用户名: 密码: 验证码:
水源水库沉积物多相界面污染物迁移转化与污染控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉积物内源污染是水源水库面临的突出问题。沉积物多相界面是内源污染发生的重要环境边界层。本文针对水源水库多相界面高静水压、低溶解氧、低温、贫营养等多重特性,采用现场调查与实验室模拟相结合的方法,探讨了多相界面氮及溶解性有机物(DOM)循环转化释放规律及不同静水压对该多相界面过程的动态调控过程。在此基础上,分别采用扬水曝气强化化学稳定(原位稳定化处理P、Fe、Mn等)和覆盖填料结合固定化功能微生物(降低沉积物氮及有机污染负荷)的方法初步探索了适合于水源水库沉积物原位污染控制的方法与技术。研究得到以下主要结论:
     (1)水源水库氮、磷赋存形态、稳定性及对多相界面循环转化释放贡献研究结果表明:沉积物中铁/铝-磷(Fe/Al-P)是多相界面PO_4~(3-)释放的最主要来源;离子交换态氮(IEF-N),弱酸提取态氮(WAEF-N)和强氧化剂提取态氮SOEF-N是多相界面体系沉积物氮释放的主要来源。SOEF-N是可转化态氮优势存在形态,WAEF-N次之;结合能力最弱、最易释放进入上覆水体的IEF-N所占比例最少。三种无机提取态可转化态氮,均以NH_4~+-N为主要存在形式。厌氧还原条件可促进沉积物中内源磷释放进入上覆水。
     (2)多相界面氮及DOM循环转化释放特性研究结果表明:厌氧条件(DO<1.0mg/L)使氨氮、总氮及DOM在上覆水中累积,影响上覆水水质;多相界面处DO为2~3mg/L时,分子量500~3200Da范围内DOM可被沉积物中微生物较为彻底分解利用;采用强化充氧措施降低沉积物氮及有机污染负荷时,控制DO=2~3mg/L既能保证上覆水水质,又可兼顾能源消耗经济利益,沉积物中总氮STN及有机质SOC的降幅分别为7.27%和21.00%;不同强化充氧条件导致表层沉积物中微生物群落结构PLFA组成显著不同,脲酶、硝酸盐还原酶、沉积物STN、SOC及多相界面DO等环境因素对沉积物中微生物群落结构差异贡献最大;碳源不足是限制多相界面反硝化的重要因素;多相界面气体产物主要由CH_4、N_2、少量CO_2和痕量H_2组成,低温条件下N_2占总体积的91.73%;常温条件下,N_2和CH_4基本各占总体积的近一半,温度对CO_2和H_2含量基本无影响。低温条件对多相界面有机质厌氧分解具有抑制作用,但有利于沉积物硝化-反硝化反应。
     (3)不同静水压对多相界面氮及DOM转化过程影响研究结果表明:静水压是影响不同水深水源水库多相界面上覆水水质及沉积物中微生物群落结构的最重要因素。在0.1MPa~1.0MPa静水压条件下,高静水压促进了多相界面氮及有机质释放,对有机质降解及氨化过程具有促进作用,但对反硝化过程无明显影响。在此静水压范围内,高静水压使氨氮、硝氮、DOM等污染物在多相界面上覆水中大量积累,严重影响上覆水水质。高静水压使上覆水DOM中增加了与色氨酸相关的类蛋白荧光峰、紫外区类富里酸荧光峰及与芳香性蛋白类结构有关的荧光峰,主要由微生物增多及其增多后促进了对沉积物中有机质的降解引起;高静水压使上覆水DOC分子量分布多分散系数ρ减小,在不同反应时期表现出不同分布趋势,原有小分子量DOM被高静水压下特有微生物进一步彻底分解利用而消失;高静水压使沉积物中脱氢酶及蛋白酶活性显著增强,对脲酶及硝酸盐还原酶活性影响不大;PLFA与PCR-DGGE测定分析结果表明,不同静水压下,微生物群落在结构及遗传性方面均表现出显著差异,在0.1MPa~1.0MPa静水压范围内,高静水压下微生物群落结构多样性高于常压。
     (4)原位污染控制技术:扬水曝气强化化学稳定技术可有效抑制沉积物中磷、铁的释放,平均抑制率分别可达63.2%和58.6%。随混凝剂PAC投量增大,抑制效果变好,助凝剂PAM有助于增强PAC对磷及铁的抑制效果。PAC和PAM对磷释放的抑制作用主要通过其水解产生的铝盐与释放进入上覆水体的PO_4~(3-)重新结合形成Al-P实现。该技术具有稳定、高效、长效、无二次隐患等优点。固定化高效功能微生物活性填料覆盖方法原位控制沉积物总氮及有机物效果优于活性填料覆盖与直接投菌。覆盖层中沸石起主要作用,通过吸附、离子交换等作用对多相界面大量释放的NH_4~+进行快速拦截,进而通过微生物将其降解转化,实现沸石原位清洁再生,同时从根本上降低了多相界面体系氮及有机污染负荷,实现良性循环。
Endogenous pollution happening on the sediments multi-phase interface is the mostimportant problem of drinking water reservoir. For most drinking wter reservoirs, theirsediments multi-phase interface is usually under high hydrostatic pressure, aerobic, lowtemperature and oligotrophic conditions. Moreover, considering the health effect, thepollution controlling technology for drinking water reservoirs must be elaborately selected. Inthis study, the nitrogen and dissolved organic matter fluxes on the multi-phase interface andhydrostatic pressure effects on this course were researched by field investigation andlaboratory simulation. And the pollution controlling methods suitable for drinking waterreservoirs were also studied. The crucial results and conclusions are as follows:
     (1)Fe/Al-P in the sediments was the most importan source for PO_4~(3-)release. Andnitrogen release were mainly coming from the IEF-N, WAEF-N and SOEF-N forms insediments. SOEF-N was the preponderant form of transferable nitrogen and is followed byWAEF-N. IEF-N, which can released into overlying water most easily, covered the least oftransferable nitrogen. Aerobic and reductive condition can accelerate PO_4~(3-)release.
     (2)NH_4~+, TN and DOC cumulated in large quantities in overlying water under aerobiccondition, which deteriorated the water quality badly. When the DO in multi-phase interfacewas2~3mg/L, the DOC with molecular weights of500~3200Da can be decomposeddrastically by the microorganisms in the sediments and the STN and SOC contents in thesediments can be reduced by7.27%and21.00%respectively. Different DO concentration inthe multi-phase interface will effect some enzymes activities, STN, and SOC in the sediments,thus the microbial community structures in the sediments shown by PLFAs were remarkablydifferent. being devoid of suitable carbon source was the most important limiting effect fordenitrification on the multi-phase interface. The gas products on the multi-phase interfacemainly included of CH_4, N_2, CO_2and H_2. Under low temperature, N_2covered91.73%of total gas volume and under room temperature N_2and CH_4each covered nearly half of total gasvolume. Low temperature can inhibit microorganisms decomposing organic matter andpromote microorganisms nitrification and denitrification.
     (3) Hydrostatic pressure was the most important effect factor to overlying water quality andmicrobial community structures in sediments. Under0.1MPa~1.0MPa, high hydrostaticpressure can promote nitrogen and organic matter release and deteriorate overlying waterquality. Furthermore, under high hydrostatic pressure, the polydispersity of DOMρreduced and DOC with low molecular weights were decomposed by microorganisms anddispersed in overlying water. Under different hydrostatic pressure, the microbial communitystructure in the sediments were different. The microbial community diversity under highhydrostatic pressure was much richer than under low hydrostatic pressure.
     (4)Water lifting aerator combined with chemical stabilization can inhibit PO_4~(3-)and Fe2+release effectively, and the inhibit efficiencies can reach63.2%and58.6%respectively. Thehigher the PAC concentration was, the better the inhibiting efficiency was, and PAM additioncan strengthen the inhibiting efficiency significantly. The mechanism was that thehydrolyzing products can combine with PO_4~(3-)and form Al-P. The active capping materialcovered by especially selectived biofilm was more effective than capping material orfunctional microbes was singled used. The zeolites in the capping layers can adsrob the NH_4~+and the biofilm covering on the zeolites then decomposed them. Simultaneously the zeoliteswere renewed. Therefore the polluting load of STN and SOC in the sediments can bereduced.
