用户名: 密码: 验证码:
硅在H13型热作模具钢中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了降低成本、节约资源,课题组开发了一种新型高热强性热作模具钢SDH3钢(H13型),其合金化特点是高硅低钼的新合金化思路。本文通过组织与性能测试进一步验证了高硅低钼的新合金化思路的合理性,并借助热膨胀相变仪、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、三维原子探针(3DAP)、模量与内耗测试仪等先进测试分析设备系统的研究了硅含量对SDH3热作模具钢的组织与性能的影响、回火动力学的影响、残余奥氏体量和稳定性的影响、以及钢中碳化物演变规律的影响;并从模量的角度研究了硅对SDH3钢高温热稳定性的影响,建立SDH3钢的模量的数学模型;最后讨论了SDH3钢热疲劳的微观机理,获得以下主要研究结果。
     采用热力学计算软件Jmatpro对四种硅含量的SDH3钢的相变特性进行模拟计算,结果表明,硅含量对平衡相组成(包括碳化物)影响不明显;硅含量的增加导致SDH3钢Ac1和Accm点温度升高,其珠光体转变C曲线左移,贝氏体转变C曲线右移。性能测试发现,经过1060℃淬火和580℃两次回火后硬度为50HRC,室温无缺口冲击功大于300J,韧性优于H13钢;SDH3钢的热稳定性和热疲劳性能均优于H13钢。
     采用BAHR DIL805A热膨胀相变仪、TEM、3DAP以及XRD等分析了硅含量对SDH3钢回火过程的影响。结果表明,SDH3钢中硅含量增加促使回火转变温度向高温移动,当钢中硅含量由0.6%增加到1.2%时,回火转变温度区间相应的向高温移动约150℃,而继续增加钢中硅含量时,无明显变化。结合动力学分析认为随着硅含量增加导致钢回火转变激活能提高,从而阻碍钢的回火转变,回火稳定性得以提高。硅含量的增加提高了淬火SDH3钢中残余奥氏体量,且其中碳含量增加。硅含量对SDH3钢不同状态下的碳化物尺寸大小有显著影响,提高钢中硅含量,可以促进细小碳化物的析出,并有效抑制碳化物的长大粗化,增加钢的回火稳定性。
     利用模量与内耗仪研究了不同硅含量的SDH3钢的模量及内耗随温度和时间的变化规律。研究结果表明,模量随温度的变化可分为三个阶段:温度低于550℃和高于670℃时,模量随温度呈线性变化,而当温度在550℃-670℃之间时,模量随温度升高下降逐渐加快。而不同温度下SDH3钢的模量随时间的变化趋势也可分为三个阶段:初始阶段模量随着时间逐渐升高,在这个阶段出现一个明显的内耗峰,硅含量越高,在这个阶段的时间越短,说明提高硅含量有利于加快SDH3钢的回火稳定;第二阶段当模量达到最大值并保持不变的稳定阶段,硅含量越高,在这个阶段的时间越长,说明提高硅含量有利于提高SDH3钢的热稳定性;第三阶段模量随着保温时间的延长而降低并逐渐趋于稳定值。通过公式推导SDH3钢模量随温度变化的数学模型,结合试验数值,拟合获得了硅含量分别为0.6%、1.2%、1.5%和1.8%的SDH3钢的模量的数学表达式分别为G_1=72.99-3.82*exp((T-684.53)/176.96)、 G_2=74.68-4.63*exp((T-707.43)/182.89)、G_3=73.64-3.81*exp((T-715.10)/167.36)、G_4=73.70-3.25*exp((T-682.05)/160.70),从公式看出,硅含量对模量的变化有显著影响;考虑SDH3钢第二相的影响,对模量-时间模型进行了修正,使其更好的描述SDH3钢的模量随时间的变化。
     采用加速试验法模拟压铸模表面的温度变化过程,研究了SDH3钢的抗热疲劳性能,并结合透射电镜等分析了微观组织演化对热疲劳性能的影响。结果表明,提高SDH3钢的硅含量,能显著提高SDH3钢的抗热疲劳性能。通过热疲劳试样的显微组织分析发现,热疲劳过程中,疲劳裂纹尖端应力集中区出现的碳化物偏聚和粗化,成为裂纹生长的快速通道;热疲劳微裂纹在晶界处优先萌生,并沿晶界扩展。SDH3钢中硅含量不高(0.6wt.%)时,热疲劳过程中的碳化物以相互平行的M3C型合金渗碳体为主,其中部分向M2C型转变,而硅含量较高(1.5wt.%)时,则主要是以球状或椭球状M23C6型Cr23C6碳化物沿马氏体板条界或晶界析出,可见提高SDH3钢中的硅含量,能有效抑制钢中合金渗碳体的析出,而主要以M23C6型碳化物沿马氏体板条界或晶界析出和长大。SDH3钢中热疲劳裂纹优先在晶界处萌生,并借助晶界处析出的碳化物为媒介沿晶界扩展。
SDH3steel, a new H13-type of hot work die steel, was developed to reduce the productcost and resource. The high silicon but low molybdenum system alloy design theory isapplied on SDH3steel. In this thesis, the microstructures and properties of SDH3steel weretested to check and verify its reasonableness and accuracy of alloy design. The effect ofsilicon on the microstructures and properties, temper kinetics, the content of retainedaustenite and its thermal stability, and carbides solution and dissolution of SDH3steel werestudied by means of DIL85A linear dilatometer, scanning electron microscopy (SEM),transmission electron microscopy (TEM), X-ray diffraction (XRD), three-dimension atomprobe (3DAP), and modulus and internal friction testing instrument (M&IF). What’s more,the effect of silicon on the thermal resistance of SDH3steel was studied by modulusinvestigation, and the mathematics model of modulus of SDH3steel has been established.Finally, the micro-mechanism of thermal fatigue of SDH3steel was analyzed. The mainconclusions are summarized as follows.
