用户名: 密码: 验证码:
土压平衡盾构行星减速器的多目标稳健优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从土压平衡盾构(Earth-pressure-balance shield machine,EPBSM)刀盘所需力矩着手,探讨其大功率行星减速器(Planetary gear reducer,PGR)的载荷均衡与分配,从而为行星减速器的优化界定“土压平衡盾构”环境。同时,在行星减速器的4大构件(轮系、轴、行星架及箱体)中,因轮系是个全局性的“统帅”,故可采取对各构件分别加以优化的方式来实现整机的最优化。为此,就可遵照稳健设计的要求,分别建立其多目标的数力模型,从当今颇受关注的计算智能(Computationalintelligence,CI)中挑选出一种或几种算法并加以改进,使之成为或再融合成一种收敛性更好的新算法之后,再用来求解所建模型。最后,对优化后的行星减速器作仿真试验。其具体的原因、方法、原理及效果依次如下:
     为克服灰色理论本身的固有缺陷与粒子群优化(Particle swarm optimization,PSO)算法在求解整数或混合整数规划过程中出现的问题,将方差的概念引入灰色关联度,提出可靠灰色关联度的概念及计算公式,并通过圆整粒子的初始位置与每次飞行速度,以使PSO算法满足求解过程中对整数解的要求。然后,将可靠灰色关联度作为变异策略来驾驭PSO算法,并详尽阐述其算法机理与流程,从而为复杂非线性约束条件下求解多目标混合整数规划问题提供一套切实可行的便捷方法。建立盾构三级行星减速器的轮系在满足配齿、变位系数、干涉、强度、等强度、等寿命等约束条件下其体积最小、效率最高、接触强度与弯曲强度可靠性最高的四目标函数的数力模型,再运用上述可靠灰色PSO算法编写MATLAB程序来求解所建数力模型。研究表明:1)与惩罚函数法(Penalty function method,PFM)相比(见P29-31),所提算法有更快的收敛速度;2)该算法的泛化能力不但解决了该行星减速器原第三级强度偏弱的问题,而且在保证高可靠性条件下,使轮系体积减少11.55%,效率提高0.56%,传动比提高3.67%,各级强度与寿命基本相等。
     鉴于现有免疫遗传算法(Immune genetic algorithm,IGA)其收敛性不理想的问题,剖析其理论体系本身存在的6大不足,并提出6条全新的策略,以加快算法的收敛。同时,阐明实码抗体与变量向量之间的关系,用图形直观描述复杂的算法机理,以便于对IGA的理解与实际操作;将可靠性分析的随机摄动法与其灵敏度分析结合起来,导出随机参数的概率分布为任意形状的机械零件计算其可靠度及灵敏度的函数表达式,由此创建行星减速器其轴的可靠度对设计变量的灵敏度最低与体积最小的两目标数力模型;提出实现目标函数值之间保持动态平衡的全新模型,顺利实现上述两目标函数与像集法的对接;最后,编写所改进IGA的MATLAB程序对该减速器的轴进行优化。结果表明:该算法的鲁棒性不仅使行星减速器轴的总体积减小13.65%,与改进前相比,所提IGA有更快的收敛速度与更高的收敛精度(见P50-51)。
     为解答实际工程中变量相关情况下的高维小概率失效问题,将子集模拟、Monte Carlo法与重要抽样法结合起来,根据重要抽样的概率密度函数获取的相关变量的样本点来构造中间失效事件,从而将小失效概率转化为一条由一系列易于求解的较大条件失效概率的连乘积组成的杂交马尔可夫链,并直接抽取相关样本点来高效模拟结构的可靠性灵敏度。由此创建盾构行星减速器的三个行星架其失效概率对各变量均值、方差(包括相关系数)的可靠性灵敏度最低及体积最小的多目标优化问题,并提出多目标协同优化的思想。同时,针对可靠性灵敏度作为目标函数因误差导致多目标协同优化难以收敛的问题,提出利用误差的思想与方法;为加速遗传算法(Genetic algorithm,GA)与PSO算法的收敛,提出克隆与进化同时并举的精英策略及在相似个体之间进行交配的思想,并用此GA得到的优秀个体与PSO算法杂交,以实现种群续代更新的同时,进一步提高算法的收敛性;最后,运用上述算法对所建数力模型进行求解,结果表明:1)所提直接抽取相关样本的HMC能很好地模拟相关变量的可靠性及其灵敏度,免除了变量独立化过程反复转换的繁琐;2)所提杂交GA-PSO协同算法较GA与PSO算法有更快的收敛速度(见P79-81),当相关系数为0.7时,可使三个行星架的总体积减小7.06%;3)证实了将可靠性灵敏度作为目标函数时所提利用误差的思想与方法的可行性与正确性。
     为解决非正态变量空间中复杂多变的隐式非线性功能函数的可靠性及灵敏度的问题,融合鞍点估计与线抽样法的优点,结合二分法的特点与黄金分割法的求解效率,提出基于黄金分割二分法的鞍点线抽样法,即可在标准化变量空间中沿重要线抽样方向利用黄金分割点的二分法快速找到各样本点对应于功能函数的零点,从而将结构的失效概率转化为一系列线性功能函数失效概率的平均值,由此求出可靠性灵敏度,从而导出行星减速器的三级箱体其失效概率对基本变量均值与方差的可靠性灵敏度及结构轻量化的多目标优化问题;为提高算法的收敛性,对PSO算法与混合蛙跳算法(Shuffled frog-leaping algorithm,SFLA)进行改进,使前者变为自适应PSO(Self-adaptive PSO, SAPSO)算法后再与改进后的SFLA进行杂交,从而导致了杂交SAPSO-SFLA的产生,然后用来求解上述多目标问题。研究表明:1)基于黄金分割二分法的鞍点线抽样法在求解复杂非线性功能函数的可靠性及灵敏度时精度高,速度快;2)与SAPSO和SFLA相比,所提杂交SAPSO-SFLA不仅具有更快的收敛速度(见P106-108),其鲁棒性还能使该三级箱体体积减小8.42%。
     从行星减速器4大构件的优化可得出:1)上述所建4大数力模型与所提4大计算智能的泛化能力不仅解决了盾构原行星减速器第三级强度偏弱的问题,在保证高可靠性条件下,还可使整个行星减速器的体积减小21.58%,效率提高0.56%,传动比提高3.67%;2)当用轮系的体积减小率来近似预估整个行星减速器的体积减小情况时,其实际效果是轮系体积减小量的5.12倍。此外,仿真试验表明,优化后的行星减速器其各项指标均满足要求,可靠性较好。