引文
[1] Abe D S, Adams D D, Galli C V S, et al. Sediment greenhouse gases (methane and carbon dioxide) inthe Lobo-Broa Reservoir, Sao Paulo State, Brazil concentrations and diffuse emission fluxes forcarbon budget considerations[J]. Lakes&Reservoirs: Research and Management,2005,10:201-209.
    [2] Abram A,Filip M,Marc E G. Biotechnology under high pressure: Applicat ions and implications[J].Trends in Biotechnology,2009,27(7):434-441.
    [3] Acosta-Martinez V, Dowd S, Sun Y, Allen V G.2008. Tag-encoded pyrosequencing analysis ofbacterial diversity in a single soil type as affected by management and land use[J]. Soil Biology andBiochemistry,40(11):2762-2770
    [4] Ans, Joyesb. Enhancement of coupled nitrification-denitrification by benthic photosynthesis inshallow estuarine sediments [J]. Limnology and Oceanography,2001,46(1):62-74
    [5] Anshumali, A.L. Ramanathan. Phosphorus fractionation in surficial sediments of Pandoh Lake, LesserHimalaya, Himachal Pradesh, India[J]. Applied Geochemistry,2007,22:1860-1871
    [6] Anuradha V, SUBRAMANIAN V, RAMESH R. Methane emissions from a coast al lagoon:Vembanad Lake, West Coast, India [J]. Chemosphere,2002,47:883-889.
    [7] Aronstein B N. Effect of a non-ionic surfactant added to the soil surface on the biodegradati-on ofaromatic hydrocarbons within the soil[J]. Appl Microb Biotechnol,1993,39(3):386-390.
    [8] Artinger R, Buckau G, Kim J I. Characterization of groundwater humic and fulvic acids of differentorigin by GPC with UV/Vis and fluorescence detection. Fresenius J Anal
    [9] Azcue J M,Zeman A J,Mudroch A et al.Assessment of sediment and porewater after one year ofsubaqueous capping of contaminated sediments in Hamilton Harbour,Canada[J].Water Science andTechnology,1998,37(6-7):323-329.
    [10] Baddi G A, Haf i di M, Cegarra J, e t al. Characteriz at ion of fulvic acids by elemental andspectroscopic (F TIR and13C NMR) analyses during composting of ol i ve mill wastes plus s traw[J]. Bioresource Technology,2004,93:285-290.
    [11] Balkwill, D.L., Murphy, E.M., Fair, D.M., Ringelberg, D.B., White, D.C..1998. Microbialcommunities in high and low recharge environments:implications for microbial transport in theVadose Zone[J]. Microbial Ecology35,156-171.
    [12] Bange H W, AHLKE S D, RAMESH R, et al. Seasonal study of methane and nit rous oxide i n thecoas t al w at ers of the Southern Balt ic S ea [J]. Estuarine, Coastal and Shelf Science,1998,47:807-817.
    [13] Bange H W, RAPSOMANIKIS S, ANDREAE M O. The Aegean S ea as a source of atmospheric nitrous oxide and methane [J]. Marine Chemist ry,1996,53:41-49.
    [14] Barns S,Cain E,Sommerville L,et al.Acidobacteria phylum sequences in uranium contaminatedsubsurface sediments greatly expand the known diversity within the phylum[J].Applied andenvironmental microbiology,2007,
    [15] Bartlett D H. Pressure effects on in vivo microbial processes[J]. Biochimica et Biophysica Acta,2002,1595:367-381
    [16] Bell C W, Acosta-Martinez V, McIntyre N E, Cox S, Tissue D T, Zak J C.2009. Linking microbialcommunity structure and function to seasonal differences in soil moisture and temperature in aChihuahuan Desert Grassland[J]. Microbial Ecology,58(4):827-842
    [17] Berg U, Neumann T, Donnert D, Nuesch R, Stuben D,2004. Sediment capping in eutrophic lakes–efficiency of undisturbed calcite barriers to immobilize phosphorus[J]. Applied Geochemistry,19(11):1759-1771
    [18] Booker NA, Cooney EL, Priestley AJ. Ammonia removal from sewage using natural Australianzeolite [J]. Water Science and Technology,1996,34(9):17-24.
    [19] Bowan J, Mccuaig R.Biodiversity,community structural shifts,and biogeography of prokaryotes withinAntarctic continental shelf sediment[J].Applied and environmental microbiology,2003,69(5):2463.
    [20] Braak CJF, Smilauer P.2004. CANOCO reference manual and CanoDraw for Windows user’s guide:software for canonical community ordination (version4.5). Biometris, Wageningen
    [21] Casey R E, Taylor M D, Klaine S J. Localization of denitrification activity in macropores of a riparianwetland[J]. Soil Biol Biochem,2004,36:563-569.
    [22] CHEN Lee Yuh2ling. Spatial and seasonal variations of nit rate based new production and primaryproduction in t he South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers,2005,5(2):319-340.
    [23] Chin Y P, Aiken G, O’Loughlin E. Molecular weight, polydispersity, and spectroscopic properties ofaquatic humic substances[J]. Environmental Science&Technology,1994,28
    [24] Chipofya V H, Matapa E J. Destratification of an impounding reservoir using compressed air––Caseof Mudi reservoir, Blantyre, Malawi[J]. Physics and Chemistry of the Earth,2003,28(27):1161-1164.
    [25] Choe S,Chang Y Y,Hwang K Y,et al.Kinetics of reductive denitrificatin by nanoscale zero-valentiron[J].Chemosphere,2000,41(8):1307-1311.
    [26] Christensen P B,Nielsen L P,S?rensen J et al.Denitrification in nitrate-rich streams:Diurnal andseasonal variation related to benthic oxygen metabolism[J]. Limnology and Oceanography,1990,35(3):640-651.
    [27] Christos Z. Katsaounosa, Dimosthenis L. Giokasa, Ioannis D. Leonardosb, Miltiades I. Karayannis.Speciation of phosphorus fractionation in river sediments by explanatory data analysis[J]. WaterResearch,2007,41:406-418
    [28] Chu Haiyan, Lin Xiangui, Takeshi Fujii et al. Soil microbial biomass, dehydrogenase activity,bacterial community structure in response to long-term fertilizer management[J]. Soil Biology&Biochemistry,2007,39:2971-2976.
    [29] Coble P G,Del Castillo C E,Avril B.Distribution and optical properties of CDOM in the Arabian Seaduring the1995Southwest Monsoon[J].Deep-Sea Res,1998,24(5):2195-2223.
    [30] Cong H B, Huang T L, Chai B B, Zhao J W,2009. A new mixing-oxygenating technology for waterquality improvement of urban water source and its implication in a reservoir[J]. Renewable Energy,34:2054-2060.
    [31] Cong H B, Huang T L, Miao J G, He W J, Yin P J,2007. Study on water improvement function,capacity of lifting water oxygenation of a water-lifting aerator[J]. Chinese Journal of EnvironmentalEngineering,1(1):7-13.
    [32] Cong H B, Huang T L, Zhao J W, Zhou Z M,2006. Application of the technology of lifting water andaeration for improving water quality[J]. Environmental Pollution&Control,28(3):215-218.
    [33] Cooke G D,1994. Effectiveness of Al, Ca, and Fe salts for control of internal phosphorus loading inshallow and deep lakes. Hydrobiologia,253:323-335.
    [34] DALSGAARD T, THAMDRUP B. Factors controlling ammonium oxidation with nitrite in marinesediments[J]. Appl. Environ. Microbiol.,2002,68:3802-3808.
    [35] Dang H Y, Li J, Chen M N, Li T G, Zeng Z G, Yin X B. Fine-scale vertical distribution of bacteria inthe East Pacific deep-sea sediments determined via16S rRNA gene T-RFLP and clone libraryanalyses[J]. World J Microbiol Biotechnol,2009,25:179~188
    [36] Dang H,Wang C, Li J,et al.Diversity and Distribution of Sediment NirS-Encoding BacterialAssemblages in Response to Environmental Gradients in the Eutrophied Jiaozhou Bay,China[J].Microbial ecology,2009,58(1):161-9.
