用户名: 密码: 验证码:
膨胀筛管基管材料性能研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疏松砂岩的膨胀筛管防砂技术是防止井眼坍塌、减小筛管损坏、降低流动阻力、增加油田产量的新型完井技术。由于处于井下不同深度,油气藏开采采用不同方式(如热采井),使得膨胀筛管膨胀和工作处于50-350℃之间的温度场中。膨胀筛管完井是通过膨胀工具,将上述温度场中的膨胀筛管进行膨胀变形,使膨胀筛管紧贴井壁的新型防砂方式。
     目前国内外膨胀筛管基管普遍采用316L不锈钢制造,对316L不锈钢在50-350℃进行膨胀并测试其性能,结果表明:316L不锈钢的强度随着温度的升高而下降,导致膨胀筛管基管的抗挤毁性能降低,严重影响膨胀筛管的安全使用。
     本文针对316L不锈钢制造膨胀筛管基管存在的问题,进行了采用耐热钢15CrMo替代316L不锈钢制备膨胀筛管基管的实验研究,对15CrMo钢进行了双相区亚温淬火的热处理改性,对采用这种经过热处理改性的15CrMo基管进行组织结构和井下温度场条件下的机械性能试验,结果证明:处于这种温度场中,15CrMo钢管的膨胀过程在发生变形产生应变硬化的同时,还发生着动态回复软化过程、动态应变时效过程;同时分析了这种动态形变对膨胀筛管基管性能的影响。
     在模拟井下膨胀速率ε=8.3×10-3mmS-1的条件下,对316L不锈钢和15CrMo钢进行在50-400℃温度范围内的动态拉伸实验,测定了不同温度条件下两种钢材的应力-应变曲线,结果证明:
     对于316L不锈钢,在这一温度范围内的动态拉伸应力-应变曲线,是典型的流变金属的形变-回复曲线。试样进入塑性变形阶段后,随着应变量的增大,应力表现出一直上升的趋势;比较不同温度的应力-应变曲线,发现随着温度的升高,钢材的强度值下降,同时表征金属塑形的延伸率,也呈现明显的下降趋势;
     对于15CrMo钢,动态拉伸应力-应变曲线同样是形变-回复的曲线形状,不同的是在金属进入屈服阶段后各个温度的应力-应变曲线都呈现出明显的锯齿状屈服的动态应变时效特征;而且,比较不同温度的应力-应变曲线,可以看出,15CrMo钢随动态形变温度升高,由于应变时效的缘故,其屈服强度不但没有下降,反而出现稍许的升高。
     利用动态拉伸试验建立的动态应力应变曲线,采用ANSYS10有限元软件中的非线性接触问题算法,对316L及15CrMo基管的割缝参数、割缝方式、连接螺纹进行了有限元分析;在不同温度场条件下,对膨胀后筛管的抗挤毁、抗拉、抗压、抗弯曲载荷能力,进行了系统的计算,建立了基管膨胀后不同温度条件与基管性能的关系。对有限元残余应力云图与其他测试方法进行了对比。
     对于15CrMo钢制成的膨胀筛管基管,采用近代断裂力学和现代损伤力学中的宏微观分析方法,分析了膨胀筛管基管在井下温度场膨胀过程中割缝前端的应力场和割缝前端裂纹开裂和止裂的发生条件,建立了15CrMo钢割缝前端膨胀过程裂纹开裂、止裂与裂纹前端强塑性与组织结构的关系。
     采用动态电化学冲氢的慢应变速率拉伸试验(SSRT)方法,对316L和15CrMo进行了H2S环境下的应力腐蚀敏感性测试对比,为膨胀筛管技术在高含H2S油气田中的应用,提供了基管材料安全界限的测定方法,并给出了316L和15CrMo的应力腐蚀开裂敏感性数值。
     本文为石油天然气工程提供了一个完整的膨胀筛管选材、设计参考规范,这对于膨胀筛管在井下的正常工作具有重要的理论意义和现实意义。
     本文对膨胀筛管的几项关键技术进行了试验研究,采用有限元方法对筛管割缝结构进行了优化设计,选择了几种筛管基管的材料,带有割缝的螺纹膨胀后与筛管本体具有一样大小的内径,变径膨胀工具使得膨胀筛管可以紧贴井壁,增大了完井通径。
     在地面试验及井下模拟试验的基础上,进行了膨胀筛管技术管内防砂的现场应用,膨胀筛管获得了较好的生产效果,筛管膨胀后紧贴套管内壁,膨胀后筛管内径比普通筛管内径增大,有利于增大泄油面积,提高了油井产量。目前,开发的膨胀筛管仅限于管内防砂应用,需要进一步完善膨胀筛管技术,尽快在裸眼井中实现膨胀筛管的应用。
Expandable screen for loose sandstone reservior is a new well completion technology, which can prevent the collapse of borehole, reduce the sieve damage of tube, decrease resistance of the flow into the tube, and increase the output. Due to the expandable screen corresponding to different depths underground and different production methods in the oil and gas reservoirs (which may be thermal recovery wells), causing the temperature field of its expansion and deformation is50-350℃. Expandable Screen Completion is such a new technology of sand control method that the base pipes of expandable screen are expanded and deformed by the expansion tools during that temperature, which makes expandable screen fit the wall of a well snugly.