The torque that drives the cutterhead of the Earth-pressure-balance shield machine(EPBSM) is first analyzed, and the load equilibrium and allocation of high-capacitythree-stages planetary gear reducer (PGR) are discussed to define the environment ofEPBSM for optimizing the PGR. For its4major elements, that is gear train, shaft,planetary carrier and gearbox, the gear train is a global commander so that the PGR canbe optimized by optimizing each constituent, their mathematical&mechanical modelsof multiple objectives are thus constructed according to the robust design demands. Inthe meanwhile, one or more very interesting algorithms that are selected from thecomputational intelligence (CI) are modified to become or be even combined to a newalgorithm that has better convergence than ever, and then they are used to solve themodels above.At last, the simulation test for the optimized PGR are done.The concretereason, methods, principles and effectiveness are successively as follows.
     To overcome the intrinsic defect of the grey theory in itself and the appearingproblem of particle swarm optimization (PSO) algorithm when it is used to slove theinteger or mixed one programming problems, the sigma is introduced into greyrelational degree, the notion of the reliably grey relational degree(RGRD) is put forward.For PSO algorithm, the demand of the integer solution is met by rounding their initialposition and speed of each flight in the course of answering the problems. The RGRD isacted as the alternation strategy to control PSO, and their mechanism and processes areillustrated to provide a practical and convenient method for multi-objective integer ormixed one programming problems subject to complex non-linear conditions. Themathematical models are constructed for three-stage PGR in EPBSM with4objectivefunctions, that is to make its volume smallest, its efficiency highest and the reliability ofits contacting and bending strength highest, which are subject to the conditions such asteeth, modification coefficient, interference, strength, equal strength, equal life etc,which are solved by MATLAB programming language that applied the reliably greyPSO algorithm. The research results show that1) the strength and lifetime in everystage are basically equal under the conditions of ensuring high reliability, and thevelocity of the proposed algorithm is faster than that of the penalty function method(PFM)(see P29-31),2) the generalization ability not only resolves the strength problemthat there is a little weak in the original3rdstage of the PGR, but decreases the gear train volume by11.55%and increases its efficiency by0.56%and its transmission ratio by3.67%.