    [37] Danny D. Reible. Field Demonstration of Active Caps: Innovative Capping and In~Situ TreatmentTechnologies[J]. Project Status Report April,2004to March,2005.
    [38] DeLong E F, Franks D G Yayanos A A. Evolutionary relationships of cultivated psychrophilic andbarophilic deep-sea bacteria[J]. Appl Environ Microbiol,1997,63:2105-2108
    [39] Delong,Yayanos A A. Biochemical function and ecological significance of novel bacterial lipids indeep-sea prokaryotes[J]. Appl Environ Microbiol,1986,51:730-737
    [40] Deming J W,Somers L K,Straube W L,Swartz D G, Macdonell M. T. Isolation of an obligatelybarophilic bacterium and description of a new genus Colwellia gen.nov[J]. Sys Appl Microbiol,1988,10:152-160
    [41] Dendooven L, ANDERSON JM. Dyn a m ics of reducti on en-zy m es i nvo l ved i n t h e d en i trif icat i on p rocess i n past u re s oil[J]. Soi B i o lB ioch e m,1994,26(11):501-506.
    [42] Dong H, Zhang G, Jiang H, et al. Microbial diversity in sediments of saline Qinghai Lake, China:linking geochemical controls to microbial ecology [J]. Microbial Ecology,2006,51:65-82.
    [43] Drizo A, Frost C A, Grace J,1999. Physico-chemical screening of phosphate-Removing substrates foruse in constructed wetland systems[J]. Water Research,33(17):3595-3602.
    [44] Duchemin E, Lucotte M. Production of the greenhouse gases CH4and CO2buried hydroelectricreservoirs of the boreal region[J]. Global Biogeochem. Cycles,1995,99:529-540.
    [45] Eila Varjo, Anu Liikanen, Veli-Pekka Salonen, Pertti J. Martikainen. A new gypsum-based techniqueto reduce methane and phophorus release from sediments of eutrophied lakes:(Gypsum treatment toreduce internal loading)[J]. Water Research,2003,37(1):1-10.
    [46] Eiler A,Bertillsson S.Composition of freshwater bacterial communities associated with cyanobacterialblooms in four Swedish lakes[J].Environmental microbiology,2004,6(12):1228-43.
    [47] Emil Rydin, Eugene B., Welch. Aluminum dose required to inactivate phosphate in lake sediments [J].Water Research,1998,32(10):2969-2976
    [48] Espen E, Olaug G, Per A,2007. Experimental determination of efficiency of capping materials duringconsolidation of metal-contaminated dredged material[J]. Chemosphere,69(5):719-728
    [49] Franco W, Martin H, Beat F, Roland K.2006. A novel strategy to extract specific phylogeneticsequence information from community T-RFLP[J]. Journalof Microbiological Methods,66(3):512-520
    [50] Friedl G, Wuest A. Disrupting biogeochemical cycles consequence of damming[J]. Aquatic Sciences,2002,6464(1):55-65.
    [51] Fujioka R.Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin todetermine point from non-point source pollution[J].Water Science&Technology,2001,44(7):181-188.
    [52] Galloway J N, Bekunda M, Cai Z et al. A preliminary assessment of “Changes in the global nitrogencycle as a result of anthropogenic influences”[C]. Third International Nitrogen Conference, Nanjing,China: October2004.
    [53] Galloway J N, Bekunda M, Cai Z et al. A preliminary assessment of “Changes in the global nitrogencycle as a result of anthropogenic influences”[C]. Third International Nitrogen Conference, Nanjing,China: October2004.
    [54] Garbaciak SJ.,et al.Field demonstrations of sediment treatment technologies by the USEPA’sassessment and remediation of contaminated sediments (ARCS) program [J]. ASTM,1995,1293:145-154.
    [55] Gerlindew,THOMASG,PETERC.P-mi mobilisation andphosphatase activities in lake sedmientfollowing treatmentwith nitrate and iorn[J].Lmi nologica,2005,35:102-108.
    [56] GILBERT F, STORA G, BONIN P. Hydrocarbon influence on denitrification in bioturbatedMediterranean coastal sediments [J]. Hydrobiologia,1997,345/1:67-77.
    [57] Giuseppe B,2007. Sediment treatment--a general introduction[J]. Sustainable Management ofSediment Resources,2:1-10
    [58] Golterman H L.Denitrification and a numerical modeling approach for shallow waters[J].Hydrobiologia.2000,431:93-104.
    [59] Golterman H L.The Chemistry of Phosphate and Nitrogen Compounds in Sediments.Dordrecht:Kluwer Academic Publishers,2004.
    [60] Graetz D A,Keeney D R,Aspiras R B.Eh status of lake sediment-water systems in relation to nitrogentransformations[J].Limnology and oceanography,1973,18(6):908-917.
    [61] Gray, N. F..2006Water Technology: an introduction for environmental scientists and engineers(second edition). Elsevier Butterworth-Heinemann,15-17.
    [62] Guezennec, J., Fiala-Medioni, A..1996. Bacterial abundance and diversity in the Barbados Trenchdetermined by phospholipid analysis[J]. FEMS Microbiology Ecology,19,83-93.
    [63] Hai-Bing Cong, Ting-Lin Huang, Bei-Bei Chai.Research on Applying a Water-lifting Aerator toInhibit the Growth of Algae in a Source-water Reservoir[J]. International Journal of Environment andPollution.2011(b),45(1):166-175
    [64] Hai-Bing Cong, Ting-Lin Huang, Bei-Bei Chai, Jian-Wei Zhao. A new mixing-oxygenatingtechnology for water quality improvement of urban water source and its implication in a reservoir [J],Renewable Energy,2009,34(9):2054-2060
    [65] Hai-bing Cong, Ting-lin Huang, Bei-bei Chai. A Water-Circulating Aerator:optimizing structure andpredicting water flow rate and oxygen transfer[J]. Journal of Hydraulic Engineering,2011(a),137(6):659-667
    [66] Heathwaite A L,Johnes P J,Peters N E.Trends in nutrients.Hydrological Processes,1996,10:263-293.
    [67] Her N, Amy G, McKnight D. Characterization of DOM as a function of MW by fluorescence EEMand HPLC-SEC using UVA, DOC, and fluorescence detection[J]. Water Research,2003,37:4295-4303
    [68] Herbert R. A.. Nitrogen cycling in coastal marine ecosystem[J]. FEMS Microbiology Reviews.1999,23:563-590.
    [69] Hewson I,Fuhrman J.Richness and diversity of bacterioplankton species along an estuarine gradient inMoreton Bay,Australia[J].Applied and environmental microbiology,2004,70(6):3425.
    [70] Hill, G.T., Mitkowski, N.A., Aldrich-Wolfe, L., Emele, L.R., Jurkonie, D.D., Ficke, A.,Maldonado-Ramire, S., Lynch, S.T., Nelson, E.B..2000. Methods for assessing the composition anddiversity in soil microbial communities[J]. Applied Soil Ecology,15,25–36.
    [71] H hener P,G chter R.Nitrogen cycling across the sediment-water interface in an eutrophic, artificiallyoxygenated lake[J].Aquatic Sciences,1994,56(2):115-132.
    [72] Holdren C, W Jones, J Taggart. Managing Lakes and Reservoirs[M].3rd edition Prep. By N. Am.Lake Manage. Soc. And Terrene Inst., in coop. with U. S. EPA.,2001.
    [73] Hough D W, Dans onM J. Current op ini on in chemical bi ol ogy [J]. Extremozymes,1999,3:39-46
    [74] Humborg, C., Conley, D. J., Rahm, L., et al..2000Silicon retention in river basins: far-reachingeffects on biogeochemistry and aquatic food coastal marine environments[J]. Ambio.,29(1),45-50.
