用户名: 密码: 验证码:
风力发电机行星齿轮传动系统变载荷激励动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮增速箱是风力发电机组的关键部件,由于其在随机自然风场和高空架设等使用环境下运行,要求比一般机械系统具有更高的可靠性和使用寿命。兆瓦级风力发电机组多采用行星齿轮传动系统,具有低速重载变载荷变转速运行的特点,在随机风的作用下受到频繁的扰动和激励,动力学特性十分复杂,对系统可靠性及机组运行稳定性有较大影响。针对风力发电传动系统的实际工况特点,研究行星齿轮传动系统动态性能,有利于突破大型风电能源装备传动装置的核心技术,推动大型风电传动装备设计制造的国产化进程。
     本课题是国家自然科学基金项目(50975294)研究内容的组成部分,在引入以随机风载为主要外部激励,并考虑主要内部激励的条件下,研究风力发电机行星齿轮传动系统的动力学特性,主要研究内容包括:
     ①风力发电机传动系统外部载荷特性研究
     根据自然风的谱特性,基于随机信号谱估计方法建立了用于随机风速模拟的AR(AutoRegressive,AR)模型;运用风力机气动理论建立了风力机气动载荷计算模型;根据电机理论,基于旋转电机矩阵分析方法推导了变速恒频发电机的能量转换关系和电磁转矩表达式,建立了双馈感应发电机(Doubly Fed InductionGenerator,DFIG)矢量控制模型;根据机械系统动力学,建立了风力发电传动系统的等效动力学模型。在此基础上,综合上述各数学模型,同时考虑DFIG及风力机叶片桨距角的控制方法,建立了反映风力发电机组运行过程的风-机-电联合仿真模型,利用该模型进行仿真计算,得到风电传动系统的外部动载荷,并分析了该动载荷的作用规律和性质。
     ②行星齿轮传动系统动力学模型及动态激励
     根据机械振动理论,将齿轮副处理为啮合线上的阻尼弹簧,并考虑支承轴承的弹性,采用集中参数法建立行星齿轮系统的扭振-平移动力学模型,并导出其振动微分方程,并对行星齿轮系统的轮齿啮合刚度、轴承支承刚度、行星轮啮合相位和外部变载荷等主要激励因素进行了分析。
     ③行星齿轮系统齿轮轴承刚度变化下的固有振动特性研究
     在计算系统固有频率及振型的基础上,分析了轮齿啮合刚度和各支承轴承刚度对系统固有频率的影响,以及系统刚度影响下的模态跃迁现象。采用Fourier级数表示轮齿啮合时变刚度,基于Hertzian接触理论建立轴承刚度表达式,并考虑行星轮啮合相位关系,分析了行星齿轮系统刚度的时变规律,研究了系统在刚度时变条件下的频率特征及自由振动特性。
     ④风电行星齿轮系统变载荷激励机理及动态响应特性研究
     对于变载荷作用导致转速变化和弹性变形的行星齿轮系统,利用能量法分析了变载荷作用下系统动能和势能及转换关系,结合内容②的理论推导结果,以Lagrange函数为基础,导出了变载荷作用下考虑转速波动的行星齿轮系统振动微分方程,探讨了变载荷对系统振动的激励机理,分析了载荷激励对系统振动频率的影响。在同时考虑系统刚度时变性和变载荷激励的条件下,采用Newmark方法求解了系统的动态响应,通过对求解结果进行分析,得到系统在内外部激励下的动态响应特性。
     ⑤风电行星齿轮系统振动响应特性试验研究
     构建了背靠背台架试验系统,制定了风力发电齿轮系统动力学性能测试方案。分别在稳定和非稳定驱动/负载载荷工况条件下测量了传动系统的振动信号,通过对比分析稳定和非稳定载荷工况下的响应结果,获得变载荷对系统振动响应的影响规律,从而验证了理论模型和研究方法的正确性。
The speed increasing gearbox is the key component of the wind turbine, whichmust has higher reliability and service life than the general mechanicalsystem because of working in the circumstances of random wind field and high altitudesetting up. The planetary gear transmission system is commonly used in the MW-levelwind turbines, and has the obvious characteristics of low speed, heavy load, varyingspeed and varying load, the dynamic characteristics are very complex due to thefrequent disturbance under the random wind and have a greater impact on reliability andstability of wind turbines. Researching the dynamic properties of planetary geartransmission of wind turbine can be advantageous to break through the key technologyof wind power energy equipment and promote the localization of manufacturing anddesign of wind turbine transmission equipment.
     This topic is the important component of the National Natural Science Funds(50975294). The dynamics characteristics of the planetary gear transmission system ofwind turbine are studied in the paper, and the main research contents as follows.
     ①Study on external load characteristics of wind turbine transmission
     The AR wind speed model is build on the basis of random signal spectrumestimation method and the spectrum characteristics, and the pneumatic load calculationmodel is build using the wind turbine pneumatic theory. According to the active powerbalance, the Doubly Fed Induction Generator vector control model is build,the electromagnetism torque expression and the Energy conversion relationship ofconstant frequency variable speed motor are deduced based on the matrix analysismethod of rotating electrical machines. The equivalent dynamics model is set upaccording to the mechanical system dynamics. Based on the above, considering thepitch angle control method of wind turbine blade, the wind-mechanical-electrical unitedsimulation model is build and the calculation for the simulation model is carried out, theexternal dynamic load of is obtained and its rule and properties are analyzed.