     Firstly, from the JmatPro ware of the thermodynamics analysis, phase transformations ofSDH3steel with four levels of Si-content were analyzed by simulating calculation. Theresults of the analysis and computation show that there is no significant effect of Si-contenton equilibrium phase compositions including carbides of SDH3steel. The temperatures ofAc1and Accm will be rise as the content of silicon increases in SDH3steel. The curve ofperlitic transformation to time left moved but the curve of bainite transformation to time rightmoved, with the increase of silicon content in SDH3steel. The results of measurement andtest of properties of SDH3steel show that SDH3steel performs significant secondaryhardening during tempering. The temperature of secondary hardening is about500℃. Afterquenching at1060℃and double tempering at580℃,the hardness of SDH3steel was50HRCand the room temperature non-notch impact energy exceed300J which excels that of AISIH13steel. Similarly, both thermal stability and thermal fatigue resistance of SDH3steel wassuperior to that of AISI H13steel.
     The effect of silicon content on the kinetics of SDH3steel during tempering was studiedby means of BAHR DIL85A linear dilatometer, combined with TEM,3DAP and XRD. The experiment results showed that temper transformation moved to higher temperature withincrease of silicon content in SDH3steel. For example, the temperature of tempertransformation would raise about150℃as the content of silicon increased from0.6%to1.2%in SDH3steel. But the temperature changed little when the content of silicon was more than1.2%. Analyzing and calculating the experiment data, it was found that the activation energyincreased markedly as the content of silicon increases in SDH3steel during tempering, whichindicated temper transformation was retarded and temper resistant stability was improvedattributing to effect of higher silicon content in SDH3steel. The content of retainedaustenite increased obviously with increase of silicon content in quenched SDH steel.Meanwhile, the content of solution carbon in retained austenite was higher with higher siliconcontent in SDH3steel. The content of carbon in retained austenite was highest in overtempered SDH3steel but lowest in quenched SDH3steel with the same silicon content. Itindicated that carbon atoms partitioning from decomposed retained austenite to remainaustenite happened during tempering. As a result, the content of carbon in retained austeniterose steadily with time holding during tempering, and its temper resistance was improved.During tempering, Si rejects the carbide and a Si-rich region is present, adjacent to the carbide.The diffusion of carbon atoms were block and as a result coarsening of the carbides wasretarded. Silicon promote precipitation of fine carbides at a lower temperature but retardcoarsening of the carbides at a higher temperature. So temper resistance of SDH3steel wasimproved.
     The modulus with temperature and time of SDH3steel with different silicon contentwere tested by modulus and internal friction testing instrument, and its internal friction wastested also by the instrument. The test results indicated that the trend of modulus withtemperature were similar to varied silicon content in SDH3steel. There was an exponentialrelationship between modulus and temperature in SDH3steel. The whole process can bedivided into three stages: modulus varied directly with temperature when the temperature wasbelow550℃or higher than670℃, modulus varied nonlinear with temperature when thetemperature was range from550℃to670℃. The modulus of SDH3steel rose quickly atfirst with holding time during isothermal processes at different temperatures. When themodulus reached to the maximum value it remained unchanged for a period of time and then decreased gradually to be a constant finally. There was a significant peak of internal frictioncorresponding in the modulus rising at first stage. There was an interesting phenomenon thatthe higher the content of silicon in SDH3steel, the quicker the modulus reached to themaximum, and the longer time the modulus remained unchanged. It indicated that silicon hadeffect on improving temper transformation and increasing the thermal stability of SDH3steel.In conclusion, based on the physical mechanism of modulus, the functions of modulus forSDH3steel under variable temperatures were developed by using physics formulas, andnumerical simulation of experimental results were carried out. Finally, accurate equations ofmodulus for SDH3steel with6.0%,1.2%1.5%and1.8%silicon content wereG_1=72.99-3.82*exp((T-684.53)/176.96), G_2=74.68-4.63*exp((T-707.43)/182.89),G_3=73.64-3.81*exp((T-715.10)/167.36) and G_4=73.70-3.25*exp((T-682.05)/160.70),respectively. Considering the effect of the second phase on modulus due to the microstructureof SDH3steel, mathematical models of modulus was modified and a new and appropriatemodel of modulus for SDH3steel was developed.
     A study on thermal fatigue of SDH3steel was carried out by simulation test of thechanges of the surface temperature of aluminum die-casting dies at temperature range fromroom temperature to700℃. The experiment results showed that the thermal fatigue resistanceof SDH3steel was improved markedly with higher silicon content in SDH3steel. Meanwhileproblem in the thermal fatigue process is the affect on the microstructure at heat affect zoneduring heat cycle. Alloy carbides were easy to aggregate in the heat affect zone, and carbidescoarsening were investigated on stress field on crackle tip, which was easy channel of thermalfatigue crack fast growth. It was observed that thermal fatigue crack favorably initiated andpropagated at grain boundary. A technique named carbon extraction replica was used to takeprecipitates from the heat affect zone. Particle shape, distribution, size, and density weresurveyed by employing TEM, and precipitate composition was examined by energydispersive X-ray (EDX) analysis units. The results showed that a great quantity of plate-likecementites (M3C) was observed and a small quantity of needle-like Mo2C was found inSDH3steel with0.6%silicon. Comparatively, only globular Cr23C6precipitation at the grainboundary was observed in SDH3steel with1.5%silicon. It indicates that silicon has effect oninhibiting the precipitation of cementite, however, promoting the precipitation of Cr23C6at the grain boundary, which is in accord with the early study. In SDH3steel, the thermal fatiguecrack favorably initiated at grain boundary and propagated across the grain boundary.