    [75] Huttunen J T, Vaisanen T S, Hellsten S K, et al. Fluxes of CH4, CO2, and N2O in hydroelectricreservoirs Lokka and Porttipahta in the northern boreal zone in Finland[J]. Global BiogeochemicalCycles,2002,1616(1):3-17.
    [76] Huttunen J T, Vaisanen T S, Hellsten S K, et al. Methane fluxes at the sediment-water interface insome boreal lakes and reservoirs[J]. Boreal Environment Research,2006,1111:27-34.
    [77] HYNES R K, KNOWL ES R. Production of nitrous oxide by Nitrosomonas europaea: Effect s ofacetylene, pH and oxygen[J]. Canadian Journal of Microbiology,1984,30:1397-1404.
    [78] Ithome MK, Paul JW, Lavkulich LM et al. Kinetics of ammonium adsorption and desorption by thenatural zeolite clinoptilolite [J]. Soil Science Society of America Journal,1998,62(3):622-629.
    [79] Jacobs P H, FDRSTNER U. Concept of subaqueous capping of contami2nated sediments with activebarriersy stems (ABS) using natural and modified zeolites[J].War Res,1999,38(9):2083-2087.
    [80] Jon Renholds. In situ treatment of contaminate sediments[R]. Technology status report prepared forthe US EPA Technology Innovation Office Washington DC.1998:14-18.
    [81] Juanita Urban-Rich,James T McCarty,Mark Shailer.Effects of food concentration and diet onchromophoric dissolved organic matter accumulation and fluorescent composition during grazingexperiments with the copepod Calanus flnm archicus[J].ICES J of Marine Science,2004,61:542-551.
    [82] Kana T M,Sullivan M B,Cornwell J C et al.Denitrification in estuarine sediments determined bymembrane inlet mass spectrometry[J]. Limnology and Oceanography,1998,43:334-339.
    [83] Kato C,Horikoshi K. Gene expression under hydrostatie Pressure[C]. High Pressure bioseience andbiotechnology(HyaashiR,BalnyCeds):ElsevierSeienee,Amsterdma,1995,59-66
    [84] Kato C,Inoue A,Horikoshi K. Isolating and characterizing deep-sea microorganisms[J].TrendsBiotechnol.,1996a,14:6-12
    [85] Kato C,Li L,Nakaumura Y,Nogi Y, Tamaoka J,Horikoshi K. Extremely barophilic bacteria isolatedfrom the Mariana Trench,Challenger Deep,at a depth of11,000meters[J]. Appl Environ Microbiol,1998,64:1510-1513
    [86] Kato C,Masui N,Horikoshi K. Properties of obligately barophilic and barotolerant baeteria fromdeep-sea sediment from the Izu-Bonin Trench[J]. J Mar Biotechnol,1996b,4:96-99
    [87] Knowles R. Denitrificati on [J]. Microbiol Rev,1982,46:43-70.
    [88] Komarowski S, Yu Q. Ammonium removal from wastewater using Australian natural zeolite: batchequilibrium and kinetic studies [J]. Environmental Technology,1997,18(11):1085-1097.
    [89] Kornelia S, Oros-Sichler M, Annett M.2007. Bacterial diversity of soil sassessed by DGGE, T-RFLPand SSCP fingerprints of PCR-amplified16SrRNA gene fragments: Do the different methods providesimilar results?[J]. Journal of Microbiological Methods,69(3):470-479
    [90] Korom S F. Natural denitrification in the saturated zone: Areview[J]. Water Resources Research,1992,28(6):1657-1668
    [91] Kraig Johnson, Sambhunath Ghosh. Feasibility of anaerobic biodegrade egradation of PAHs indredged river sediments[J].Wat. Sci. Tech.,1998,38(7):41-48.
    [92] Lammi M J, El oM A, Hel minen H J, et al. Hydrostatic pressure-induced changes in cellular proteinsynthesis [J]. Biorheology,2004,41:309-313.
    [93] Lepc, J.; Smilauer, P..2003. Multivariate analysis of ecological data using CANOCO. CambridgeUniversity Press, Cambridge.
    [94]Li L,Kato C,Nogi Y, Horikoshi K. Distribution of the pressure-regulated operons in deep-seabacteria[J]. FEMS Microbiol Letters,1998,159:159-166
    [95]Li Z.Use of surfactant-modified ezolite as fertilizer carriesr to control nitrate release[J]. Microporousand Meso Porous Materials,2003,61:181-188.
    [96]Lindenschmidt K E, Hamblin P F. Hypolimnetic aeration in lake Tegel, Berlin[J]. WaterResearch,1997,31(7):1619-1628
    [97]Liu D, Yang X F, Wang H M, Li J H, Su N,2008. Impact of montmorillonite and calcite on releaseand adsorption of cyanobacterial fatty acids at ambient temperature[J]. Journal of China Universityof Geosciences,19(5):526-533
    [98]Louis V L S, Kelly C A, Duchemin E, et al. Reservoir surfaces as sources of greenhouse gases to theatmosphere: A global estimate [J]. Bioscience,2000,5050(9):766-775.
    [99]Lv Xiao xia, SONG Jin ming, LI Xue gang, et al. Geochemical characteristics of nitrogen in thesouthern Yellow Sea surface sediments [J]. Journal of Marine System,2005,56:17-27.
    [100] Lv Xiaoxia,Song Jinming,Li Xuegang,et al.Geochemical characteristics of nit rogen in the southernYellow Sea surface sediments [J]. Journal of Marine System,2005,56:17-27.
    [101] Macalady, J. L.; Mack, E. E.; Nelson, D. C..2000. Sediment microbial community structure andmercury methylation in mercury-polluted clear lake, California[J]. Appl. Environ. Microbiol.,66(4),1479-1488.
    [102] Madigan MT,Martinko JM, Parkerer J.1999. Brock2Biology of microorganisms.9th edition [M].London: Prentice Hall,53-55.
    [103] Makine K, Khan S. Policy considerations for greenhouse gas emissions from freshwaterreservoirs[J]. Water Alternatives,2010,33(2):91-105.
    [104] Mallet, C.; Basset, M.; Fonty, G..2004. Microbial population dynamics in the sediments of aeutrophic lake (Aydat, France) and characterization of some heterotrophic bacterial isolates[J].Microbial Ecol.,48(1),66-77.
    [105] Mengis M,G?chter R,Wehrli B.Nitrogen elimination in two deep eutrophic lakes[J]. Limnologyand Oceanography,1997,42(7):1530-1543.
    [106] Michael G L, ROBERT D, IVAN V. Nitrous oxide sources and sinks in coastal aquif ers andcoupled estuarine receiving waters [J]. The Science of the Total Environment,2003,309:139-149.
    [107] Michael J. Eisenmenger, Jose’ I. Reyes-De-Corcuera.2009. High pressure enhancement ofenzymes: A review[J]. Enzyme and Microbial Technology,45,331-347
    [108] Michael Schultz Rasmussen,Henrik Breuning-Madsen,Christian Christiansen. Variations in thehydrostatic pressure may trigger estuarine full water column anoxia[J]. Estuarine, Coastal andShelf Science,2004,59:21-31
    [109] Mucha, A.P.; Vasconcelosb, M. T.S. D.; Bordaloa, A. A...2004. Vertical distribution of themacrobenthic community and its relationships to trace metals and natural sediment characteristicsin the lower Douro estuary, Portugal[J]. Estuar. Coast. Shelf. Sci.,59(4),663-667.
    [110] Nedwell D. B., et al. Nut rients in estuaries[J]. Advances in Ecological Research.1999,29:44-92
    [111] NIELSEN L P, CHRISTENSEN P B, REVSBECH N P, et al. Denitrification and photosynthesisin stream sediment studied with microsensor and whole-core techniques[J]. Limnology andOceanography,1990,35(5):1135-1144.
    [112] O’loughlin E, Chin Y-P. Effect of detector wavelength on the deternimation of the molecularweight of humic substances by high-pressure size exclusion chromatography[J]. Water Research,2001,35(1):333-338
    [113] Ogilvie B, et al. High Nit rate, Muddy Estuaries as Nitrogen Sinks: the Nitrogen Budget of theRiver Colne Estuary (U K)[J]. Marine Ecology Progress Series1997,150:217-228.