     ②Dynamics model and dynamic excitation of planetary gear transmission
     Considering the bearing’s flexibility and making the gear pair as spring in meshingline, the torsion-translation dynamics model of planetary gear transmission system isbuild using the lumped parameter method and the differential equations of system arederived based on the mechanical vibration theory and many factors are analyzed such as mesh stiffness, bearing stiffness, planetary gear mesh phase, internal and externalincentive.
     ③Research on the natural vibration characteristics of the planetary gear systemwith time-varying stiffness of gear and bearing
     The influences of gear mesh stiffness and bearing supporting stiffness on systemnatural frequency and the modal transition phenomenon are analyzed based oncalculating the natural frequency and vibration modes. The gear mesh stiffness isexpressed by Fourier series, the bearing stiffness expression is build by Hertz contacttheory, and the mesh phasing is considered, the tine-varying rules are analyzed ofsystem stiffness of planetary gear system,the frequency features and the vibrationcharacteristics are researched in the condition of time-varying.
     ④Research on the varying load excitation mechanism and the dynamic responsecharacteristic of wind turbine planetary gear system.
     Aiming at the speed variation and elastic deformation caused by varying load forplanetary gear system, the transformational relation between the kinetic energy and thepotential energy in varying load conditions are analyzed by energy method, thevibration differential equations of planetary gear system are derived based on theLagrange function and the results part②, the varying load excitation mechanism arediscussed and the influence of load excitation on vibration frequency of system isanalyzed. Taking into account the time-varying characteristicsthe of system stiffness andthe varying load excitation, the dynamic responses are solved by the Newmark methodand the dynamic responses characteristics are obtained.
     ⑤Experimental study of the vibration response characteristics of wind turbineplanetary gear system.
     The test rig of back-to-back energy feedback was setup and the dynamics propertytesting program of wind turbine was established. The vibration signal of transmissionsystem was measured under the working conditions of steady and unsteady drive/loadtorque. The influence regulations of varying load on the system vibration response wereobtained, the theory model and the research methods were validated by comparing tworesults of steady and unsteady working conditions.
引文
[1]黄建峰.全球风力发电的现状及展望[J].科技咨询,2011.(23):96-97.
    [2]周鹤良.我国风电产业发展前景与策略[J].上海电力,2007,1.
    [3]熊锦民.我国风力发电产业发展现况及展望[J].科技创新导报,2008,06.
    [4]刘忠明,段守敏,王长路.风力发电齿轮箱设计制造技术的发展与展望[J].机械传动.2006,30(6):1-6.
    [5]张曙.风电及其设备制造[J].现代制造.2010.39:24-25.
    [6]林鹤云,郭玉敬,孙蓓蓓等.海上风电的若干关键技术综述[J].东南大学学报.2011,41(4):882-888.
    [7]时轶.风力发电机组齿轮箱认证中的齿轮分析[J].中国船检.2010,2:73-75.
    [8]唐新安,谢志明,王哲,等.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,1.
    [9] Parker.R.G,V.agashe, and S.M.Vijayakar. Dynamic resplonse of a planetary gear system usinga finite element/contact mechanics model[J]. Journal of mechanical design,2000,122:305~311.
    [10] Himmelskamp H.:rofile investigation on a rotation airscrew, MAP Volkenrode, Reports andtransition,1947.
    [11] Sears, W.R.:otential flow around a cylindrical blade, Journal of the AeronauticalSciences,1950, vol.17, No.3:183-184.
    [12] Forty, L.E., The laminar boundary layer on a rotating blade, J.Aero-Sci., September1951,vol.18, no4:247-252.
    [13] Banks, W.H.and Gadd, G.E., Delaying effects of rotation on laminar separation, AIAAJ.1963,1(4):941-942.
    [14] McCroskey, W.J., Measurements of boundary layer transition, separation and streamlinedirection on rotation blades, NASA TN D-6321, April1971.
    [15] Snel, H., Scalling laws for the boundary layer flow on rotating wind turbine blades:roceedingsof the Fourth IEA Symposium on the Aerodynamics of Wind Turbines, Rome,20-21November1990Published as ETSU-N-118, ETSU.Dept.of Energy, UK., January1991.
    [16] Eggers, A.J., Digumarthi, Jr.and R.V., Approximate scalling of rotational effects of meanaerodynamic moments and generated by the combined experiment rotor blades operating indeep-stalled flow,11th ASME Wind Energy Symposium,1992, SED-Vol.12:33-43.
    [17] Narramore, J.C.and Vermeland, R., Navier—Stokes calculations of inboard stall delay due torotation, J.Aircraft,1992,29(1):73-78.
    [18] Snel, H., Houwink, R.and Bosschers, J., Sectional Prediction of lift coefficients on rotatingwind turbine blades in stall, ECN-C-93-052, Dec.1994.
    [19] TanglerJL, SomersDM, Statusof the SpecialPurpos AirfoilFamilies[A], SERI/CP-217-3315
    [20] Proceedingso WINDPOWER′87[C], SanFransisco, U/S.A,1987:229—335.
    [21] Anders Bj rck. Coordinates and calculations forthe FFA-W1-xxx, FFA-W2-xxx andFFA-W3-xxx series of airfoils for hori-zontal axis wind turbines[R]. The AeronauticalResearch In-stitute of Sweden,1990.