     In view of the dissatisfactory convergence of the current immune genetic algorithm(IGA),6inherent drawbacks are found which existing in the current rationale of IGA.For these reasons,6new strategies which are corresponding to the drawbacks above areproposed to accelerate its convergence. The relationship between real-coded antibodiesand variables vector is illustrated, and the complicated algorithm mechanism isintuitively described by the figure, which make us understood easily and practicallyoperate on IGA. The stochastic perturbation method of the reliability is combined withits sensitivity analysis to deduce their function formulas on mechanical parts whoseprobability distributions of random parameters are arbitrary shape so that thetwo-objective mathematical models are created on minimizing the reliability sensitivityof the shafts of3-stage PGR in EPBSM with respect to design variables and theirvolume. A new model is proposed that can realize the dynamic balance betweenobjectives, by which the objectives are smoothly combined with the image set method.Finally, the shafts are optimized by means of the MATLAB programs languages thatapply the modified IGA above. The results show that the robustness of the improvedIGA not only decreases the total volume of shafts of the PGR by13.65%, but also itsconvergent velocity and accuracy are superior to that of the unimproved IGA (seeP50-51).
     In the practical engineering, to answer the small failure probabilities withhigh-dimensional correlated variables, the subset simulation (SS) is combined togetherwith the Monte Carlo simulation and importance sampling (IS) method. The samplesfrom the probability density functions (PDF) of the importance sampling are used toconstruct the intermediate failure events, by which the small failure probabilities areturned into a hybrid Markov chain (HMC), which is a continuous product made of aseries large failure probability or conditional failure probability (CFP) which is easilyanswered, on which the structural reliability sensitivity (RS) can be efficiently simulatedby directly obtaining the samples with correlated ones.Multi-objectives optimizationmodels are established about minimizing the RS of failure probability of the3planetarycarriers of the PGR with respect to the variable mean, variance (including the correlatedcoefficient between them) respectively and volume etc, and the collaborativeoptimization idea for multi-objectives is put forward, in the meantime, in view of theproblem that it is difficult to converge for multi-objectives to be collaboratively optimized because of the errors when the RS is used as an objective function, the ideaand method that utilize the errors are proposed. To increase the convergent velocity ofgenetic algorithm (GA) and PSO, the elite strategy that have elitist cloned and to takepart in evolution simultaneously and the idea that have an individual to mate theindividual who is most similar to it are put forward. And the excellent individuals fromthe modified GA are hybridized with those individuals from PSO to update thepopulation and to further enhance their convergence. Finally, the3planetary carriers areoptimized according to the algorithm above, the results show that1) the SS of the ISwith correlated variables can highly simulate failure probability and its sensitivity,2)the convergent velocity of the collaborative algorithm of hybrid GA-PSO is superior tothat of the GA and PSO (see P79-81), it can reduce the total volume of the planet carriersby7.06%when the correlated coefficient is equal to0.7,3) it is confirmed that theproposed idea and method that utilize the errors are feasible and correct when the RSacts as objective function.
     To solve the reliability and its sensitivity for structural system whose implicitnonlinear performance function (PF) are complicated, changeable and of non-normalvariables, the advantages of the saddlepoint approximation (SA) and line sampling (LS)are merged and the merits of dichotomy and the solution efficiency of the goldensection method are combined to propose the saddlepoint approximation-line samplingmethod (SA-LS) based on the dichotomy of the golden section point, namely, it is quickto find the zeropoint in PF corresponding to each sample along the important linesampling direction by the dichotomy above so that the structural failure probability canbe transformed into the mean of a series linear PF failure probability, and by whichreliability sensitivity can be solved, thus the multi-objectives are inferred about the RSof failure probability of the three-stage gearboxes of the PGR with respect to thevariables mean and variance and structural lightweight. To increase the convergence ofthe algorithm, after the PSO and shuffled frog-leaping algorithm (SFLA) are modifiedso that the former is changed into a self-adaptive PSO (SAPSO) algorithm, then it ishybridized with the improved SFLA to produce a new hybrid SAPSO-SFLA, and thehybrid algorithm is applied to answer the foregoing multi-objectives. Researches showthat1) the SA-LS method based on the dichotomy of the golden section point is of highprecision and fast velocity in solving the reliability and its sensitivity of thesophisticated nonlinear PF2) the convergence velocity of the proposed hybridSAPSO-SFLA is superior to that of the modified PSO and SFLA (see P106-108), and its robustness can decrease the volume of the gearboxes by8.42%.