    [114] Olsta J T,Hornaday C J,Darlington J W.Reactive material options for in situ capping. Journal ofASTM international,2006,DOI:10.1520/STP37693S.
    [115] PAAVOLAINEN L, KITUNEN V, SMOLANDER A. Inhibition of nitrification in forest soil bymonoterpenes[J]. Plant Soil,1998,205:147-154.
    [116] Parkes, R.J., Dowling, N.J.E., White, D.C., Herbett, R.A., Gibson, G.B..1992. Characterization ofsulfate-reducing bacterial populations within marine and estuarine sediments with different rates ofsulfate reduction[J]. FEMS Microbiology Ecology,102,235-250.
    [117] Pascual JA, Garcia C, T Hernandez JL et al. Soil microbial activity as a biomarker of degradationand remediation processes[J]. Soil Biology&Biochemistry,2000,32:1877-1883.
    [118] Pauer J J,Auer M T.Nitrification in the water column and sediment of a hypereutrophic lake andadjoining river system.Water Research,2000,34(4):1247-1254.
    [119] Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humicsubstances[J]. Analytica Chimica Acta,1997,337:133-149
    [120] Philippe M. Oger, Mohamed Jebbar.2010. The many ways of coping with pressure[J]. Research inMicrobiology,161,799-809
    [121] Plant L J, House W A,2002. Precipitation of calcite in the presence of inorganic phosphate.Colloids and Surfaces A: Physicochem[J]. Eng. Aspects,203:143-153.
    [122] Polymenakou, Paraskevi N., Anastasios Tselepides, Euripides G. Stephanou.2005. Study of themineralization effect on the distribution of lipids in sediments from the Cretan Sea:Evidence forhydrocarbon degradation and starvation stress[J]. Continental Shelf Research,25,2196–2212
    [123] Proctor L.M., Toy E., Lapham L. et al. Enhancement of Orimulsion Bidegradation through theAddition of Natural Marine Carbon Substrates[J]. Environ. Sci. Techol.,2001,35:1420-1424.
    [124] Rajendran N, Matsuda O, Imamura N, et al. Variation in microbial biomass and communitystructure in sediments of eutrophic bays as determined by phospholipid ester-linked fatty acids [J].Applied and Environmental Microbiology,1992,58(2):562-571.
    [125] Raquel Barrena, Fel citas Vazquez, Antoni Sanchez. Dehydrogenase activity as a method formonitoring the composting process[J]. Bioresour Technol,2008,99(4):905-908.
    [126] Rausa R, Mazzolari E, Calemma V. Determination of molecular size distributions of humic acidsby high-performance size-exclusion chromatography[J]. Journal of Chromatography,1991,541:419-429
    [127] Rigby D, Batts B D. The isotopic composition of nitrogen in Australian coals and oil shales[J].Chem Geol,1986,58(3):273-282
    [128] Ripl w.Biochemical oxidation of polluted lake sediment with nitrate-A new restoration method[J].Ambio,1976,5:132-135.
    [129] Rivalain Nolwennig, Jean Roquain, Gérard Demazeau. Development of high hydrostatic pressurein biosciences: Pressure effect on biological structures and potential applications inBiotechnologies[J]. Biotechnology Advances,2010,28,659–672.
    [130] Rivero C, Senesi N, Paolini J, et al. Characteris t ics of humic acids of some Venezuelan soils[J].Geoderma,1998,81:227-239.
    [131] Robie J.. Lipid analysis in microbial ecology[J]. BioScience,1989,39(8):535-541.
    [132] Rosa L P, Dos Santos M A D, Matvienko B, et al. Biogenic gas production from major Amazonreservoirs, Brazil[J]. Hydrological Processes,2003,1717:1443-1450.
    [133] Rozic M, Cerjan-stefanovic S. Ammoniacal nitrogen removal from water by treatment with claysand zeolites [J]. Water Research,2000,34(14):3675-3681.
    [134] Ruban V,Brigault S,Demare D,et al.An investigation of the origin and mobility of Phosphorus infreshwaters ediments from Bort-Les-Orgues Reservoir, France[J]. Journal of EnviromentalMonitoring,1999,1(4):403-407.
    [135] Ruban V,et al.Harmonized protocol and centified reference material for the determination ofextractable contents of phosphorus in freshwater sediments-A synthesis of recent works [J].Fresenius J Anal Chem,2001,370:224-228.
    [136] Rudd J M, Harris R, Kelly C A, et al. Are hydroelectric reservoirs significant sources ofgreenhouse gases[J]. Ambio,1993,2222:246-248.
    [137] Ruttenberg K C.Development of aseqential extraction method for different forms of phosphorus inmarine sediments[J]. Limnol Oceanogr,1992,37(7)1460-1482.
    [138] Ruttenburg K C. Development of a sediment extraction method for different forms in marinesediments [J]. Limnol Oceanogr,1992,37(2):1460-1482.
    [139] RYD N E. Potentially mobile phosphorus in Lake Erken sediment[J]. WatRes,2000,34(7):2037-2042.
    [140] RYSGAARD S, RISGAARD2PETERSEN N, SLOTH N P, et al. Oxygen regulation ofnitrification and denitrification in sediment s[J]. Limnology and Oceanography,1994,39(7):1643-1652.
    [141] Santschi P,H hener P,Benoit G et al.Chemical processes at the sediment-water interface[J]. MarineChemistry,1990,30:269-315.
    [142] Sapp, M.; Wichels, A.; Wiltshire, K.H.. Bacterial community dynamics during the winter-springtransition in the North Sea[J]. FEMS Microbiol. Ecol.,2007,59(3),622-637.
    [143] Saul-Tcherkas V, Steinberger Y. Substrate utilization patterns of desert soil microbial communitiesin response to xeric and mesic conditions[J]. Soil Biology and Biochemistry,2009,41(9):1882-1893
    [144] Saunders D L,Kalff J. Nitrogen retention in wetlands,lakes and rivers[J]. Hydrobiologia,2001,443:205-212.
    [145] Savage C. Distribution and retention of effluent in surface sediments of a coastal bay[J]. LimnolOceanogr,2004,49(5):1503-1511
    [146] Schulz, R.S. Mercury Fixation in Contaminated Sediments as a Management Option at Albany,West Australia[J]. Water Science Technology,1989,21(2):45-51.
    [147] Seitzinger S P.Denitrification in freshwater and coastal marine ecosystems:Ecological andgeochemical significance[J].Limnology and Oceanography,1988,33(4,part2):702-724.
    [148] Sliwinski M K, Goodman R M.. Spatial heterogeneity of crenarchaeal assemblages withinmesophilic soil ecosystems as revealed by PCR-single-strand conformation polymorphismprofiling[J]. Applied and Environmental Microbiology,2004,70(3):1811-1820
    [149] Song Jing, Yongming Luo,Qiguo Zhao,et al.Wetlands and Aquatic Processes-Microcosm Studieson Anaerobic Phosphorus Flux and Mineralization of Lake Sediment Organic Carbon [J].J.Environ.Qual.,2004,33:2353-2356.
    [150] Spring, S., Schulze, R., Overmann, J., Schleifer, K.-H..2000. Identification and characterization ofecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivationstudies[J]. FEMS Microbiology Reviews,24,573–590.
    [151] Stewart W D P,Preston F R S T,Peterson H G et al.Nitrogen cycling in eutrophic freshwaters.Philosophical Transactions of the Royal Society of London.Series B[J]. Biological Sciences,1982,296:491-509.
    [152] STRAUSS E A, LAMBERTI G A. Regulation of nitrification in aquatic sediments by organiccarbon[J]. Limnology and Oceanography,2000,45(8):1854-1859.
    [153] Stuben D., etal. Application of lake marl at lake Arendsee NE Germany: first results of ageochemical monitoring during the restoration experiment[J]. Sci. Total Environ,1998,218(1):33–44.
    [154] Sun W L, Ni J R, Liu T T. Eff ect of sediment humic substances on sorption of selec t ed endocri nedi sruptors [J]. Water, Air, and Soil Pollution: Focus,2006,6:583-591.