    [22] Gohard,J. Free wake analysis of wind turbine aerodynamics. In: Wind Energy Conversion.Vol.VIII.U.S.Dept of Energy, COO3141-T1/MIT,ASRL TR-184-14.1978.
    [23] Jameson.Numerical Solution of the Euler Equations by Finite Volume Methods UsingTime-stepping-schemes[J].AIAA81-1259,1981:54~61.
    [24] Hernandez J.and A. Crespo. Aerodynamic calculation of the performance of horizontal axiswind turbines and comparison with experimental results. Wind Eng,1987,11(4):177-187.
    [25] Kocured D. Lifting surface performance analysis for horizontal axis windturbines.SERI/STR-217-3163.Sol.Energy Res. Inst.1987.
    [26] Rosen,A.,I.Lavie and A.Seginer.A general free-wake efficient analysis of horizontal-axis windturbines. Wind Eng.1990,14(6):362-373.
    [27] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynam ic flows. AIAAPaper92-0439, Jan.1992.
    [28] Robison D J.,F.N.Coton, R.A.McD.Galbraith and M.Vezza. The development of a prescribedwake model for the prediction of the aerodynamic performance of horizontal axis windturbines in steady axial flow. GU AERO Reort-9403, University of Glasgow,1994.
    [29] Whale J, Anderson C G, Bareiss R, et al. An experimental and numerical sutdy of vortexstructure in the wake of a wind turbine[J]. Journal of Wind Engineering and IndustrialAerodynamics.2000,84(1):1-21.
    [30] Nobuyuke Fujisawa, Satoshi Shibuya. Observation of Dynamic Stall on Darrieus WindTurbine Blades[J]. Journal of Wind Engineering and Industrial Aerodynamics.2001,89(2):201-214.
    [31] Vermeer L J. A review of wind turbine wake research at T U Delft[C]//A Collection of the2001ASME Wind Energy Symposium Technical Papers. New York: ASME,2001:103-113.
    [32]钟伟,王同光.风力机叶尖涡的数值模拟[J].南京航空航天大学学报,2011,43(5):640-644.
    [33] Wilson R E,Lissaman P B S. Applied aerodynamics of wind power machines[R]. ReportNSF/RA/N-74113. Washington D C:National Science Foundation1974.
    [34] Hansen M O L.风力机空气动力学[M].肖劲松,译.第2版.北京:中国电力出版社,2009.
    [35] J A C Kentfiled,E J Claelle.The flow physics of the Gnrney flaps devices for improvingturbine blade performance[J].Wind Engineering1993,19(1):24-34.
    [36]江学忠,叶枝全,叶大军,等.二维叶片襟翼增生的实验研究[J].工程热物理学报.1998,19(2):170-174.
    [37]包能胜,曹人靖,叶枝全,等.水平轴风力机桨叶二维增升实验研究[J].太阳能学报,2001,22(1):72-76.
    [38]沈遐龄,万周迎,高歌.锯齿形格尼襟翼气动性能的实验研究[J].北京航空航天大学学报,2003,29(3):202-204.
    [39]张宏武,江学忠,袁新,等.二维翼型襟翼增升的数值模拟[J].清华大学学报(自然科学版).2000,40(11):55-58.
    [40] Gurney襟翼对翼型流场影响的数值模拟[D].沈阳:沈阳航空工业学院,2005.
    [41] Fuglsang P, Bak C,Schepers J G, et al.Site-specific design optimization of wind turbines[J].Wind Energy,2002,5(4):261-279.
    [42]吴江海,王同光,赵新华.风力机叶片优化设计目标[J].南京航空航天大学学报.2011,43(5):661-666.
    [43] Johasen J,Gaunaa M,Sorensen N N.Increased aerodynamic efficiency on wind turbine rotorsuing winglets[C]//26th AIAA Applied Aerodynamics Conference. Hawaii, USA: AIAA,2008:12-21.
    [44]余永生,杜向东.翼稍涡的结构与控制方法探索[J].空气动力学学报,1999,17(4):405-412.
    [45]刘雄,陈严等.增加风力机叶片翼型后缘厚度对气动性能的影响[J].太阳能学报,2006,27(5):489-495.
    [46]顾蕴松,程克明,郑新军.翼尖涡流场特性及其控制[J].空气动力学学报,2008,26(4):446-451.
    [47]周立胜,明晓,白亚磊等.流动偏转器对机翼失速特性的控制[J].空气动力学学报,2011,29(1):20-25.
    [48]白亚磊,明晓.风力机叶型增升技术[J].南京航空航天大学学报.2011,43(5):608-611.
    [49]杨瑞,李仁年,张士昂,等.水平轴风力机CFD计算湍流模型研究[J].甘肃科学学报,2008,28(4):90-93.
    [50]张玉良.水平轴大功率高速风力机风轮空气动力学计算[D].兰州理工大学能源与工程学院,2006.
    [51]张玉良,李仁年,杨从新.水平轴风力机的设计与流场特性数值预测[J].兰州理工大学学报,2007,,33(2):54-57.
    [52]马兴宇,明晓.风力机叶尖涡特性及其控制[J].南京航空航天大学学报.2011,43(5):635-639.
    [53] B Bonras, F Karagiannis,P Chaviaropoulos, et al. Arbitrary blade section design based onviscous considerations,Blade optimization[J]. Journal of fliuds engineering-transactions of theASME,1996,118(2):364-369.
    [54] P Fuglsang, H A Madsen. Optimization method for wind turbine rotors[J]. Journal of WindEngineering and Industrial Aerodynamics,1999,80(1-2):191-206.