引文
[1] P. M. Unterweiser, H. E. Boyer and J. J. Kubbs. Heat Treater's Guide, StandardPractices and Procedures for Steel [M]. ASM, Metals Park, Ohio44073,1982.
    [2] G. Miyamoto, J.C. Oh b, K. Hono, T. Furuhara, T. Maki. Effect of partitioning of Mnand Si on the growth kinetics of cementite in tempered Fe-0.6mass%C martensite [J].Acta Materialia,2007,55:5027-5038.
    [3]俞德刚。钢的强韧化理论与设计[M]。上海:上海交通大学出版社,1990。
    [4] Guang Qingfeng, Fang Jianru, et al. Effect of Rare Earth Composite Modification onMicrostructure and Properties of a New Cast Hot-Work Die Steel [J]. Journal of RareEarths,2003,21(3):368-371.
    [5] Jiang QC, Sui HL, et al. Thermal fatigue behavior of new type high-Cr cast hot workdie steel [J]. ISIJ International,2004,44(6):1103-1107.
    [6]冯英育。新型热作模具钢材料-HOTVAR[J]。国外金属热处理,2000,21(4):21。
    [7] P Muhr, I Siller. From development to practice-the success story of a new hot work toolsteel [C]. Proceedings of7th international tooling conference,2006,1:183-190.
    [8] M. H. Saleh, R. Priestner. Retained austenite in dual-phase silicon steels and its effecton mechanical properties [J]. Journal of Materials Processing Technology,2001,113:587-593.
    [9] Xinbin Hu, Lin Li, Xiaochun Wu, Mei Zhang. Coarsening behavior of M23C6carbidesafter ageing or thermal fatigue in AISI H13steel with niobium [J]. International Journalof Fatigue,2006,28(3):175-182.
    [10] Xinbin Hu, Mei Zhang, Lin Li, Xiaochun Wu. Simulations of Coarsening for M23C6Carbides in AISI H13Steel [J]. J. Mat. Sci. Tech.2006,22(2):175-182.
    [11]胡心彬,李麟,吴晓春。4Cr5MoSiV1热作模具钢热疲劳过程中碳化物粗化动力学分析[J]。材料热处理学报,2005(1):57-61。
    [12]罗毅,吴晓春,闵永安。SDH13钢的组织性能及热疲劳行为研究[J]。热处理,2006,21(1):25-30。
    [13]谢豪杰,吴晓春等。热作模具钢硬韧性因子的研究[J]。钢铁研究学报,2008,1:1-4。
    [14]吴晓春,谢豪杰,佟倩,闵永安,汪宏斌。一种高硅低碳型高热强性热作模具钢
    [P]。中国发明专利,申请号:200810037716.3。
    [15] E. C. Bain:‘Alloying elements in steel’;1939, Cleveland, OH, American Society ofMaterials.
    [16] G. Allten and P. Payson: Trans. ASM,1953,45,498-532.
    [17] W. S. Owen: Trans. ASM,1954,46,812-829.
    [18] S. Keh and W. C. Leslie:‘Materials science research’, New York, Plenum Publishing,1963, Vol.1.
    [19] J. Gordine and I. Codd: J. Iron Steel Inst.,1969,207,461-467.
    [20] G. W. Lorimer, R. M. Hobbs and N. Ridley: J. Iron Steel Inst.,1972,210,757-764.
    [21] F. B. Pickering: in ‘Phase transformations’, London, Institution of Metallurgists,1979,2, VI-7.
    [22] E. Kozeschnik, H. K. D. H. Bhadeshia. Influence of silicon on cementite precipitationin steels [J]. Materials Science and Technology,2008,24:343-347.
    [23] L. Chang, G. D. W. Smith, Journal de Physique,1984,45:397.
    [24] G. Miyamoto, Furuhara T, Maki T. In: Proceedings of the solid-solid phasetransformations in inorganic materials,2005:363.
    [25] G. Ghosh and G. B. Olson. The isotropic shear modulus of multicomponent Fe-basesolid solutions [J]. Acta Mater.,2002,50:2099-2119.
    [26] H. K. D. H. Bhadeshia:‘Bainite in steels’,2nd edn. London, Institute of Materials,2001.
    [27] P. J. Jacques: Curr. Opin. Solid State Mater. Sci.,2004,8,259-265.
    [28] B.C. DeCooman: Curr. Opin. Solid State Mater. Sci.,2004,8,285-303.
    [29] F. G. Caballero and H. K. D. H. Bhadeshia: Curr. Opin. Solid State Mater. Sci.,2005,8,186-193.
    [30] Chen Zhu, X.Y. Xiong, A. Cerezo, R. Hardwicke, G Krauss, G.D.W. Smith.Three-dimensional atom probe characterization of alloy element partitioning incementite during tempering of alloy steel [J]. Ultramicroscopy,2007,107:808-812.