    [155] Sundh, I.; Bastviken, D.; Tranvik, L.J..2005. Abundance, activity and community structure ofpelagic methane-oxidizing bacteria in temperate lakes[J]. Appl. Environ. Microbiol.,71(11),6746-6752.
    [156] Syakti, A. D.; Mazzella, N.; Nerini, D.,(2006). Phospholipid fatty acids of a marine sedimentarymicrobial community in a laboratory microcosm: Responses to petroleum hydrocarboncontamination[J]. Org. Geochem.,37(11),1617-1628.
    [157] Sybil P S, CAROL IEN K, RANEE V S. Global dist ribut ion of N2O em i ssions f rom aquat icsyst ems: Natural emissi ons and anthropogenic ef fects [J]. Chemosphere-Gl obal Change Science,2000,2:267-279
    [158] Tamburini Christian, Madeleine Goutx, Catherine Guigue, Marc Garel, Dominique Lefe`vre.2009.Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets[J]. Deep-SeaResearch II,56,1533–1546
    [159] TANA KA T, GUO L D, DEAL C, et al. N deficiency in a well2oxygenated cold bot tom waterover the Bering Sea shelf: Influence of sedimentary denit rification[J]. Continental ShelfResearch,2004,24:1271-1283.
    [160] Thomas Deppe, Jürgen Benndorf. Phosphorus reduction in a shallow hypereutrophic reservoir byin-lake dosage of ferrous iron [J]. Water Research,2002,36(18):4525-4534
    [161] Tian J.R., P.J. Zhou. Phosphorus fractions of floodplain sediments and phosphorus exchange on thesediment–water interface in the lower reaches of the Han River in China[J]. EcologicalEngineering,2007,30:264-270
    [162] Tremblay A, Schetagne R. The relationship between water quality and GHG emissions inreservoirs[J]. International Journal on Hydropower&Dams,2006,1313(1):103-107.
    [163] Trimmer M, Nicholls J C, Deflandre B. Anaerobic Ammonium Oxidation Measured in Sedimentalong the Thames Estuary, United Kingdom[J]. Applied and Environmental microbiology,2003,69(11):6447-6454.
    [164] Tunlid A,Barid BH, Trexler MB, et al.1985. Determination of phospholipid ester-linked fattyacid and poly β-hydroxybuty rate for the stimulation of bacterial biomass and activity in therhizosphere of the rape plant B rassicanapus[J]. Can. J. Microbiol.,31:1113-1119.
    [165] US EPA. ARCS Remediation Guidance Document. EPA905-R-94-003. Great Lakes NationalProgram Office, Chicago, IL.1994.
    [166] US EPA. Contaminated Sediments: Relevant Statutes and EPA Program Activities. EPA506/6-90/003. Office of Water, Washington, D.C.1990.
    [167] US EPA. Monitored natural attenuation: USEPA research program—an EPA science advisoryboard review. EPA-SAB-EEC-01-004. Office of the administrator science advisory board.Washington, DC.2001.
    [168] US EPA. Selecting Remediation Techniques For Contaminated Sediment. EPA823-B93-001.Office of Water, Washington, D.C.1993.
    [169] Vezzi A,Campanaro S,Angelo M,Simonato F, Vitulo N,Lauro F M,Romualdi C,Bartlett DH,Valle.G. Life at depth: photobacterium profundum genome sequence and expression analysis[J].Science,2005,307:1459-1461
    [170] Vickie L Burris,John C Little.Bubble dynamics and oxygen transfer in a hypolimnetic aerator[J].Water science technology,1998,37(2):293-300.
    [171] Walpersdorf E, Neumann T, Stuben D,2004. Efficiency of natural calcite precipitation compared tolake marl application used for water quality improvement in a eutrophic lake[J]. AppliedGeochemistry,19:1687-1698.
    [172] WANG J L, YANG N. Partial nit rification under limited dissolved oxygen conditions[J]. ProcessBiochemistry,2004,39:1223-1229.
    [173] Welch E B, Cooke G D. Effectiveness and longevity of phosphorus inactivation with alum[J].Lake and Reservoir Management,1999,(1):5-27.
    [174] Welch T J,Bartlett D H. Identification of a regulatory protein required for pressure-responsive geneexpression in the deep-sea bacterium photobacterium species strainSS9[J],1998,27:977-985
    [175] Westerhoff P. Reduction of nitrate,bromate,and chlorate by zero-valent iron(Fe0)[J].J Environ Eng,2003,129(1):10-16.
    [176] Wetzel R G,Likens G E.Limnological Analyses.2nd,New York:Springer-Verlag Inc.,1991.
    [177] Wetzel, R. G.2001. Limnology: lakes and river ecosystems. Third Edition. San Diego: AcademicPress.
    [178] White DC,Davis WM,Nickels J S, et al.1979. Determination of the sedimentary microbialbiomass by ext ractable lipid phosphate [J]. Oecologia,41:51-62.
    [179] Winter, R., Jeworrek, C..2009. Effect of pressure on membranes[J]. Soft Matter,5,3157-3173.
    [180] Wirsen C O,Jannasch H W,Wakeham S G, Canuel E A.Curr Microbiol,1987,14:319-322
    [181] Wobus A, Bleul C, Massen S. Microbial diversity and fonctional characterization of sedimentsfrom reservoirs of different throphic state[J]. FEMS Microbiol Ecol2003,46(3):331-347
    [182] Xu H, Zhang J, Gao Y M,2008. Experiment study on the removal of phosphorus in eutrophicwater bodies by the utilization of mineral calcite[J]. Earth Science Frontiers,15(4):138-141.
    [183] Xu Ke, Bin-Guang Ma.2007. Comparative analysis of predicted gene expression among deep-seagenomes[J]. Gene,397,136–142.
    [184] Yayanos A A,Dietz A S,Boxtel R V. Dependence of reproduction rate on pressure as a hallmark ofdeep-sea bacteria[J]. Appl Environ Microbiol,1982,44:1356-1361
    [185] Yayanos A A. Evolutional and ecological implications of the Properties of deep sea barophilicbacteria [J]. Proc Natl Acad Sci USA,1986,83:9542-9546
    [186] YayanosA A. Baroph iles and Pi ezoph iles I n Na ture Encycloped i a of L i fe Sciences[M].London: NaturePublishing.2001.
    [187] Zaiss U. The Sediments of the new artificial lake bostalsee (Saarland, Germany), with particularreference to microbial activity[J]. Archiv fur Hydrobiologie,1981,92(3):346-358.
    [188] Zehr J P, Ward B B. Nitrogen Cycling in the Ocean: New Perspectives on Processes and Paradigms[J]. Applied and Environmental microbiology,2002,68(3):1015-1024.
    [189] Zhang H H, Tang M, Chen H, Tian Z Q.2010. Effects of inoculation with ectomycorrhizal fungi onmicrobial biomass and bacterial functional diversity in the rhizosphere of Pinus tabulaeformisseedlings[J]. European Journal of Soil Biology,46(1):55-61
    [190] Zhang W,Ki J,Qian P. Microbial diversity in polluted harbor sediments I:bacterial communityassessment based on four clone libraries of16S rDNA[J].Estuarine,Coastal and ShelfScience,2008,76(3):668-81.
    [191] Zhao, D. Y.; Ma, T.; Zeng, J.; Yan, W. M.; Jiang, C. L.; Feng, J. W.; Xu, Y. N.; Zhao, H. Z..2011.Phospholipid fatty acids analysis of the vertical distribution of microbial communities in eutrophiclake sediments[J]. Int. J. Environ. Sci. Tech.,8(3),571-580.
    [192] Zhou A M,Wang D S,Tang H X.Phosphorus fractionation and bioavailability in Taihu Lake(China)sediments[J].Journal of Environmental Science,2005,17(3):384-388.