    [55] Baumgart, A., A mathematical model for wind turbine blades, Journal of Sound and Vibration,2002(251):1-12.
    [56] Younsi R., El-Batanony I.,Tritsch J., et. al, Dynamic study of a wind turbine blade withhorizontal axis[J], European Journal of Mechanics, A/Solids,2001,20(2):241-252.
    [57] Larsen, J. W., and Nielsen, S. R. K., Non-linear dynamics of wind turbine wings[J].International Journal of Non-Linear Mechanics,2006,41(5):629-643.
    [58] W.C.de Goeij,M.J.L van Tooren,A. Beukers. Implementation of bending-torsion coupling inthe design of a wind-turbine rotor-blade[J].Applied Energy.1999:191-207.
    [59]常明飞.风力机叶片动力学特性研究[D].沈阳:沈阳工业大学,2006.
    [60]林虎平.风力机萼片设计和颤振分析[D].西安:西北工业大学,2005.
    [61]李德源,叶枝全,等.风力机叶片载荷谱及疲劳寿命分析[J].工程力学,2004(6):118-123.
    [62]吴殿文.风力发电机叶片预弯设计及其数值研究[J].动力工程学报,2010,30(6):450-455.
    [63] Martin O. L. Hansen. Aerodynamics of wind turbines(Second Edition)[M].UK:Earthscan,2008.
    [64]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006.
    [65] Bossanyi E A. Bladed G H. Version3.67user manual[M]. Garrad Hassan&Partners Limited,2005.
    [66] Glauert H, Durand W F. Aerodynamic theory, vo.1IV, Division I.Airplane propellers, chapterXI[M]. Berlin,1935:324-330.
    [67] Prandtl L,Tietjens O G.Applied hydro and aeromechanics[M].Dover Publications,1957:86-143.
    [68] Wilson R E, Lissaman PBS, Walker S N. Aerodynamic performance of wind turbines ReportNo. NSF/RA-760228, NTIS, Chapters I-III, Oregon StateUniv[Z].1976.
    [69] Pandey M M:andey K P, Ojha TPA. An Analytical Approach to Optinum Design and PeakPerformance Prediction for Horizontal Axis Wind Turbines[J]. Journal of Wind Engineeringand IndustrialAerodynamics,1989,32:247-62.
    [70]杨瑞,李仁年,韩伟,等.一种风力机风轮设计和优化方法研究[J].西华大学学报,2008,27(4):46-49.
    [71]许波峰,王同光.基于自由涡尾迹和面元法全耦合风力机气动特性计算[J].南京航空航天大学学报,2011,43(5):592-597.
    [72]张仲柱,王会社,赵晓璐,等.水平轴风力机叶片气动性能研究[J].工程热物理学报,2007,28(5):781-783.
    [73]刘雄,陈严等.水平轴风力机气动性能计算模型[J].太阳能学报,2005,26(6):792-800.
    [74] Robert E Wilson:eter B SLissaman, Stel NWalker. Aerodynamic performance of wind turbines
    [M]. Department of Mechanical Engineering, Oregon State University,1976.
    [75]黄华,张礼达.风力机叶片翼型气动性能设计计算方法的分析与研究[J].能源工程,2007,27(3):45-47.
    [76]曾庆川,刘浩, LIM Chen Wah等.基于改进叶素动量理论的水平轴风电机组气动性能计算[J].中国电机工程学报,2011,31(23):129-134.
    [77]毛火军,石可重,汪仲夏.基于CFD和BEM方法的风电叶片强度分析比较[J].太阳能学报,2009,30(9):1276-1279.
    [78]伍艳,王同光.风力机叶片的三维非定常气动特性估算[J].计算力学学报,2008,25(1):100-103.
    [79]王同光.不同风况下水平轴风轮的空气动力特性计算[D].南京航空航天大学,1988.
    [80] Leishman J G, Beddoes T S. A semi-empirical model for dynamic stall[J]. Journal of the American Helicopter Society.1989,34(3):3-17.
    [81] He Chengjian. Development and application of a generalized dyanmic wake thoery for liftingrotors[D]. School of Aerospace Engineering, Georgia Institute of Technology,1989.
    [82]刘桦,何玉林,金鑫,等.基于GDW理论的失速型风力机整机性能分析[J].太阳能学报,2008,29(3):343-348.
    [83]何玉林,刘军,董明洪.基于BEM-GDW综合理论对风力机叶片优化[J].现代科学仪器,2011.
    [84]唐迪,陆志良,王同光,等.基于涡尾迹方法的风力机载荷与响应计算[J].空气动力学学报,2011,29(5):669-673.
    [85]吴春艳,金鑫,何玉林,等.风力发电机在地震-风力作用下的载荷计算[J].中国机械工程.2011,22(18):2236-2240.
    [86]陈小波,李静,陈健云.海上风电机组随机风浪载荷时程数值计算[J].太阳能学报,2011,32(3):288-295.
    [87]刘忠明,段守敏,王长路.风力发电齿轮箱设计制造技术的发展与展望[J].机械传动.2006:1-6.
    [88]宋聚众,赵萍,刘平等.水平轴风力机载荷工况设计方法研究[J].东方电气评论,2009,23(1):60-63.
    [89]陈雷,邢作霞,隋红霞等.风电机组载荷计算的外部风速条件模拟研究[J].可再生能源,2008,26(1):17-20.