     As can be drawn from the optimization of the4main components of the PGR inthe EPBSM,1) the generalization of the constructed4mathematical&mechanicalmodels and the proposed4computational intelligence not only resolves the strengthproblem that there is a little weak in the original3rdstage of the PGR, but can decreasethe volume of the whole PGR by21.58%, and increase its efficiency and transmissionratio by0.56%and3.67%,respectively,2) The practicable volume decrease of the wholePGR is5.12than that of the gear train when the volume decrease rate of the gear train isapplied to approximately predict that of the whole PGR.What’s more, the simulationexperiment also prove that the each index of the optimized PGR meets the presetteddemand, and that its reliability is good.
引文
[1]张干清,龚宪生,王欢欢,等.基于可靠灰色粒子群算法的盾构机行星减速器轮系的多目标优化设计[J].机械工程学报,2010,46(23):135-145.
    [2] Wu C., Liu X. J., Wang L. P., etc. Dimension optimization of an orientation fine-tuningmanipulator for segment assembly robots in shield tunneling machines [J].Automation inConstruction,2011,20:353-359.
    [3] Deng K.S., Tang X.Q., Wang L.P,etc. Force transmission characteristics for the non-equidistant arrangement thrust systems of shield tunneling machines[J]. Automation inConstruction,2011,20:588–595
    [4]建设部给水排水产品标准化技术委员会.CJ/T284-20085.5m~7m土压平衡盾构机.(http://wenku.baidu.com/view/382704214b35eefdc8d333ff.html).
    [5] Hu S.,Hua Y.Y.,Guo F.G., Determination of the cutterhead torque for EPB shield tunnelingmachine[J]. Automation in Construction,2011,20:1087-1095.
    [6]阮忠唐.联轴器、离合器设计与选用指南[M].北京:化学工业出版社,2006.
    [7]曹利民.最新汽车自动变速器故障诊断与维修[M].沈阳:辽宁科学技术出版社,2010.
    [8] http://blog.sina.com.cn/s/blog_6305e3930100wfjl.html
    [9]刘雷敏,李友兴,杨小娟.基于Matlab的行星轮减速器优化设计[J].机械工程师,2009,(9):39-40.
    [10]张幼军,玉荣.行星齿轮减速器的优化设计[J].组合机床与自动化加工技术,2008,(10):19-22.
    [11]竹洪杰,张念淮,刘保国.三级行星减速器优化设计[J].机械传动,2008,32(3):38-40.
    [12]韩翔.2K-H行星减速器可靠性优化设计[J].重型机械,2003,(5):16-17.
    [13] V. Savsani, R.V. Rao, D.P. Vakharia. Optimal weight design of a gear train using particleswarm optimization and simulated annealing algorithms [J]. Mechanism and Machine Theory,2010(45):531-541.
    [14] T. Yokota, T. Taguchi, M. Gen. A solution method for optimal weight design problem of thegear using genetic algorithms [J]. Computers&Industrial Engineering,1998(35):523-526.
    [15]江家伍,印崧.NGW型行星减速器的模糊可靠性优化设计[J].合肥工业大学学报(自然科学版),2002,25(3):472-476.
    [16]袁茹,王二民,沈允文.行星齿轮传动的功率分流动态均衡优化设计[J].航空动力学报,2000,15(4):410-412.
    [17] M. Faggioni, F. S. Samani, G. Bertacchi et al. Dynamic optimization of spur gears [J].Mechanism and Machine Theory,2011(46):544-557.
    [18]徐光伟,杨家军,肖来元,等.行星齿轮传动的动态优化设计[J].机械科学与技术,1998,17(2):209-210.
    [19]李永华.摆线针轮行星减速器的稳健可靠性优化设计[J].大连铁道学院学报,2006,27(3):28-32.
    [20]张蕾,董恩国.基于蒙特卡罗法的行星齿轮机构稳健性分析[J].机械传动,2008,32(4):17-19.
    [21]董恩国,张蕾,孙奇涵.基于双响应面法的行星齿轮机构稳健设计研究[J].机械传动,2009,33(2):35-38.
    [22]秦大同,张博,土建宏.风力发电机齿轮传动系统动态优化设计[J].重庆大学学报,2009,32(4):408-414.
    [23]孙志礼,李昌,韩兴.基于行星减速器的多目标可靠性优化设计方法研究[J].机械与电子,2007,10:15-17.
    [24]张涵,官德娟.行星齿轮减速器多目标优化设计研究[J].电子机械工程,2006,22(3):1-5.