    [31] D. Delagnes, P. Lamesle, M.H. Mathon, N. Mebarki, C. Levaillant. Influence of siliconcontent on the precipitation of secondary carbides and fatigue properties of a5%Crtempered martensitic steel [J]. Materials Science and Engineering A,2005,394:435-444.
    [32]崔崑。中国模具钢现状及发展(Ⅰ-Ⅱ)[J]。机械工程材料,2001,25(1-2):1-5。
    [33]陈蕴博。热作模具钢的选择与应用[M]。北京:国防工业出版社,1993。
    [34]冯晓曾,王家瑛,何世禹。提高模具寿命指南-选材及热处理[M]。北京:机械工业出版社,1994。
    [35]叶伟江。热塑性加工模具的材料与热处理[J]。上海交通大学学报,1993(1):81-92。
    [36] Lars-Ake. Norstrom and Lennart-Jonson[J]. DIE CASTING ENGINEER,1998,(1):8-16.
    [37]刘俊英,蒋伯平,刘金海。热作模具钢的发展与应用[J]。工程机械,2006(6):48-51。
    [38]黄春峰。国外新型热作模具钢及其热处理工艺[J]。航空制造技术,2003(8):68-70。
    [39]朱宗元。我国热作模具钢性能数据集(续Ⅶ)[J]。机械工程材料,2001,25(8):38-42。
    [40]隋少华,宋天革,赵洪运。3Cr2W8V模具钢预处理工艺的改进[J]。金属热处理,2007,32(1):66-68。
    [41] Zhang Haibin, Zhang Tingjin, Ren Shunyu. Improvement of Post-Forging HeatTreatment for3Cr2W8V Hot Working Die Steel[J]. Jinshu Rechuli/Heat Treatment ofMetals,1993(10):27-28.
    [42] Hu Zhen-hua, Zhang Tong-jun, Sun Hai-yan. Comparison Between3Cr2W8V and4Cr5MoV1Si Steels On Strength and Toughness [J]. Heat Treatment of Metals,1988(7):24-31.
    [43]崔崑。国内外模具用钢发展概况[J]。金属热处理,2007,32(1):1-11。
    [44]赵昌盛。国外模具材料的应用及发展[J]。模具制造,2004(8):65-67。
    [45]朱宗元。我国热作模具钢性能数据集(续Ⅹ)[J]。机械工程材料,2001,25(11):39-42。
    [46]朱宗元。我国热作模具钢性能数据集(续Ⅻ)[J]。机械工程材料,2002,26(1):41-43。
    [47]朱宗元。我国热作模具钢性能数据集(续VⅢ)[J]。机械工程材料,2001,25(9):38-42。
    [48]朱宗元。我国热作模具钢性能数据集(续Ⅸ)[J]。机械工程材料,2001,25(10):39-42。
    [49] Jesperson H. Influence of the Heat Treatment on the Toughness of some Hot-Work ToolSteel Grades [J]. Metallrugia Italiana,46(3):40-49.
    [50] Sandberq Odd, Klarenfjord Benqt, Miller Patricia. Comparison of Premium QualityH13and Modified Hot Work Die Steel [J]. Die Cast Engineer,46(3):40-49.
    [51] Anders Persson, Sture Hogmark, Jens Bergstorm. Failure Modes in Field-Tested BrassDie Casting Dies [J]. Journal of Materials Processing Technology,148(1):108-118.
    [52] Anders Persson, Sture Hogmark, Jens Bergstrom. Simulation and Evaluation ofThermal Fatigue Cracking of Hot Work Tool Steels [J]. International Journal of Fatigue,2004,26(10):1095-1107.
    [53]冯晓曾,王家瑛,何世禹。提高模具寿命指南-选材及热处理[M]。北京:机械工业出版社,1994。
    [54] W. C. Mack, et al. Worldwide Guide to Equivalent Irons and Steels [M], ASMInternational, Materials Park, Ohio,2000.
    [55]田部慱輔。金型工具钢の基础から实用まご[J],型技术,1998,(12):31-35。
    [56]压力铸造模具用高级H13钢的验收标准,NADCA#207-1990。
    [57] NADCA Recommended Procedures for H13Tool Steel, NADCA#207-1997.
    [58] Premium and Superior Quality H13Steel and Heat Treatment Acceptance Criteria forPressure Die Casting Dies, NADCA#207-2003.
    [59]刘云旭。金属热处理原理[M]。北京,机械工业出版社,1981。
    [60] G. Roberts, et al. Tool Steels [M].5thEd. ASM International Material Park,1998.
    [61]章守华。合金钢[M]。北京,冶金工业出版社,1981。
    [62]孙珍宝等。合金钢手册[M](上册)。北京,冶金工业出版社,1984。
    [63]赵振业。合金钢设计[M],北京,国防工业出版社,1999。
    [64]闵永安,宋雯雯,吴晓春,张海东。铌微合金化高强度热作模具钢及其制备方法
    [P]。发明专利,申请号:200810040035.2。
    [65]中国模具工业协会模具材料委员会。国内模具新钢种的开发概况[J]。加工工艺,2002(1):4-10。
    [66] F. B. Pickering in “Phase transformations”. London, Institution of Metallurgists,1979,2:VI-7.
    [67] N. Fujita, Ph.D. Thesis, University of Cambridge, February2000.
    [68] R.C. Thomson, M.K. Miller. The partitioning of substitutional solute elements duringthe tempering of martensite in Cr and Mo containing steels [J]. Applied Surface Science,1995,87-88:185-193.