    [90] Jayantha A,Epaarachchi et al.The development of a fatigue loading spectrum for small windturbine blades[J].Journal of Wind Engineering and Industrial Aerodynamics,2006(94):207-223.
    [91] Vasilis A,Riziotis,et al.Fatigue loads on wind turbines of different control strategies operatingin complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000(85):211-240.
    [92]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1996.
    [93] R. Kasuba, J.W. Evans. An extended model for determing dynamic loads in spur gearing[J].ASME Journal of Mechanical Design,1981,103(3):398-409.
    [94] E.Buckingham. Dynamic loads on gear teeth[J]. ASME Special Research Publication, NewYork,1931.
    [95] H.Walker. Gear tooth deflections and profile modifications[J]. The Engineer,1938,166:434-436and1940,170:102-104.
    [96] W. A.Tuplin. Gear-tooth stressess at high speed[J]. Proceedings of the Institute of MechcnicalEngineers,1950,163:162.
    [97] W. A.Tuplin. Dynamic loads on gear teeth[J]. Machine Design,1953,25:203-211.
    [98] T. Nakada. M. Utagawa. The dynamic loads on gear caused by the varying elasticity of themating teeth of spur gears[C]//Proceedings of the6th Japanese National Congress on AplliedMechanics,1956,493-497.
    [99] J. Zeman. Dynamische Zusatzkraefte in zahnradetrieben, Zeitschrift des Vereines Deutscheringenieure,1957,99:244-254.
    [100] S. L.Harris. Dynamic loads on the teeth of spur gears[J]. Proc. I. Mech. E.,1958,172:87-112.
    [101] R. W. Gregory. S. L. Harris, R. G. Munro,et. al. Dynamic Behavior of Spur Gears[J].Proceedings of the Institute of Mechanical Engineers,1963,178(18):207-226.
    [102] R. W. Gregory. S. L. Harris. R. Munro. Torsional Motions of a Pair of Spur Gears[J].Proceedings of the Institute of Mechanical Engineers,1963,178(280):166-173.
    [103] G. Tordion, H. Geraldin. Dynamic Measurement of the Transmission Error in Gears[C]//Proc.JSME Semi-International Symposium,1967.
    [104] H Optiz. Dynamic Behavior of Spur and Helical Gears. JSME Semi-International SymposiumPapers, Gears,Sept.1967.
    [105] D. R. Houser. Analysis of the influence of errors and stiffness on dynamic loads developed inspur and helical gears[D]. PhD Thesis, Madison: University of Wisconsin,1968.
    [106] H. K. Kohler, A. Pratt, A. M.Thompson. Dynamics and noise of parallel-axis gearing[J].Proceedings of the Institute of Mechanical Engineers,1969,184(30):111-121.
    [107] A. Francavilla, O. C. Zienkiewicz. A Note on Numerical Computation of Elastic ContactProblem. Int. J. Num. Mech. Engng.,1975,19:913~924.
    [108] J. T. Stadter, R. O. Weiss. Analysis of Contact through Finite Element Gaps. Computer andStructure,1979,6:867~873.
    [109] N.Okamoto, M.Nakayawa. Finite Element Incremental Contact Analysis with VariousFrictional Conditions. Int. J. Num. Mech. Engng.,1979,14(3):337~35.
    [110] IWATUSBO N, ARII S, KAWAI R. Coupled lateral torsional vibration of rotor system trainedby gears (Part I Analysis by transfer matrix method)[J]. Bulletin of JSME,1984,27:271-277.
    [111] NERIYA V, BHAT R B, SANKER T S. Coupled torsional flexural vibration of a geared shaftsystem using finite element analysis[J]. The Shock and Vibration Bulletin,1984,55:13-25.
    [112] K. Umezawa. The developed simulator and the performance diagrams for the vibration ofhelical gear[J]. Proc. Inter. Conf. On Gears, Zhengzhou, China,1988:659~662.
    [113] Ozguen H N, Houser D R. Mathematical models used in gear dynamics-Areview[J]. Journalof Sound and Vibration.1988,121(3):383-411.
    [114] Choy F K, Lu Y K, Savage M. Vibration signature analysis of multi-stage gear transmission[J].Journal of the Franklin Institute,1991328(2):281-298.
    [115] Choy, F.K;Tu, Y.K.; Zakrajsek, J.J. et al. Effects of gear box vibration and mass imbalance onthe dynamics of multistage gear transmission[J]. Journal of Vibration, Acoustics, Stress, andReliability in Design,1991,113(3):333-344.
    [116] Kahraman A, SINGH R. Interactions between time-varying meshing stiffness and clearancenon-linearities in a geared system[J]. Journal of Sound and Vibration,1991,146:135-156.
    [117] G W Blankenship, A Karaman. Stadystate Foced Response o a Mechanical Oscilator withCombined Parametric Excitation and Clearance Type Non-linearity[J]. Journal of Sound andVibration,1995,185(5):743-765.
    [118] VELEX P, MAATAR M. A mathematical model for analyzing the influence of shapedeviations and mounting errors on gear dynamic behavior[J]. Journal of Sound andVibration,1996,191:629-660.
    [119] PACLOTJ P, VELEX P. Simulation of the dynamic behaviour of Single and multistage gearedsystems with shape deviations and mounting errors by using a spectral method [J]. Journal ofSound and Vibration,1998,220(5):861-903.