    [25] D.F.Thompson, S.Gupta, A.Shukla.Tradeo. Tradeoff analysis in minimum volume design ofmulti-stage spur gear reduction units[J].Mechanism and Machine Theory,2000(35):609-627.
    [26]芦新春,王明强.摆线针轮行星减速器的稳健优化设计[J].华东船舶工业学院学报(自然科学版),2004,18(5):61-65.
    [27]叶秉良,赵匀,俞高红,等.拖拉机NGW型行星式最终传动多目标可靠性优化[J].农业工程学报,2008,24(11):89-94.
    [28]徐小军,陈循,尚建忠,等.波浪补偿系统差动行星传动多目标模糊可靠性优化设计[J].中国机械工程,2008,19(4):392-395.
    [29]邓武,陈荣,宋英杰.基于计算智能技术融合的故障识别方法[J].浙江大学学报(工学版),2010,44(7):1298-1302.
    [30] Liang Zhao, Feng Qian. Tuning the structure and parameters of a neural network usingcooperative binary-real particle swarm optimization[J]. Expert Systems with Applications,2011,38(5):4972-4977.
    [31] Daniel Salazar, Claudio M. Rocco, Blas J. Galván. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms [J]. Reliability Engineering&System Safety,2006,91(9):1057-1070.
    [32] Hsing-Chih Tsai, Yong-Huang Lin. Modification of the fish swarm algorithm with particleswarm optimization formulation and communication behavior [J]. Applied Soft Computing,2011,11(7):39-48.
    [33] F.Massa, B.Lallemand, T.Tison. Fuzzy multiobjective optimization of mechanical structures[J]. Computer Methods in Applied Mechanics and Engineering,2009,198(5-8):631-643.
    [34] Ali R za Y ld z. A novel hybrid immune algorithm for global optimization in design andmanufacturing [J]. Robotics and Computer-Integrated Manufacturing2009,(25):261-270.
    [35]强小利,赵东明,张凯.图顶点着色问题的DNA计算模型[J].计算机学报,2009,32(12):2332-2337.
    [36] Jin-Dae Song, Bo-Suk Yang, Byeong-Gun Choi. Optimum design of short journal bearings byenhanced artificial life optimization algorithm[J].Tribology International,2005,38(4):403-412
    [37] Douglas P.W..Robustness of design for the testing of lack of fit and for estimation in binaryresponse models[J].Computational Statistics&Data Analysis,2010,54(12):3371-3378.
    [38]刘文卿.实验设计[M],北京:清华大学出版社,2005.
    [39] Chen C.W..Stability analysis and robustness design of nonlinear systems:An NN-basedapproach[J].Applied Soft Computing,2011,11(2):2735-2742.
    [40]张俊,宋轶民,张策.少齿差环板式减速器的弹性动力学分析[J].机械工程学报,2008,44(2):118-124.
    [41]饶振纲.行星齿轮传动设计[M].北京:化学工业出版社,2003.
    [42]孙志礼,李昌,韩兴.基于行星减速器的多目标可靠性优化设计方法研究[J].机械与电子,2007(10):15-17.
    [43]秦大同,邢子坤,王建宏.基于动力学和可靠性的风力发电齿轮传动系统参数优化设计[J].机械工程学报,2008,44(7):24-31.
    [44]刘仁云,张义民,刘巧伶.基于多目标优化策略的结构可靠性稳健设计[J].应用力学学报,2007,24(1):267-271.
    [45]岳恒,张海军,柴天佑.基于混合粒子群算法的RBF神经网络参数优化[J].控制工程,2006,13(6):525-529.
    [46] PARKER R G,AGASHE V,VIJAYAKAR S M. Dynamic response of a planetary gear systemusing a finite element contact mechanics model[J].Transactions of the ASME Journal ofMechanical Design,2000,122:304-310.
    [47]成大先.机械设计手册(第3、4卷)[M].北京:化学工业出版社,2008.
    [48] Daniele V..Tooth contact analysis of a misaligned isostatic planetary gear train[J]. Mechanismand Machine Theory,2006,41(6):617-631.
    [49]陈满意,陈定方.基于MATLAB的齿轮减速器的可靠性优化[J].机械传动,2002,26(3):34.
    [50]杨周,张义民.具有不完全概率信息的圆柱齿轮传动的可靠性灵敏度设计[J].机械传动,2009,33(2):29-35.
    [51]李润方,陶泽光,林腾姣,等.齿轮啮合内部动态激励数值模拟[J].机械传动,2006,30(2):1-3.