    [69] S.J. Barnard, G.D.W. Smith, A.J. Garratt-Reed, J. Vandersande, in: The Metals Society(Eds.), Proceedings of the International Conference on Advances in the PhysicalMetallurgy and Applications of Steels, Liverpool, London,1981:33.
    [70] T. Tarui, T. Takahashi, S. Ohashi, R. Uemori. APFIM and TEM studies of drawnpearlitic wire [J]. Scripta Materialia,1997,37(8):1221-1230.
    [71] G. Ghosh and G. B. Olson. The isotropic shear modulus of multicomponent Fe-basesolid solutions [J]. Acta Materialia.2002,50:2099-2119.
    [72] H. K. D. H. Bhadeshia. Bainite in steels.2ndedn. Institute of Materials, London,2001.
    [73] P. J. Jacques. Transformation-induced plasticity for high strength formable steels [J].Solid State and Material Science,2004,8(3-4):259-265.
    [74] B.C. DeCooman. Partitioning of carbon from supersaturated plates of ferrite, withapplication to steel processing and fundamentals of the bainite transformation [J].Solid State and Material Science,2004,8(3-4):219-237.
    [75] C. Gupta, G.K. Dey, J.K. Chakravartty, D. Srivastav, S. Banerjee. A study of bainitetransformation in a new CrMoV steel under continuous cooling conditions [J]. ScriptaMaterialia,2005,53(5):559-564.
    [76] J. Pacyna, A. Jedrzejewska-Strach, M. Strach. The effect of manganese and silicon onthe kinetics of phase transformations during tempering-Continuous HeatingTransformation (CHT) curves [J]. Journal of Materials Processing Technology,1997,64:311-318.
    [77] D. Delagnes, P. Lamesle, M.H. Mathon, N. Mebarki, C. Levaillant. Influence of siliconcontent on the precipitation of secondary carbides and fatigue properties of a5%Crtempered martensitic steel [J]. Materials Science and Engineering A,2005,394:435-444.
    [78] Z. Zhang. Tempering effect on cyclic behaviour of a martensitic tool steel [C].6THINTERNATIONAL TOOLING CONFERENCE. P573-589.
    [1]张明星,王军。硅在低碳合金钢中的作用研究(Ⅰ)[J]。金属热处理,1992,8:3-7。
    [2]张明星,王军。硅在低碳合金钢中的作用研究(Ⅱ)[J]。金属热处理,1992,9:7-12。
    [3]杨全民,康沫狂。奥氏体贫碳区性质与贝氏体相变热力学[J]。金属学报,1990,26(4):5-11。
    [4] Bhadeshla H K D H, Edmonds D V. The bainite transformation in a silicon steel[J].Metall Trans,1979,10A (7):895-907.
    [5] Bhadeshla H K D H, Edmonds D V. Metall science,1983,17:411.
    [6] Sauer W. Thermal camber model Thebo[J]. Ironmaking and Steelmaking,1996,23(1):62-64.
    [7]李平安,高军.热作模具钢的热稳定性研究[J].金属热处理,1997,(12):10-12。
    [8] R.P.Skelton. Crack initiation and growth in simple metal compenents during thermalcycling fatigue at high temperature[J]. Applied science publishers London and New YorkLTD,1983:126-135.
    [1]钢的组织转变译文集。姚忠凯等编译。北京:机械工业出版社,1980。
    [2]林慧国,傅代直。钢的奥氏体化转变曲线-原理、测试与应用[M]。北京,机械工业出版社,1988。
    [3] R. Petrov, L Kestens, Y. Houbaert. Characterization of the microstructure andtransformation behavior of strained and nonstrained austenite in Nb-V-alloyed C-Mnsteel[J]. Materials Characterization,2004,53:51-61.
    [4] Melspont C. Phase Transformations and Microstructure-Mechanical Properties Relationsin Complex Phase High Srength Steels, PhD thesis, Department of Materials Science andMetallurgy. Ghent University;2002, p.53.
    [5] R. Kapoor, Lalit Kumar, I. S. Batra. A dilatometric study of the continuous heatingtransformations in18wt.%Ni maraging steel of grade350[J]. Materials Science andEngineering A,2003,352:318-324.
    [6] J. Z. Zhao, C. Mesplont, C. De Cooman. Calculation of the phase transformation kineticsfrom a dilatation curve[J]. Journal of Materials Processing Technology,2002,129:345-348.
    [7] C. Gupta, G. K. Dey, J. K. Chakravartty, D. Srivastav, S. Banerjee. Astudy of bainitetransformation in a new CrMoV steel under continuous cooling conditions[J]. ScriptaMaterialia,2005,53:559-564.
    [8]国家标准局,GB5056-85,钢的临界点测定方法(膨胀法),北京,国家标准出版社,1990。
    [9]国家标准局,GB5057-85,钢的连续冷却转变曲线图的测定方法(膨胀法),北京,国家标准出版社,1990。
    [10]冶金工业,YB/T130-1997,钢的等温转变曲线图的测定,北京,中国标准出版社,1997。
    [11]C. García de Andrés, F. G. Capdevila, L. F. Alvarez, Application of dilatometric to thestudy of solid-solid phase transformations in steels[J]. Materials Characterization,2002,48:101-111.
    [12]J. Farjas, P. Roura. Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equationfor non-isothermal experiments and its analytical solution, Acta Mater.,2006,54:5573-5579.