     Currently,316L stainless steel has been widely used for the base pipes of expandable screen. The results of measured performances of316L stainless steel expanded in the temperature field of50-350℃have proved that the strength of steel decreasing when temperature increasing and this results a decreasing anti-collapse property, which seriously influences the safe of expandable screen.
     This paper focuses on the existing problems of the base pipe which is made of316L stainless steel. The experiment research about the base pipes of expandable screen is carried out, and15CrMo heat-resistant steel may substitute for316L strainless steel. The sub-critical quenching treatment of double phase for15CrMo and the experiment of structure&mechanical property in the downhole temperature field for the treated base pipes of expandable screen have been carried out. The results demonstrate that, when the metal deformation happens in this kind of temperature field, there are not only the work hardening occuring to metal materials, but also the dynamic recovery and dynamic strain aging. This article also analyzes the impact of dynamic deformation on base pipe and performance of the expandable tube.
     In the condition of simulating the expansion rate of ε=8.3×10-3mmS-1, the dynamic tensile tests about316L stainless steel and15CrMo steel in the temperature range of50-350℃have been carried out, and the stress-strain curves of the two kinds of steel have been established in the different temperature conditions. The results show as follow:
     For316L stainless steel, the dynamic tensile stress-strain curve is a typical deformation-recovery curve of the flow metal. The sample is entered the stage of plastic deformation, then stress has shown an upward trend with the increasing strain. The stress-strain curves of different temperatures have been compared and it could be find that the strength of steel decreases with the increasing temperature, at the same time, the elongation δ which characterizes the plasticity also decreases sharply.
     For15CrMo steel, the dynamic tensile stress-strain curve presents the shape of deformation-recovery curve similarly and the difference is that when the metal is entered the yield stage, the stress-strain curves in different temperature have presented the dynamic strain aging which is of the obvious serrated yield. Moreover, the stress-strain curves in different temperatures have been compared and it could be find that with the increasing temperature of dynamic deformation, the yield strength of15CrMo does not decrease, but increases slightly because of the strain aging.
     The dynamic stress-strain curves have been established by the dynamic tensile test in the temperature range above. With the arithmetic of nonlinear contact problems in the finite element software ANSYS10, the slot parameters, the slot mode and the thread of the base pipes made of316L stainless steel and15CrMo are analyzed systematically respectively, meanwhile the collapse strength, axial tensile strength, axial compression strength and bending loads are also calculated systematically. The relationships between the different temperature conditions of the two kinds of materials after expanding and the performances of the base pipes are set up.
     For the base pipes made of15CrMo steel, the macroscopicalµscopical analysis methods of damage mechanics in recent period and fracture mechanics in modern times are adopted, and the stress field, cracking&crack-arresting in slot frontend of base pipes expanded in the underground temperature field are analyzed, and the condition of resulting in cracking and crack-arresting are also been discussed, the relationship between the crack initiation, crack arresting, plasticity in crack tip and structures in the slot frontend of15CrMo steel when being expanded are established.
     The stress corrosion susceptibility tests on316L and15CrMo in the condition of H2S environment are carried out by SSRT, which provid safe limits to the materials adopted currently for the engineering applications in the high H2S condition.
     This paper would supply an integrated reference specification of well completion design for the oil and gas engineering, which will have the important theoretical and practical significances for expandable screen to the production of oil and gas wells.
     In this paper, several key technologies of expandable screen are studied. The optimal design of slotted structure is carried out by using the finite element method. Several base pipe materials of screen are chosen. The slotted thread after expansion has the same diameter as expandable screen. The adjustable expansion tool makes expandable screen close to the wall, which can increase the output.
     The field application of expandable screen is performed after the success of the ground test and simulation test. The practical results show that expandable screen can obtain better production. After expansion, the screen is closed to the wall of the casing, and the diameter of expandable screen is larger than the diameter of the conventional screen. So, the drain area increases, and the oil production increases accordingly. Currently, the application of expandable screen is only used in tube sand control, the technology need to improve as soon as possible, to achieve the applications in open hole wells.