    [52]张涛,程海刚,张玥杰,等.基于MTO-MTS的钢厂合同计划方法[J].系统工程理论与实践,2008,17(11):85-93.
    [53] ZHAO Yuxin, ZU Wei, ZENG Haitao. A modified particle swarm optimization via particlevisual modeling analysis[J]. Computers&Mathematics with Applications,2009,57(6):2022-9.
    [54]孙光永,李光耀,钟志华,等.基于序列响应面法的汽车结构耐撞性多目标粒子群优化设计[J].机械工程学报,2009,45(2):224-230.
    [55]段晓东,王存睿,刘向东.粒子群算法及其应用[M].沈阳:辽宁大学出版社,2007.
    [56]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社,2009.
    [57]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):415-419.
    [58]于繁华,刘寒冰.基于支持向量机和粒子群算法的结构损伤识别[J].吉林大学学报,2008,38(2):434-438.
    [59]龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社,2009.
    [60]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1996.
    [61] WONG B Q, HU W C, JIA X. Change point analysis of hydrological time series using greyrelational method[J].Journal of Hydrology,2006,324(1):76-80.
    [62] LIU S X,TANG J F, SONG J H. Order planning model and algorithm for manufacturing steelsheets[J].International Journal of Production Economics,2006,15(6):650-655.
    [63] J. Morán, E. Granada, J.I. Míguez and J. Porteiro. Use of Grey Relational Analysis to Assessand Optimize Amall Biomass Boilers[J].Fuel Processing Technology,2006,87(2).
    [64] Harish A l,Renaud J E.New docoupled frame-work for reliability-based design optimization[J].AIAA Journal,2006,44(7):1524-1531.
    [65] Ioannis D,Zhan Kang.Robust design of structures using optimization methods[J].ComputMethods Appl.Mech.Engrg.,2004,193(8):2221-2237.
    [66]张义民,高娓,宋相强,等.具有应力集中的机械零件可靠性稳健设计[J].工程力学,2008,25(11):237-240.
    [67]琚亚平,张楚华.利用试验设计法建立翼型气动特性的人工神经网络模型[J].航空学报,2010,31(5):893-898.
    [68]刘仁云,张义民,刘巧伶.基于多目标优化策略的结构可靠性稳健设计[J].应用力学学报,2007,24(1):267-271.
    [69] Jamali A,Hajiloo A,Nariman Z.Reliability-based robust pareto design of linear state feedbackcontrollers using a multi-objective uniform-diversity genetic algorithm[J].Expert Systemswith Applications,2010,37(1):401-413.
    [70] Das S,Abraham A,Konar A.Automatic kernel clustering with a multi-elitist particle swarmoptimization algorithm[J].Pattern Recognition Letters,2008,29(5):688-699.
    [71]陈文英,阎绍泽,褚福磊.免疫遗传算法在智能桁架结构振动主动控制系统优化设计中的应用[J].机械工程学报,2008,44(2):196-200.
    [72]陈曦,谭冠政,江斌.基于免疫遗传算法的移动机器人实时最优路径规划[J].中南大学学报:自然科学版,2008,39(3):577-583.
    [73] Dehuri S,Patnaik S,Ghosh A,et al.Application of elitist multi-objective genetic algorithm forclassification rule generation[J]. Applied Soft Computing.2008,8(1):477-487.
    [74] LIU Yang.Automatic calibration of a rainfall-runoff model using a fast and elitistmulti-objective particle swarm algorithm[J].Expert Systems with Applications,2009,36(5):9533-9538.
    [75]张京军,崔炜,王南.小生境遗传算法的多刚体系统动力学参数优化设计[J].机械工程学报,2004,40(3):66-70.
    [76]张义民.任意分布参数的机械零件的可靠性灵敏度设计[J].机械工程学报,2004,40(8):100-105.
    [77]刘善维.机械零件的可靠性优化设计[M].北京:中国科学技术出版社,1993.
    [78]雷英杰,张善文,李续武,等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [79]王煦法,张显俊,曹先彬,等.一种基于免疫原理的遗传算法[J].小型微型计算机系统.1999,20(2):38-41.
    [80]李秀卿,汪海,许传伟,等.基于免疫遗传算法优化的神经网络配电网网损计算[J].电力系统保护与控制,2009,37(11):36-39.
    [81]罗小平,韦巍.一种基于生物免疫遗传学的新优化方法[J].电子学报,2003,31(1):59-62.