    [120] Hua Li, Yunwen Shen, Guohua Xu. A-operate Method and Chaotic Behavior of GearedSystem with Clearances[C]. Proceeding of the International Conference of MechanicalTransmissions. Chongqing.2001,243-247.
    [121] Yinnong Li. Bifurcation and Chaos in Geared-Pairs System with Piecewise Linearity[C].Proceeding of the International Conference of Mechanical Transmissions. Chongqing.2001,239-242.
    [122]王立华.斜齿圆柱齿轮传动系统的耦合振动分析[J].机械设计与研究,2002,18(5):30-32.
    [123]李润方,韩西,林腾蛟等.齿轮系统耦合振动的理论分析与实践研究[J].机械工程学报,2000,36(6):79-81.
    [124]李润方,林腾蛟,陶泽光.齿轮系统耦合振动响应的预估[J].机械设计与研究.2003,19(2):27-29.
    [125] S. Baud:. Velex. Static and dynamic tooth loading in spur and helical geared systems-experiments and model validation[J]. ASME Journal of Mechanical Design,2002,124(2):335-347.
    [126] P. Velex, M. Ajmi. Dynamic tooth loads and quasi-static transmission errors in helicalgears–Approximate dynamic factor formulae[J]. Mechanism and Machine Theory,2007,42:1512–1526.
    [127]王三民,沈允文,董海军.含间隙和时变啮合刚度的弧齿锥齿轮传动系统非线性振动特性研究[J].机械工程学报,2003,39(2):28-32.
    [128]张怀锁,沈允文,董海军,等.齿轮拍击系统的动力响应[J].振动工程学报.2003,16(1):62-66.
    [129] T.C. Lim, M.f. Li. Active shaft transverse vibration control of a spur gear pair system[C]//ASME2005International Design Engineering Technical Conferences and Computers andInformation in Engineering Conference, Volume5b: Power Transmission and GearingConference, California, USA.2005, September24–28.
    [130]陆波,朱才朝,宋朝省,等.大功率船用齿轮箱耦合非线性动态特性分析及噪声预估[J].振动与冲击,2009,28(4):76-81.
    [131] S. Li, A. Kahraman. A transient mixed elastohydrodynamic lubrication model for spur gearpairs e[J]. Journal of Tribology,2010,132(1):011501-1-9.
    [132]杨建鑫,周松华,程爱明,等.单平动轮驱动内平动齿轮副动力学分析[J].振动与冲击.2010,29(11):138-145.
    [133] August A, Kasuba R. Torsional Vibration and Dynamic Loads in a Basic Planetary GearSystem[J].Journal of Acoustics, Stress, and Reliability in Design. Transaction of the ASME1986,108:348~253.
    [134] T Hidaka,Y Terauchi. Dynamic Behavior of Planetary Gear[J]. Bulletin of the JapaneseSociety of Mechanical Engineers.1976,19(132):690-697.
    [135] T Hidaka. Analysis of Dynamic Tooth Load on Planetary Gear[J]. Bulletin of the JapaneseSociety of Mechanical Engineers.1980,23(176):315-322.
    [136] Botman.M., Epicyclic gear vibrations, Journal of engineering for industry,1976:811~815.
    [137] A. Kahraman, Natural modes of planetary gear trains, Journal of sound and vibration,1994,173(1),125~130.
    [138] A. Kahraman, Load sharing characteristics of planetary transmissions[J]. Mechanisms andmachine theory,1994,29:1151~1165.
    [139] Lin. J., R. G. parker, Analytical characterization of the unique properties of planetary gear freevibration, Journal of vibration and acoustics,1999,121:316~321.
    [140] J.Lin, R.G.Parker. Structured Vibration Characteristics of Planetary Gears With UnequallySpaced Planets[J]. Journal of Sound and Vibration,2000,233(5):921-928.
    [141] Parker R. G. A physical explanation for the effectiveness of planet phasing to suppressplanetary gear vibration[J]. Journal of sound and vibration,2000,236(4):561~573.
    [142] Parker R. G. Mesh phasing for epicyclic gear vibration reduction[C]. In: Proceedings of theinternational conference on mechanical transmissions, Chongqing,2001.
    [143] Ahmet, Kahraman. Free Torsional Vibration Characteristics of Compound Planetary Gear Sets.Mechanism and Machine Theory[J].2001,36:953-971.
    [144] Lin J:arker R G. Natural frequency veering in planetary gears[J]. Mech. Struct. Mach,2001,29(4):411-429.
    [145]孙智民,沈允文,李素有.封闭行星齿轮传动系统的扭振特性研究[J].航空动力学报,2001,16(2):163-166.
    [146] J.Lin,R.G.Parker. Planetary gear parametric instability caused by mesh stiffness variation[J].Journal of Sound and Vibration,2002,249(1):129–145.
    [147]孙涛沈允文.行星齿轮传动非线性动力学方程求解与动态特性分析[J].机械工程学报.2002.38(3):11-15.
    [148]孙涛沈允文.行星齿轮传动非线性动力学模型与方程[J].机械工程学报,2002.3.
    [149]王世宇,宋轶民,沈兆光,等.行星传动系统的固有特性及模态跃迁研究[J].振动工程学报,2005,18(4):412-417.
    [150]宋轶民,许伟东,张策,等.2K-H行星传动的修正扭转模型建立与固有特性分析[J].机械工程学报,2006,42(5):16-21.