    [193] Zhou Q, Cabaniss S E, Patricia A M. Considerations in the use of high-pressure size exclusionchromatography (HPSEC) for determining molecular weights of aquatic humic substances[J].Water Research,2000,34(14):3505-3514
    [194] Zhou Z M, Huang T L, Cong H B,2007. Algae removal by combined process of water-liftingaeration and biological contact oxidation[J]. China Water&Wastewater,23(15):13-16.
    [195] Zink, K. G.; Mangelsdorf, K.; Granina, L.. Estimation of bacterial biomass in subsurface sedimentsby quantifying intact membrane phospholipids[J]. Anal. Bioanal. Chem.,2008,390(3),885-896.
    [196]敖静.污染底泥修复技术的研究进展[J].环境保护科学,2004,30(126):30-35.
    [197]白洁,王晓东,李佳霖等.北黄海沉积物-水界面反硝化速率及影响因素研究[J].中国海洋大学学报,2007,37(4):653-656.
    [198]蔡红,沈仁芳.改良茚三酮比色法测定土壤蛋白酶活性的研究[J].土壤学报,2005,42(2):306-313
    [199]曹文卿,刘素美.海洋沉积物中硝化与反硝化过程研究进展[J].海洋科学进展,2006,24(2):259-263.
    [200]柴蓓蓓.水体沉积物中污染物释放及其多相界面过程研究[D].西安:西安建筑科技大学硕士学位论文,2008.
    [201]陈玉娟.珠江广州河段中磷的形态研究[J].中山大学学报(自然科学版),1990,9(4):73-78.
    [202]陈振翔,于鑫,夏明芳等.磷脂脂肪酸分析方法在微生物生态学中的应用[J].生态学杂志,2005,24(7):828-832
    [203]程炳红,郝庆菊,江长胜.水库温室气体排放及其影响因素研究进展[J].湿地科学,2010,10(1):121-128
    [204]丛海兵,黄廷林,缪晶广,等.水体修复装置——扬水曝气器的开发[J].中国给水排水,2005,21(3):41-45.
    [205]丛海兵,黄廷林,赵建伟,等.扬水曝气技术在水源水质改善中的应用[J].环境污染与防治,2006,28(3):215-218.
    [206]丛海兵.扬水曝气水源水质改善技术研究[D].西安:西安建筑科技大学博士学位论文,2007.
    [207]戴纪翠,宋金明,郑国侠等.胶州湾沉积物氮的环境生物地球化学意义[J].环境科学,2007,28(9):1924-1928.
    [208]戴纪翠,宋金明,郑国侠等.胶州湾沉积物氮的环境生物地球化学意义[J].环境科学,2007,28(9):1924-1928.
    [209]戴树桂,张明顺,庄源益.底泥中氮的主要迁移转化过程及其转化模型的研究[J].环境科学学报,1990,10(1):1-9.
    [210]董黎明.利用磷脂脂肪酸表征白洋淀沉积物微生物特征[J].中国环境科学,2011,31(11):1875-1880.
    [211]傅平青,吴丰昌,刘丛强.洱海沉积物间隙水中溶解有机质的地球化学特性[J].水科学进展,2005,16(3):338-344
    [212]高丽,杨浩,周健民.湖泊沉积物中磷释放的研究进展[J].土壤,2004,36(1):12-15.
    [213]高增文.山区水库氮污染行为与控制技术研究[D].青岛:中国海洋大学博士学位论文,2008:11-12
    [214]关松荫.土壤酶及其研究法[M].北京:农业出版社.1986.
    [215]郭天财,宋晓,马冬云.氮素营养水平对小麦根际微生物及土壤酶活性的影响[J].水土保持学,2007,27(12):5222-5228
    [216]何文杰,李伟光,张晓建,等.安全饮用水保障技术[M].北京:中国建筑工业出版社,2006:125-152.
    [217]胡玲珍,陈振楼.河口沉积物反硝化反应影响因子综述[J].环境科学动态,2003,4:41-43
    [218]黄代中,肖文娟,刘云兵等.浅水湖泊沉积物脱氢酶活性的测定及其生态学意义[J].湖泊科学,2009,21(3):345-350
    [219]黄廷林,柴蓓蓓,邱二生,朱维晃.水体-沉积物多相界面磷循环转化微生物作用实验研究[J].应用基础与工程科学学报,2010,18(1):61-70
    [220]黄廷林,柴蓓蓓.扬水曝气强化化学除磷无动力自动定量投加水质改善装置已受理:201210033645.6
    [221]黄廷林,苏俊峰,李倩.好氧反硝化菌株的筛选培养及其反硝化性能研究[J].西安建筑科技大学学报,2009,41(5):704-707
    [222]黄廷林,延霜,柴蓓蓓,刘虹.水源水库沉积物磷形态分布及其释放特征[J].天津大学学报,2011,44(7):607-612
    [223]黄廷林,柴蓓蓓.水源水库水质污染与富营养化控制技术研究进展[J].地球科学进展,2009,24(6):588-596
    [224]黄廷林,柴蓓蓓.扬水曝气强化化学除磷无动力自动定量投加水质改善装置.受理号:201210033645.6,西安建筑科技大学
    [225]黄廷林,丛海兵,何文杰,韩宏大.多功能扬水曝气器. ZL200310117900.6授权日期:2007.6.27西安建筑科技大学,天津市自来水集团有限公司
    [226]黄廷林,李建军.扬水曝气技术对汾河水库原水水质的改善[J].供水技术,2007,1(4):13-16.
    [227]姜海燕.大兴安岭兴安落叶森林土壤微生物与土壤酶活性研究[D].内蒙古:内蒙古农业大学博士学位论文,2010
    [228]姜敬龙,吴云海.底泥磷释放的影响因素[J].环境科学与管理,2008,6(33):43-46.
    [229]金相灿,王圣瑞,姜霞.湖泊水/沉积物界面三相结构模式的初步研究[J].环境科学研究,2004,17(Sup):1-5
    [230]李东坡,武志杰,陈利军.土壤生物学活性对施入有机肥料的响应-Ⅰ土壤酶活性的响应[J].土壤通报,2003,34(5):463-468
    [231]李文红,陈英旭,孙建平.不同溶解氧水平对控制底泥向上覆水体释放污染物的影响研究[J].农业环境科学学报,2003,22(2):170-173
    [232]李琰琰,刘国顺,向金友等.氮营养水平对植烟土壤养分含量及土壤酶活性的影响[J].中国烟草学报,2011,17(2):39-43
    [233]李酉开等.土壤农业化学常规分析方法[M].北京:科学出版社,1983.
    [234]林海,周刚,李旭光等.增氧对池塘沉积物酶活性的影响[J].水生态学杂志,2011,32(5):100-105
    [235]林彰文,顾继光,韩博平.一个抽水水库的沉积物及其无机磷含量的分布特点[J].农业环境科学学报,2006,25(3):776-781.
    [236]刘浏,刘晓端,徐清,等.密云水库沉积物中磷的形态和分布特征[J].岩矿测试,2003,22(2):81-85.
    [237]刘敏,侯立军,许世远,等.河口滨岸潮滩沉积物-水界面N,P的扩散通量[J].海洋环境科学,2001,20(3):19-23.
    [238]刘欣,肖天,张文燕.胶州湾海域表层沉积物细菌多样性[J].海洋科学,2010,34(10):1-7
    [239]刘欣.胶州湾沉积物细菌多样性及菌群时空分布规律研究[D].北京:中国科学院海洋研究所,2010.
    [240]吕晓霞,宋金明,李学刚等.北黄海沉积物中氮的地球化学特征及其早期成岩作用[J].地质学报,2005,79(1):114-123.
    [241]吕晓霞,宋金明,李学刚等.北黄海沉积物中氮的地球化学特征及其早期成岩作用[J].地质学报,2005,79(1):114-123.
    [242]吕晓霞,宋金明,袁华茂,等.南黄海表层沉积物中氮的潜在生态学功能[J].生态学报,2004,24(8):1635-1642.
    [243]马红波,宋金明,吕晓霞等.渤海沉积物中氮的形态及其在循环中的作用[J].地球化学,2003,32(1):48-54.
    [244]秦伯强,范成新.大型潜水湖泊内源营养盐释放的概念性模式探讨[J].中国环境科学,2002,22(2):150-153.