    [13]T. C. Tszeng, G. Shi. A global optimization technique to identify overall transformationkinetics using dilatometry data-applications to austenitization of steels[J]. Mater. Sci.Eng. A,2004,380:123-136.
    [14]G. Ruitenberg, E. Woldt, A. K. Petford-long. Comparing the Johnson-Mehl-Kolnogorovequations for isothermal and linear heating conditions[J]. Thermochimica Acta,2001,378:97-105.
    [15]P. R. Rios, Relationship between non-isothermal transformation curves and isothermaland non-isothermal kinetics[J]. Acta Mater.,2005,53:4893-4901.
    [16]Gupta C, Dey G K, Chakravartty J K et al. A study of bainite transformation in a newCrMoV steel under continuous cooling conditions. Scripta Materialia,2005,53(5):559-564
    [17]Watté P, Humbeeck J Van, Aernoudt E. Strain ageing in heavily drawn eutectoid steelwires. Scripta Materialia,1996,34(1):89-95.
    [18]Llópiz J, Romero M M, Jerez A et al. Generalization of the Kissinger equation for severalkinetic models. Thermochimica Acta,1995,256:205-211.
    [19]Ozawa T. Kinetics of no-isothermal crystallization. Polymer,1971,12(3):150-158.
    [20]徐祖耀。相变原理[M]。科学出版社,1988,p411。
    [21]Saleh M H, Priestner R. Retained austenite in dual-phase silicon steels and its effect onmechanical properties. Journal of Materials Processing Technology,2001,113(1-3):587-593.
    [22]Caballero F G, García-Junceda A, Capdevila C. Precipitation of M23C6carbides:thermoelectric power measurements. Scripta Materialia,2005,52(6):501-505.
    [23]Kozeschnik E, Bhadeshia H K D H. Influence of silicon on cementite precipitation insteels. Materials Science and Technology,2008,24(3):343-347.
    [24]俞德刚。钢的强韧化理论与设计[M]。上海:上海交通大学出版社,1990。
    [25]Zhu Chen, Xiong X Y, Cerezo A et al. Three-dimensional atom probe characterization ofalloy element partitioning in cementite during tempering of alloy steel. Ultramicroscopy,2007,107:808-812.
    [26]Chang L, Smith G D W, Journal de Physique,1984,45:397.
    [27]Babu S S, Honoa K, Sakurai T. APFIM studies on martensite tempering of Fe-C-Si-Mnlow alloy steel. Applied Surface Science,1993,67(1-4):321-327.
    [28]Hardwicke R. Department of Materials, Oxford University, Oxford,2001, p26.
    [29]Barnard S J, Smith G D W, Garratt-Reed A J. Proceedings of an International Conferenceon Solid-Solid Phase Transformations. In: Aaronson H I, et al.(Eds.) Warrendale A I ME., PA, USA,1982, pp881-885.
    [30]潘晓华,朱祖昌。H13热作模具钢的化学成分及其改进和发展的研究[J]。模具制造,2006,4:78-85。
    [31]LIFSHITZ IM, SLYOZOV VV. J Phys Chem Solids,1961,19:35.
    [32]HILLERT M. JERNKONT Ann,1957,141:67.
    [1] FANG Ming-xing, YE Pin, YAN Zu-tongMgO. STUDY ON TEMPERATUREDEPENDENCE OF ELASTIC MODULI FOR MGO AND OTHER MINERALS;Journal of Anhui Normal University (Natural Science),2004, V27(1):29-33;
    [2] FANG Ming-xing, YAN Zu-tong. TEMPERATURE DEPENDENCE OF BULKMODULUS AND SHEAR MODULUS FOR MgO AND OTHER MINERALS; Journalof Anhui Normal University (Natural Science),2003, V26(1):30-34;
    [3]陈振韬,刘品瑞,付国听。高温弹性模量与弹性变形的研究;鞍钢技术,1997,5:20-24。
    [4]杨慧,王华昌,邹隽。热锻模综合应力与弹性模量关系的有限元分析;锻压技术,2005,4:86-109。
    [5]苗恩铭,费业泰。热膨胀系数同弹性模量数学模型分析;黑龙江科技学院学报,13(2):9-11。
    [6]徐志东,范子亮。金属材料的弹性模量随温度变化规律的唯象解释;西南交通大学学报,1993,2:87-92。
    [7]李付国,娄路亮,耿健。锻模热负荷参数的工程计算方法;西北工业大学学报,2001,19(3):468-471。
    [1]宋武林,罗慧倩,杨群。大截面热作模具钢45Cr2NiMoVSi中残余奥氏体行为的研究[J]。兵器材料科学与工程,1995,Vol.18(2):27-33。
    [2] Sarikaga M, Jhlugan A K and Thomas G. Metall Trans,1983,14A:1121.
    [3] Kacemnh A IO等,国外金属材料,1984,(7):18.
    [4] Cheruru N Sastry等。钢的组织转变译文集,机械工业出版社,1985.
    [5]内田尚治等。铁と钢,1986,72(13):1406。
    [6]河野治等。铁と钢,1986,72(13):1384。
    [7]张伟,赵振业,冯玉书等。等温热处理40CrNi2Si2MoVA钢中残余奥氏体[J]。航空材料学报,1995,Vol.15(2):27-33。
    [8] Thomas G. Metall Trans,1978,9A:439.
    [9] Carlson M F et al. Metall Trans,1979,10A:1273.
    [10]Sarikaya M et al. Metall Trans,1982,13A:2227.