    [151] Abousleiman:. Velex, A hybrid3D finite element/lumped parameter model for quasi-static anddynamic analyses of planetary/epicyclic gear sets[J]. Mechanism and Machine Theory,2006,41(6):725-748.
    [152] Vijaya Kumar Ambarisha,R.G.Parker. Nonlinear dynamics of planetary gears using analyticaland finite element models[J]. Journal of Sound and Vibration,2007,302(1):577–595.
    [153] D.R. Kiracofe, R.G. Parker. Structured vibration modes of general compound planetary gearsystems[J]. ASME Journal of Vibration and Acoustics,2007,129(1):1-16.
    [154] Wu Xionghua, Robert G P. Modal properties of planetary gears with an elastic continuum ringgear[J]. ASME, Journal of Applied Mechanics,2008,75(5):031014.
    [155] W. Bartelmus, R. Zimroz. Vibration condition monitoring of planetary gearbox under varyingexternal load[J], Mechanical Systems and Signal Processing,2009,23(1):246–257.
    [156]马兴国,陆扬,尤小梅.基于多柔性体动力学技术的行星轮系多体动力学仿真分析[J].中国机械工程,2009,20(16):1956-1960.
    [157] Yi Guo, R. G. Parker. Dynamic modeling and analysis of a spur planetary gear involving toothwedging and bearing clearance nonlinearity[J]. European Journal of Mechanics-A/Solids,2010,29(6):1022-1033.
    [158] Jarchow F, Vonderschmidt R. Gearing Power Transm. Proc. Int. Symp.1981,327.
    [159]日高照晃,山本信行,石田武.行星齿轮装置均载机构中的各种误差和载荷分配的关系.日本机械学会论文集(C编)52卷480号,1986,2200~2206.
    [160] Kish J G. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) Program-Final Report.NASA CR-191079, NASA Lewis Research Center,1993.
    [161] Kish J G. Comanche Drive System. Rotary Wing Propulsion Specialists’ Meeting Proceedings,American Helicopter Society,1993.
    [162] Kahraman A. Load Sharing Characteristics of Planetary Transmissions[J]. Mech. Mach.Theory,1994,29(8):1151~1165.
    [163] Timothy L K, Irebert R D. A Method to Analyze and Optimize the Load Sharing of Split PathTransmissions, NASA Technical Memorandum107201,1996.
    [164] Timothy L K, Irebert R D. Experimental Study of Split-Path Transmission Load Sharing.NASA Technical Memorandum107202,1996.
    [165] Kahraman A. Static Load Sharing Characteristics of Transmission Planetary Gear Sets: Modeland Experiment[J]. Society of Automotive Engineers,1999:1954~1963.
    [166] Lin J:arker R G. Analytical Characterization of the Unique Properties of Planetary Gear FreeVibration[J]. Transactions of the ASME, Journal of Vibration and Acoustics,1999,121:316~32115.
    [167] Parker R G, Agashe V, Vijayakar S M. Dynamic Response of a Planetary Gear System Using aFinite Element/Contact Mechanics Model[J]. ASME, Journal of Mechanical Design,2000,122:304~310.
    [168] Parker R G. A Physical Explanation for the Effectiveness of Planet Phasing to SuppressP1anetary Gear Vibration[J]. Journal of Sound and Vibration.2000.236(4):561~573.
    [169] Robert R G, Lin J. Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities ofPlanetary Gears. NASA/CR—2001-210939.
    [170] Parker R G. Mesh Phasing for Epicyclic Gear Vibration. Proeedings of the InternationalConference on Mechanical Transmissiom. Chongqing:.R.China,2001,4:53~57.
    [171] J.Lin, R. G. Parker, Sensitivity of planetary gear natural frequencies and vibration modes tomodel parameters, Journal of sound and vibration,1999,228(1):109~128.
    [172]杨通强.斜齿行星传动动力学研究[D].天津,天津大学,2003.
    [173] Bodas; A,KahramanA. Influence of carrierand gearm anufacturing errors on the static loadsharing behavior of planetary gear sets[J]. JSME International Journal Series C,2004,47(3):908-91.
    [174] Singh A. Application of a system level model to study the planetary load sharing behavior[J].ASME, Journal ofmechanical design,2005,127(12):469-47.
    [175]张策,王世宇,宋轶民,等.行星传动基本参数选择理论的再认识[J].天津大学学报.2005,38(4):283-28.
    [176]王世宇,张策,宋轶民,等.行星传动固有特性分析[J].中国机械工程,2005,16(16):1461-1465.
    [177]王世宇,宋轶民,张策,等.行星齿轮的共振失效概率[J].天津大学学报,2005,38(12):1122-1128.
    [178]宋轶民,张策,王世宇.斜齿行星齿轮系统自由振动特性分析[J].机械工程学报,2005,14(7):50-55.
    [179]刘世华.有无相位差的行星齿轮传动系中太阳轮振动特性研究[D].硕士学位论文.吉林大学,2007.3.
    [180]周建星,董海军.基于非线性动力学的行星传动均载性能研究[J].机械科学与技术.2008,27(6):808-811.
    [181]卜忠红,刘更,吴立言.滑动轴承支承人字齿轮行星传动固有特性分析[J].中国机械工程,2010,47(1):81-89.
    [182] Ligata H, Kahraman A, Singh A. A closed-form planet load sharing formulation forplanetarygear sets using a translational analogy[J]. ASME, Journalof Mechanical Design,2009,131(2):021007.