    [245]沈其荣.土壤肥料学通论[M].高等教育出版社,2001:295-307.
    [246]宋崇渭,王受泓.底泥修复技术与资源化利用途径研究进展[J],中国农村水利水电,2006,(8):30-32.
    [247]宋洪宁,杜秉海,张明岩.环境因素对东平湖沉积物细菌群落结构的影响[J].微生物学报,2010,50(8):1065-1071
    [248]苏玉萍,郑达贤,林婉珍等.福建省富营养化水库沉积物磷形态及对水体的贡献[J].湖泊科学,2005,17(4):311-316
    [249]孙莉英,倪晋仁,孙卫玲.不同粒径黄河沉积物中可提取腐殖质的含量分布及光谱特性[J].环境科学,2007,28(6):1324-1331
    [250]孙小静,秦伯强,朱广伟,等.持续水动力作用下湖泊底泥胶体态氮、磷的释放[J].环境科学,2007,2828(6):1223-1229.
    [251]孙晓杭,张昱,张斌亮等.微生物作用对太湖沉积物磷释放影响的模拟实验研究[J].环境化学,2006,25(1):24-27
    [252]孙远军.城市河流底泥污染与原位稳定化研究[D].西安:西安建筑科技大学博士学位论文,2009
    [253]陶澍,邓宝山, Saiz Jinenez C,等.用主成份-聚类分析方法研究河水、沉积物和土壤腐殖酸红外光谱的特征与差异[J].应用基础与工程科学学报,1994,2(1):387-393.
    [254]王东启,陈振楼,许世远等.长江口潮滩沉积物反硝化作用及其时空变化特征[J].中国科学B辑:化学,2007,37(6):604-611.
    [255]王浩,陈吕军,温东辉.天然沸石对溶液中氨氮吸附特性的研究[J].生态环境,2006,15(2):219-223.
    [256]王禄仕,柴蓓蓓,刘虹.水源水库沉积物中氮的形态分布特征研究[J].西安建筑科技大学学报(自然科学版),2010,55(42):734-740.
    [257]王圣瑞,焦立新,金相灿等.长江中下游潜水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征[J].环境科学学报,2008,28(1):37-43.
    [258]王圣瑞,金相灿,焦立新.不同污染程度湖泊沉积物中不同粒级可转化态氮分布[J].环境科学研究,2007,20(3):52-57.
    [259]王伟伟,吴宏海,郭杏妹等.水体沉积物中有机质结构特征与毒害有机物的吸附模式研究[J].海洋环境科学,2008,27(6):566-570
    [260]王晓东,白洁.典型海区反硝化作用及影响因素研究[D].青岛:中国海洋大学,2007.
    [261]王新新,张颖等.零价铁对铬污染底泥的修复及其对微生物群落结构的影响[J].环境科学学报,2009,29(2):297-304.
    [262]王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征[J].湖泊科学,2002,14(4):301-309.
    [263]魏巍.微污染水源扬水曝气强化原位生物脱氮特性与试验研究[D].西安:西安建筑科技大学博士学位论文,2011:29
    [264]魏玉利,王鹏,赵美训.黑潮源区沉积物微生物多样性初步研究[J].地球科学进展,2010,25(2):212-219
    [265]温东辉,唐孝炎.天然斜发沸石对溶液中NH4+的物化作用机理[J].中国环境科学,2003,23(5):509-514.
    [266]文倩,林启美,赵小蓉等.北方农牧交错带林地、耕地和草地土壤微生物群落结构特征的PLFA分析[J].土壤学报,2008,45(2):321-327
    [267]吴丰昌,万国江,蔡玉蓉.沉积物—水界面的生物地球化学作用[J].地球科学进展,1996,1111(2):191~197.
    [268]吴丰昌,万国江,黄荣贯.湖泊沉积物水界面营养元素的生物地球化学作用和环境效应.Ⅰ界面氮循环及其环境效应[J].矿物学报,1996,16(4):404-409.
    [269]吴丰昌,万国江,黄荣贯.湖泊沉积物水界面营养元素的生物地球化学作用和环境效应.Ⅰ界面氮循环及其环境效应[J].矿物学报,1996,16(4):404-409.
    [270]吴丰昌.云贵高原湖泊沉积物和水体氮、磷和硫的生物地球化学作用和生态环境效应[J].地质地球化学,1996,(6):88-89.
    [271]吴光前,刘倩灵,周培国等.固定化微生物技术净化黑臭水体和底泥技术[J].水处理技术,2008.06.
    [272]肖化云,刘丛强,王仕禄等.硝化和反硝化对湖泊有机质沉积成岩前降解作用的研究[J].地球化学,2003,32(4):375-380
    [273]徐轶群,熊慧欣,赵秀兰.底泥磷的吸附与释放研究进展[J].重庆环境科学,2003,25(11):147-149
    [274]游志勇,汤熙翔,肖湘.高压技术在深海沉积物兼性嗜压菌的筛选和鉴定中的应用[J].台湾海峡,2007,26(4):555-561
    [275]于鑫,张晓健,王占生.饮用水生物处理中生物量的脂磷法测定[J].给水排水,2002,28(5):1-6
    [276]於斯,程晓如,朱少华等.不同混凝剂强化混凝处理富磷废水实验研究[J].节水灌溉,2010,04:37-40
    [277]袁文权.西沥水库内源污染及其控制:[D].北京:清华大学科学与环境工程系,2004
    [278]岳兰秀,吴丰昌,刘丛强.红枫湖和百花湖天然溶解有机质的分子荧光特征与分子量分布的关系[J].科学通报,2005,50(24):2774-2780
    [279]曾巾,杨柳燕,肖琳等.湖泊氮素生物地球化学循环及微生物的作用[J].湖泊科学,2007,19(4):382-389.
    [280]张海涵.黄土高原地区枸杞根际微生态特征及其共生真菌调控宿主生长与耐旱响应机制[D].杨凌:西北农林科技大学博士学位论文,2011,4.
    [281]张丽媛,王圣瑞,储昭升,等.洋河水库流域土壤与库区沉积物中磷形态特征研究[J].中国环境科学,2010,3030(11):1529~1536.
    [282]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002,48-51.
    [283]张勇,程祥圣,等.锌-镉还原-分光光度法测定地表水中硝酸盐[J].理化监测-化学分册,2008,(44):139-141.
    [284]张宇,乌恩,李重祥等.长江中下游湖泊沉积物酶活性及其与富营养化的关系[J].应用与环境生物学报,2011,17(2):196-201
    [285]张玉兰,陈利军,刘桂芬,等.土壤水解酶类催化动力学研究进展[J].应用生态学报,2003,14(12):2326-2332.
    [286]赵德璋,刘刚,宋鼎珊,刘剑虹,周翊蓝,欧家鸣,孙世中.2007.鹅膏菌的傅里叶变换红外光谱研究.光谱学与光谱分析,27(6):1086-1089
    [287]赵颖,王国秀等.典型城内过富营养湖泊沉积物和间隙水中各形态磷的相关性研究[J].长江流域资源与环境,2006,15(4):490-494.
    [288]郑国侠,宋金明,孙云明等.南海深海盆表层沉积物氮的地球化学特征与生态学功能[J].海洋学报,2006,28(6):44-52.
    [289]郑国侠,宋金明,孙云明等.南海深海盆表层沉积物氮的地球化学特征与生态学功能[J].海洋学报,2006,28(6):44-52.
    [290]周春生,尹军.TTC-脱氢酶活性检测方法的研究[J].吉林建筑工程学院学报,1995,3(1):1-13.
    [291]周怀东等.水污染与水环境修复[M].北京:化学工业出版社,2005.197-232
    [292]周礼恺.土壤酶学[M].北京:科学出版社,1987
    [293]朱广伟,高光,秦伯强,等.浅水湖泊沉积物中磷的地球化学特征[J].水科学进展,2003.14(6):714-719.
    [294]宗虎民,马德毅,王菊英等.氟苯尼考对海洋沉积物酶活性的影响[J].海洋环境科学,2008,27(2):128-131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700