    [82] LIU Xi-yu,LIU Hong,DUAN Hui-chuan. Particle swarm optimization based on dynamicniche technology with applications to conceptual design[J].Advances in EngineeringSoftware,2007,38(10):668-676.
    [83]成大先.机械设计手册(第五版,第1卷)[M].北京:化学工业出版社,2008.
    [84]宋述芳,吕震宙.含有正态相关变量的多设计点/多失效模式情况下的方向抽样可靠性灵敏度分析[J].航空学报,2010,31(1):109-118.
    [85] S.K. Au, Z.J. Cao,Y.Wang. Implementing advanced Monte Carlo simulation underspreadsheet environment[J]. Structural Safety, Structural Safety,2010,32,281-292.
    [86] AU S K, BECK J L. Estimation of small failure probabilities in high dimensions by subsetsimulation [J]. Probabilistic Engineering Mechanics,2001,16(4):263-77.
    [87] Frank Grooteman. Adaptive radial-based importance sampling method for structuralreliability [J]. Structural Safety,2008,30,533-542.
    [88] Ynan X K,Ln Z Z,Qiao H W. Conditional probability Markov chain ximnlation basedreliability analysis method for nonnormal variables[J]. Sci China Tech Sci,2010,53:1434-1441.
    [89] S.K. Au,J. Ching, J.L. Beck. Application of subset simulation methods to reliabilitybenchmark problems[J].2007,29:183-193.
    [90] Shufang Song,ZhenzhouLu,HongweiQiao. Subset simulation for structural reliabilitysensitivity analysis[J]. Reliability Engineering and System Safety,2009,94:658-665.
    [91] William A. Gray, Robert E. Melchers. Load combination analysis by ‘Directional simulationin the load space [J]. Probabilistic Engineering Mechanics,2006,21,159-170.
    [92] E. Zio, N.Pedroni. An optimized Line Sampling method for the estimation of the failureProbability of nuclear passive systems[J]. Reliability Engineering and System Safety,2010,95,1300-1313.
    [93]宋述芳,吕震宙.基于马尔可夫蒙特卡罗子集模拟的可靠性灵敏度分析方法[J].机械工程学报,2009,45(4):33-8.
    [94] Hong-Shuang Li,Siu-Kiu Au. Design optimization using Subset Simulation algorithm[J].Structural Safety,2010,32:384–392.
    [95]宋述芳,吕震宙.基于子集模拟和重要抽样的可靠性灵敏度分析方法[J].力学学报,2008,45(5):654-662.
    [96] Y.T.Kao, E.Zahara. A hybrid genetic algorithm and particle swarm optimization formultimodal functions[J]. Applied Soft computing:2008,(8):849-57.
    [97] Dehuri S,Patnaik S,Ghosh A,et al.Application of elitist multi-objective genetic algorithm forclassification rule generation [J].Applied Soft Computing.2008,8(1):477-487.
    [98] LIU Yang.Automatic calibration of a rainfall-runoff model using a fast and elitistmulti-objective particle swarm algorithm [J].Expert Systems with Applications,2009,36(5):9533-9538.
    [99] K.H. Lee, S.W. Baek, K.W. Kim,et al. Inverse radiation analysis using repulsive particleswarm optimization algorithm[J].International Journal of Heat and Mass Transfer,2008,51:2772-2783.
    [100]陈乃仕,王海宁,周海明,等.协同粒子群算法在电力市场ACE仿真中的应用[J].电网技术,2010,34(2):138-142.
    [101] Ching J.,Beck J.L,Au S.K. Hybrid Subset Simulation method for reliability estimation ofdynamical systems subject to stochastic excitation[J]. Probabilistic Engineering Mechanics,2005,(20):199–214
    [102]吕震宙,宋述芳,李洪双,等.结构机构可靠性及可靠性灵敏度分析[M].北京:科学出版社,2009.
    [103]郑世杰,郭腾飞,董会丽,等.基于混合编码遗传算法和有限元分析的压电结构载荷识别[J].计算力学学报,2009,26(3):330-335
    [104]陈文英,阎绍泽,褚福磊.免疫遗传算法在智能桁架结构振动主动控制系统优化设计中的应用[J].机械工程学报,2008,44(2):196-200.
    [105] J. Kennedy, R.C. Eberhart, Y. Shi, Swarm Intelligence, Morgan Kaufmann Publisher, SanFrancisco,2001.