    [11]陈大明等。金属热处理学报,1985,Vol.5(1):1。
    [12]胡光立等。航空材料,1985,Vol.5(1):1。
    [13]Miihkinen V T T, Edmonds D V. Mater Sci&Tech,1987,3:422.
    [14]Lee S et al. Metall Trans,1989,20A:1089.
    [15]Tomita Y, Okawa T. Mater Sci&Eng,1993, A172:145.
    [16]李晓刚,姚治铭,陈华等。残留奥氏体对多冲疲劳裂纹萌生与扩展的影响[J]。金属热处理,1992,11:7-10。
    [17]沙桂英,孟庆昌,冯晓曾。高温奥氏体化对40Cr钢疲劳裂纹扩展行为的影响[J]。金属热处理,1990,11:12-19。
    [18]弓自洁,曹必钢。GCr15轴承钢的热处理发展动向[J]。金属热处理,1992,9:3-6。
    [19]张明星,王军。硅在低碳合金钢中作用的研究[J]。金属热处理,1992,8:3-7;1992,9:7-12。
    [20]Barnard S J, Smith G D W. TMS-AIME,1982,8B:1.
    [21]Lesue W G. Metall. Trans.1978,9A:343.
    [22]张伟,赵振业,淮汝厚。钢中残余奥氏体的动态测量装置及应用[J]。材料工程,1996,7:41-43。
    [23]GB8362-1987,钢中残余奥氏体定量测量X射线衍射仪法[S]。
    [24]何肇基。金属的力学性能[M]。北京,冶金工业出版社,1982.11。
    [25]P. A. Morton. R. B. Gundlach, J. Dodd. Factors Aff ecting Austenite Measurements inHigh-Chromium white Cast Irons [J], AFS Transactions1985.
    [26]R. L. Miller. Volume Fraction Analysis of Phases in Textured Alloys. Trans. ASM,1968,61:592-597.
    [27]Sugimoto K, Usui N, Kobayashi M, et al. Effects of Volume Fraction and Stability ofRetained Austenite on Ductility of TRIP-Aided Dual-Phase Steels [J]. ISIJ Inter.,1992,32(12):1311-1318.
    [28]Sugimoto k I, Iida T, Sakaguchi J, et al. Retained austenite characteristics and tensileproperties in a TRIP type bainitic sheet steel [J]. ISIJ International,2000,(40):902-908.
    [29]赵明琦,伏杰。高铬铸铁中残余奥氏体的x射线衍射定量分析[J],理化检验-物理分册,2005,41(12):610-612。
    [30]王立军,余伟,舞会宾,蔡庆伍。Si对超高强钢残余奥氏体回火稳定性与力学性能的影响[J],材料热处理学报,2010,Vol.31(10):30-36。
    [31]傅敏士编译。测定退火高速钢中碳化物总体积分数的物理化学方法[J],国外金属热处理,1993,Vol.14(2):60-64。
    [32]何崇智。X射线衍射试验技术[M]。上海:科学技术出版社,1988。
    [33]吴建鹏,杨长安,贺海燕。X射线衍射物相定量分析[J],陕西科技大学学报,2005,Vol.23(5):55-58。
    [34]房俊卓,张霞,徐崇福。试验条件对X射线衍射物相定量分析结果的影响[J],岩矿测试,2008,Vol.27(1):60-62。
    [35]景财年,王作成,韩福涛。相变诱发塑性的影响因素研究进展[J],金属热处理,2005,Vol.30(2):26-31。
    [36]Woo Chang Jeong. Effect of Silicon Content and Annealing Temperature on Formationof Retained Austenite and Mechanical Properties in Multi-Phase Steels [J]. METALSAND MATERIALS International, Vol.9, No.2(2003):179-185.
    [37]甘宅平。高铬铸铁残余奥氏体测定方法的探讨[J]。钢铁研究,2002,No.6:18-20。
    [38]李琪,罗家明,刘晓岚,郭鹏。Rietveld方法在钢中残余奥氏体定量测定中的应用[J]。物理测试,2008,Vol.26(4):49-51。
    [39]H. M. Rietveld. Line Profiles of Neutron Powder Diffraction Peak for StructureRefinement [J]. Acta eryst,1967, Vol.22:151.
    [40]王锐,周敬,李文竹,黄磊。 Rietveld精修定量分析钢中残余奥氏体[J]。物理测试,2008,Vol.26(4):46-48。
    [41]李树棠。金属X射线衍射与分析技术[M]。北京:冶金工业出版社,1980。
    [42]马礼敦。近代X射线多晶体衍射试验技术与数据分析[M]。北京:化学工业出版社,,2004。
    [43]吴万国,阮玉忠,黄清明。残余奥氏体定量分析的特殊方法[J]。福州大学学报(自然科学版),2002,Vol.30(3):385-386。
    [44]傅敏士编译。测定退火高速钢中碳化物总体积分数的物理化学方法[J]。国外金属热处理,1993,Vol.14(2):60-64。
    [1] F.Meyer-Olbersleben, N.kasik. The thermal fatigue behavior of the combustor alloysIN617and HAYNES230before and after welding[J]. Metallurgical and MaterialsTransactions A,1999,12(30A):981-989.
    [2] D.Caliskanoglu, I.Siller, R.Ebner, etal. Thermal fatigue and softening behavior of hotwork tool steels[C]. Proceedings of the6thInternational tooling conference. The use oftool steels Erperience and Research, Karlstad, Sweden,10-3, sep.2002:591-601.