    [183] Inalpolat M, Kahraman A. A theoretical and experimental investigation of modulationsidebands of planetary gear sets[J]. Journal ofSound and Vibration.2009,323:677-696.
    [184] Schlecht B and Gutt S. Multibody-system-simulation of drive trains of wind turbines. FifthWorld Congress on Computational Mechanics2002, Vienna, Austria.
    [185]陈严,欧阳高飞,叶枝全.大型水平轴风力机传动系统的动力学研究[J].太阳能学报,2003,24(5):729-734.
    [186]陈严,欧阳高飞,伍海滨等.变转速风力机的动态模型与随机载荷下的动态分析[J].太阳能学报.2004,6(25):723-727.
    [187]朱才朝,黄泽好,唐倩等.风力发电齿轮箱系统耦合非线性动态特性的研究[J].机械工程学报.2005,41(8):203-207.
    [188]李东东,陈陈.风力发电机组动态模型研究[J].中国电机工程学报,2005,25(3):115-119.
    [189] A.Heege,Y.Radovcic,et al.Fatigue Load Computation of Wind Turbine Gearboxes by CoupledStructural Mechanism and Aerodynamic Analysis[J].DEWI Magazin.2006.2(28)P61-68.
    [190]王旭东,林腾蛟,李润方,等.风力发电机组齿轮系统内部动态激励和响应分析[J].机械设计与研究,2006,22(3):47-49.
    [191]马朝峰,刘凯,荆艳丽.风力发电机行星传动增速系统动态均载研究[J].西安理工大学学报,2008,24(3):286-289.
    [192]秦大同,邢子坤,王建宏.基于动力学和可靠性的风力发电齿轮传动系统参数优化设计[J].机械工程学报,2008,44(7):24-31.
    [193]郭爱贵,范为民,魏静等.太重Ⅲ型风力发电增速齿轮箱有限元分析[J].2009,33(6):55-60.
    [194]秦大同,古希国,王建宏,等.兆瓦级风力机齿轮传动系统动力学分析与优化[J].重庆大学学报,2009,32(4):408-414.
    [195] Qin, Datong; Wang, Jianhong; Lim, Teik. Flexible multibody dynamic modeling of ahorizontal wind turbine drivetrain system[J]. Joumal of Mechanical Design,Transactions ofthe ASME.2009,131(11):1145011-1145018.
    [196]林茂峰,孙文磊,胡斌.750kW风力发电机齿轮箱动力学分析[J].机械工程与自动化.2010,2:17-19.
    [197]张庆伟,张博,王建宏,等.风力发电机齿轮传动系统的动态优化设计[J].重庆大学学报.2010,33(3):30-35.
    [198]丁习坤,孙文磊.大型风电机组传动系统动力学仿真分析[J].机床与液压.2011,39(3):91-94.
    [199] Wang, Xiaosun; Wu, Shijing. Nonlinear dynamic modeling and numerical simulation of thewind turbine's gear train[C]//International Conference on Electrical and Control Engineering,ICECE.2011,2385-2389.
    [200]丁明,吴伟,吴红斌等.风速概率分布参数预测及应用[J].电网技术.2008,32(14):10-14
    [201]吴学光,陈树勇,戴慧珠.最小误差逼近算法在风电场风能资源特性分析中的应用[J].电网技术,1998,22(7):69-74.
    [202]丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110.
    [203]王雷,楚峥,姚兴佳.风轮机输出特性模拟系统的设计[J].可再生能源,2007,25(1):62-65.
    [204] Manitoba HVDC research Centre Inc. PSCAD users guide[Z].Manitoba, Canada:2003.
    [205]贺拥军.超大跨屋面结构风速时程的数值模拟研究[J].湖南大学学报(自然科学版).2008-35(9):1-4.
    [206]刘小会.500kV超高压输电线路风偏数值模拟研究[J].工程力学.2009-26(1):244-249.
    [207]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006:29―42.
    [208] Torres J L,Garcia A,Blas M De,et al.Forecast of hourly average wind speed with ARMAmodels in Navarre (Spain)[J].Solar Energy,2005,(79):65-77.
    [209] Bossanyi E A.Short term wind prediction using Kalman filters[J].Wind Engineering,1985,9(1):1-8.
    [210]杨秀媛,肖杨,陈树勇,等.风电场短期风速预测探讨[J].中国电机工程学报.2005,25(11):1-5.
    [211] Richard B. Nelson, Simplified calculation of eigenvector derivatives, AIAA Journal,1976,14(9):1201~1205.
    [212] Fox R. L., Kapoor M. P., Rates of change of eigenvalues and eigenvectors[J], AIAA Journal,1968,6(12):2426~2429.
    [213] William C., Mills-curran, Calculation of eigenvector derivatives for structures with repeatedeigenvalues[J], AIAA Journal,1988,26(7):867~871.
    [214] Michael L., Bernard and Allen J., Bronowicki, Modal expansion method for eigensensitivitywith repeated roots[J], AIAA Journal,1994,32(7):1500~1506.
    [215]杨建明,张策.行星齿轮传动的固有频率对设计参数的灵敏度分析[J].机械设计,2001,4:40~43.
    [216] Chen J. C., Wada B. K., Matrix perturbation for structural dynamics[J], AIAA Journal,1977,15(8):1095~1100.
    [217]邵长健,孙涛,沈允文,等.基于结构动力学修改重分析的齿轮系统减振研究[J].航空动力学报,1998,13(3):305~30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700