    [106] ZHAO Yuxin, ZU Wei, ZENG Haitao. A modified particle swarm optimization via particlevisual modeling analysis[J]. Computers&Mathematics with Applications,2009,57(6):2022-2029.
    [107]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):415-419.
    [108] X.T.Feng,B.R.Chen,C.X.Yang,et al. Identification of visco-elastic models for rocks usinggenetic programming coupled with the modified particle swarm optimization algorithm[J].International Journal of Rock Mechanics&Mining Sciences2006,43:789–801.
    [109]叶雪梅,田甜,陈柏松.求解多目标优化问题的GTSPA混合算法[J].微电子学与计算机,2010,27(6):167-173.
    [110]闻邦椿.机械设计手册(第五版,第1卷)[M].北京:机械工业出版社,2010.
    [111]谈梅兰,董经鲁.余弦分布压力下矩形薄板的屈曲[J].工程力学,2010,27(5):32-35.
    [112] Melchers R E, Ahammed M. A fast approximate method for parameter sensitivity estimationin Monte Carlo structural reliability. Computers and Structures,2004,82(1):5561.
    [113] Schueller G I, Pradlwarter H J, Koutsourelakis P S. A critical appraisal of reliabilityestimation procedures for high dimensions. Probabilistic Engineering Mechanics,2004,19(4):463474.
    [114] Pradlwartera H J, Pellissetti M F. Realistic and efficient reliability Methods estimation foraerospace structures. Computer Methods in Applied Mechanics and Engineering,2005,194(12-16):15971617.
    [115]宋述芳,吕震宙.基于鞍点估计及其改进法的可靠性灵敏度分析[J].力学学报,2011,43(1):162168.
    [116]金雅娟,张义民,张艳林.基于鞍点逼近的机械零部件可靠性及其灵敏度分析[J].机械工程学报,2009,45(12):102107.
    [117] Huang B Q, Du X P. Probabilistic uncertainty analysis by mean-value first order saddle pointapproximation [J]. Reliabidity Engineering and System Safety,2008,93(2):325336.
    [118] Du X P,Sudjianto A. First order saddle point approximation for reliability analysis. AIAAJournal,2004,42(6):11991207.
    [119]傅英定,成孝予,唐应辉.最优化理论与方法[M].北京:国防工业出版社,2008:129-132.
    [120]王宏伟,吕震宙,赵洁.含模糊随机变量的多模式系统广义失效概率计算的内插迭代线抽样方法[J].应用力学学报,2009,26(2):365-370.
    [121]宋丹,张晓林.基于不动点理论的多系统兼容接收机频点选择问题的研究与遗传算法实现[J].物理学报,2010,59(9):6697-6705.
    [122]张干清,龚宪生.基于改进免疫遗传算法的机械零件的结构优化[J].中南大学学报(自然科学版),2011,42(11):3359-3369.
    [123]刘朝华,张英杰,章兢,等.基于免疫双态微粒群的混沌系统自抗扰控制[J].物理学报,2011,60(1):19501-19510.
    [124] ELBELTAGI E, HEGAZY T, GRIERSON D. Comparison among five evolutionary-basedoptimization algorithms [J]. Advanced Engineering Informatics,2005,19(1):43-53.
    [125]潘玉霞,潘全科,桑红燕.批量流水线调度问题的混合离散蛙跳算法[J].计算机集成制造系统,2010,16(6):1265-1271.
    [126] Daniels H E. Saddlepoint approximations in statistics. Ann Math Statist,1954,25(4):631650.
    [127] Scbuller G I,Pradlwaiter H J,Koutsourelakis P S. A critical appraisal of reliability estimationprocedures for high dimension. Probabilist Eng Mecb,2004,19(4):463474.
    [128] Song S F, Lu Z Z. Saddlepoint approximation based structural reliability analysis withnon-normal random variables. Sci China Tech Sci,2010,53:566576.
    [129] Zhao Y X,Zu W,Zeng H T. A modified particle swarm optimization via particle visualmodeling analysis[J]. Computers&Mathematics with Applications,2009,57(6):20222029.
    [130]郑仕链,楼才义,杨小牛.基于改进混合蛙跳算法的认知无线电协作频谱感知[J].物理学报,2010,59(5):36113617.
    [131] Niknam T, Azad Farsani E. A hybrid evolutionary algorithm for distribution feederreconfiguration. Sci China Tech Sci,2010,53(4):950959.
    [132]龙振宇.机械设计[M].北京:机械工业出版社,2002:188-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700