    [3] K.Kanazawa, K.Yamaguchi, K.Kobayashi. High temperature low cycle fatiguebehaviour of a type403martensitic stainless steel[J]. Journal of the Society of MaterialsScience Japan,1979,28:393-402.
    [4] R.Zauter, F.Petry, H.J.Christ, H.Mughrabi. Thermomechanical fatigue behavior ofmaterials [M]. ASTM STP,1993,1186:70-78.
    [5] N.Tsujii, G.Abe, K.Fukura, H.Sunada. Effect of testing Atmosphere on low cyclefatigue of hot work tool steel at elevated temperature[J]. ISIJ International,1995,35:920-926.
    [6]李宝山。浅论热疲劳机理[C]。全国第七届热疲劳学术会议论文集,海口,2000:225-235。
    [7] Thielen P N, Fine M E. Cyclic stress strain relations and strain controlled fatigue of4140steels[J]. Acta Metal,1976,(24):1-10.
    [8]曾庆祥,何国求,陈成澍。一种高强度的钢低周疲劳特性及其微观机理的研究[J]。西南交通大学学报,1999,34(2):190-195。
    [9] Akama M, Matsugama S. Plastic deformation behavior of rail under cyclic impactblows[J]. ISIJ international,1989,(29):947-953.
    [10]刘剑虹,何世禹,姚枚。3Cr2W8V钢冷热疲劳裂纹长大方式的原位观察[J]。金属学报,1992,12(28):A527-A529。
    [11]V.Subramnya, Sarma et al. Low cycle fatigue behavior of low carbon microalloyed steel:microstructural evolution and life assessment[J]. Materials Science and Technology,1999,(15):260-264.
    [12]何世禹,李瑛,刘剑虹。5CrMnMo钢的冷热疲劳裂纹的研究[J]。金属学报,1990,4(26):A537-A529。
    [13]S.Taira, M.Fujino, R.Ohtanl. Collaborative study on thermal fatigue properties of hightemperature alloys in Japan[J]. Fatigue of Engineering Materials and Structures,1979,(1):495-508.
    [14]R.P.Skelton. Crack initiation and growth in simple metal compenents during thermalcycling fatigue at high temperature[J]. Applied science publishers London and NewYork LTD,1983:126-135.
    [15]谢豪杰。硕士毕业论文,高热强性热作模具钢的合金化特性研究。2008
    [16]章瑞鹏,蒙华伟。透射电镜萃取复型样品制备关键技术及应用[J]。宁夏电力,2006,6:55-57。
    [17]胡正飞,吴杏芳,王春旭。二次硬化合金钢中多组元强化相M2C碳化物的粗化动力学研究,金属学报,2003,39(6)585-591。
    [18]胡正飞,吴杏芳,梨秀球,王春旭。高CoNi合金钢中二次碳化物的析出与转化,金属学报,2001,37(4)381-385。
    [19]W. S. Owen. Trans. ASM,1954, Vol.46,pp812-829.
    [20]平修二著,郭延玮,李安定译。热应力与热疲劳[M]。国防工业出版社,1984:211-223。
    [21]S.Kocanda著,颜鸣皋,刘才穆译.金属的疲劳与断裂[M].上海:上海科技出版社,1983:49-50A. Melander, S.Haglund. A new model for fatigue failure due to caibideclasters[C].Sweden: Karlstad University,2002:699-710
    [22]董俊,张全慧。高频淬火1Cr12Ni2W1Mo1V钢点蚀萌生机理探讨[J]。机械强度,2001,23(1):32-34。
    [23]袁斌,曾美琴。纳米材料及界面微观结构[J]。材料导报,2002,16(12):3-5。
    [24]哈宽富。断裂物理基础[M]。北京:科学出版社,2000:315-319。
    [25]Na Min, Qian Tong, Xiaochun Wu, et al. A study of microstructural characterization of ahot work tool steel after thermal fatigue treatment[J]. Proceedings Of the8thinternational Tooling Conference, Aachen Germany,2009, Volume1:447-454.
    [26]李熙章,施占华,周凤云等。几种模具钢的热疲劳性能对比研究[J]。安徽工学院学报,1988,7(2):10-20。
    [27]李健,束德林,郭新成。钨系热作模具钢热疲劳特性的研究[J]。安徽工学院学报,1988,7(2):21-31。
    [28]刘立名,段梦兰,柳春图,等。对裂纹扩展规律Paris公式物理本质的探讨[J]。力学学报,2003,35(2):171-175。
    [29]Malm S, Norstom L A.Material related model for thermal fatigue applied to tool steelsin hot-work applications[J]. Metal Science,1979,9:544-550.
    [30]汪勤峰,朱永华,陈莉,等。昆钢冷轧薄板St13抗拉强度与洛氏硬度关系探讨[J]。物理测试,2009,27(5):1-4。
    [31]GB/T1172-1999,黑色金属硬度与强度换算。
    [32]屠世润,吴明,赵志鹏,等。硬度与抗拉强度的关系浅析[J]。机械工业标准化与质量,2009,10:31-34。
    [33]平修二著,郭延玮,李安定译。热应力与热疲劳[M]。国防工业出版社,1984。
    [34]S.R.Mediratta, V.Ramaswamy, P.Raama Rao.Low cycle fatigue behavior of dual-phasesteel with different volume fractions of martensite[J]. Int.J.Fatigue,1985,7:101-106.
    [35]A.M.Sherman, R.G.Davies. The effect of martensite content on the fatigue of adual–phase steel[J]. Int.J.Fatigue,1981,3:36-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700