineering & Physics,2004,26(9):777-789.
    [85]Schiehlen W, Guse N, Seifried R. Multibody dynamics in computational mechanics and engineering applications [J]. Computer Methods in Applied Mechanics and Engineering,2006,195(41-43):5509-5522.
    [86]Blundell M, Harty D. Multibody systems simulation software [M]. Butterworth Heinemann,2004 (3):75-130.
    [87]ShenTarng C, FeiYa C. Kinetostatic analysis of variable lead screw mechanisms with conic frustum meshing elements [J]. Mathematical and Computer Modelling,1998,27(1):17-30.
    [88]黄志东,任继文,卢怀亮,等.滑动螺旋传动中螺牙应力和工作压力的研究[J].锻压技术,2004.47(2):56-59.
    [89]钱学毅,邹丽梅,郭波.滑动螺旋副螺纹牙根应力有限元分析[J].机械设计与制造,2006.44(11):132-134.
    [90]尹益辉.螺栓啮合螺纹段的轴力、等效应力分布及摩擦的影响分析[J].机械强度,2006.22(4):524-531.
    [91]周先辉,孙友松,张尔文.基于有限元方法的传动螺纹螺牙轴向载荷分布规律分析[J].机械设计与制造,2008.46(1):16-18.
    [92]薛晓虎,杜金凤.柱塞泵效率特性的分析与研究[J].液压与气动,2003,27(12):43-46.
    [93]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992:2-10.
    [94]许尚贤.液体静压和动静压滑动轴承设计[M].江苏:东南大学出版社,1989:53-84.
    [95]张直明,张言羊,谢友柏,等.滑动轴承的流体动力润滑理论[M].北京:高等教育出版社,1986:5-32.
    [96]赵学瑞,廖其奠.粘性流体力学[M].北京:机械工业出版社,1992:8-29.
    [97]叶晓琰,张军辉,丁亚娜,等.海水淡化泵水润滑轴承间隙的优化设计[J].排灌机械工程学报,2010.28(2):117-121.
    [98]Guo Zenglin, Hirano T, Kirk R G Application of CFD analysis for rotating machinery-Part I:hydrodynamic, hydrostatic bearings and squeeze film damper[J]. Journal of Engineering for Gas Turbines and Power,2005,127(2):445-451.
    [99]K.P. Gertzos, P G. Nikolakopoulos, C A. Papadopoulos.CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant[J].Tribology International,2008(41):1190-1204.
    [100]王洋,何文俊.基于Fluent的无过载离心泵改型及性能预测[J].排灌机械工程学报,2009.27(2):11-15.
    [101]Luan Zhaogao,Khonsari M M.Computational fluid dynamics analysis of turbulent flow within a mechanical seal chamber[J].Transactions of the ASME.Journal of Tribology,2007,129(1):120-128.
    [102]郑源,刘君,陈阳,等.基于Fluent的贯流泵数值模拟[J].排灌机械工程学报,2010,28(3):233-237.
    [103]Avraham I K. Efim G E, Gerd W, et al. Coaxial tubular solar collector constructed from polymeric materials:an experimental and transient simulation study[J]. Energy Convesion and Management,2003,44(16):2549-2566.
    [104]Djouimaa.S, Messaoudi. L,Giel. Paul W. Transonic turbine blade loading calculations using different turbulence models-effects of reflecting and non-reflecting boundary conditions[J].Applied Thermal Engineering,2007, 27(4):779-787.
    [105]张杰,郭宏升,焦让,等.水润滑高速动静压滑动轴承数值模拟[J].农业机械学报,2008,39(6):159-162.
    [106]Hua-Shu Dou,Boo Cheong Khoo. Energy loss distribution in the plane Couette flow and the Taylor-Couette flow between concentric rotating cylinders [J]. International Journal of Thermal Sciences,2007,46(3):262-275.
    [107]Min Ho Lee. The stability of spiral flow between coaxial cylinders[J]. Computers and Mathematics with Application.2001,41(3-4):289-300.
    [108]Manosh C Paul, Arkaitz Larman. Investigation of spiral blood flow in a model of arterial stenosis[J]. Medical Engineering & Physics,2009,31(9):1195-1203.
    [109]云忠,谭建平.人体血流环空间螺旋流动研究[J].生物医学工程研究,2005.24(1):23-27.
    [110]Zhou Jue, Zhong Shan. Coherent structures produced by the interaction between synthetic jets and a laminar boundary layer and their surface shear stress patterns[J]. Computers and Fluids,2010,39(8):1296-1313
    [111]Liu Shiling, Fotache C G, Hautman D J. et al. Boundary layer modeling of reactive flow over a porous surface with angled injection[J].Combustion and Flame,2008,154(3):378-86.
    [112]李进良,李承曦,胡仁喜,等.精通Fluent6.3流场分析[M],北京:化学工业出版社,2009:21-24.
    [113]余江波.基于资源节约与环境友好的高性能水润滑轴承关键技术研究[D].重 庆:重庆大学机械工程学院,2006:39-41.
    [114]马涛,戴惠良,刘思仁.基于Fluent的液体动静压轴承数值模拟[J].东华大学学报:自然科学版,2010,36(3):279-282.
    [115]施卫东,汪永志.旋流泵内部流动的研究[J].农业机械学报,2006.37(1):67-70.
    [116]王彬,郝术明.新型动静压混合润滑机械密封流场数值研究[J].液压与气动,2009,34(7):62-65.
    [117]兰雅梅,孙西欢,霍德敏.圆管螺旋流的三维数值模拟[J].太原理工大学学报,2001.32(2):255-259.
    [118]郭永辉,刘朝.圆管螺旋流的流动与传热数值模拟[J].热能工程,2007.36(3):15-19.
    [119]康宁,迟启明.基于N-S方程的径向滑动轴承油膜承载力的计算[J].润滑与密封,2010.35(10):9-12.
    [120]章宏甲,黄宜.液压传动[M].北京:机械工业出版社,1992:26-27.
    [121]陶海坤,祝宝山,曹树良,等.钟形进水流道吸水室后壁的优化设计[J].江苏大学学报:自然科学版,2007,.28(3):228-231.
    [122]靳伟,王化明.螺旋浆粘性流场的数值模拟[J].船海工程,2010,39(3):44-47.
    [123]刘世光,梁双印.脱流浆液泵内部流场的数值模拟及磨损特性分析[J].现代电力,2010,27(4):55-61.
    [124]邵俊鹏,张艳芹,李鹏程.基于Fluent的静压轴承椭圆腔和扇形腔静止状态流场仿真[J].润滑与密封,2007.32(1):93-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700