引文
[1]T. Pervez, R. Khan, S. Z. Qamar, et al. Post-expansion Characterization of Expandable Tubular:Progress and Challenges. Petroulem Development Oman,2011. SPE/IADC Middle East Drilling Technology Conference and Exhibition.
    [2]Jesus D. Contreras, Doug Durst, Ammar Al-Qaissy. Maximizing Well Life and Optimizing Exploitation Strategies with Solid Expandable Tubulars. Enventure Global Technology, L.L.C.SPE Production and Operations Conference and Exhibition, June 2010, Tunis, Tunisia
    [3]Nitesh Kumar, Roy Marker, Rune Corneliussen, et al. Mono Diameter Expandable Drilling Liner Applications in Deepwater Drilling. IADC/SPE Drilling Conference and Exhibition, February 2010, New Orleans, Louisiana, USA
    [4]Jim Brock, ScottCosta, Grant Pridco,et al. An Expanded Horizon[J]. Harts E&P,February 2000,pp.115-118.
    [5]郭慧娟,杨庆榜,徐丙贵等.实体膨胀管数值模拟及膨胀锥锥角优化设计[J],石油机械,2010,38(7):30-32.
    [6]张建,肖刚,孙骞等.实体膨胀管膨胀过程数值模拟及结构优化[J].石油矿场机械,2011,40(5):67-70.
    [7]唐明,王璐璐,马建忠等.石油膨胀管的力学性能及膨胀后残余应力的研究[J].西安交通大学学报,2010,44(7):90-92.
    [8]Frans J. Klever. A Design Strength Equation for Collapse of Expanded OCTG[J]. SPE Drilling & Completion, September,2010, Volume25 Number 3, pp.391-408.
    [9]Omar S. Al-Abri. Design of Cone-Launcher System for SET Applications in Well Drilling. SPE Annual Technical Conference and Exhibition,19-22 September 2010, Florence, Italy
    [10]Bill Dean. Expandable Tubulars Provide Versatility.The American Oil & Gas Reporter,September,1999,pp.50-53.
    [11]R.B.Stewart, F.Marketz, W.C.M.Lohbeck. Expandable Wellbore Tubulars[J]. SPE 60766,1999
    [12]Paul Metcalfe, Kevin Martyn, Scott Aitken. Successful Isolation of an Overpressured Gas Zone Using an Expandable Drilling Liner [J]. IADC/SPE 62749,2000
    [13]Chan L. DaigleDonald B. Campo, Carey J.Naquin, et al. Expandable Tubulars:Field Examples of Application in Well Construction and Remediation[J].SPE 62958,2000
    [14]Oladele O.Owoeye, Leste.O.Aihevba, R.A. Hartmann, et al. Optimisation of Well Economics By Application of Expandable Tubular Technology[J]. IADC/SPE 59142,2000
    [15]张广辉等.实体膨胀管补贴工艺的应用[J].科技资讯.2007,(30):30
    [16]赵金洲等.实体膨胀管补贴技术研究新进展[J].石油钻采工艺2006,(04);17-19
    [17]李勇,李学源,付申等.可膨胀套管技术发展及在吐哈油田的应用[J].石油矿场机械.2007,36(12):78-81
    [18]杨斌,练章华,叶顶鹏等.两种典型膨胀管膨胀工艺技术研究[J].钻采工2008,31(4):88-90,93
    [19]陈功剑,李春福,王鹏飞,申文竹.可膨胀管技术及其在石油工业中的应用[J].石油仪器.2009,(02):65-67
    [20]王自力,唐洪明,曾祥林等.金属棉筛管出砂量对储集层物性影响评价实验研究[J].海洋石油.2007,27(4):37-41
    [21]房茂军,曾祥林,梁丹等.稠油出砂规律及出砂模拟实验研究[J].西南石油大学学报2010,32(6):135-138
    [22]Reza Salehi-Moorkani, Gholam Abbas Safian, Abouzar Mirzaei-Paiaman. Successful Applications of Expandable Sand Screen in Persian Oil Fields, Part 1. SPE Production and Operations Conference and Exhibition,8-10 June 2010, Tunis, Tunisia
    [23]Mark Nicol. Application of Multizone Expandable Sand Screen Completions in Deepwater West Africa:Cased-Hole Functionality With Openhole Performance. SPE Annual Technical Conference and Exhibition,19-22 September 2010, Florence, Italy
    [24]Zillur Rahim, Bandar Al-Malki, Adnan Al-Kanaan, Selection of Completion Strategy for Sand Control and Optimal Production Rate-Field Examples from Saudi Arabia's 'Unayzah Sandstone Reservoir. SPE Asia Pacific Oil & Gas Conference and Exhibition,18-20 October 2010, Brisbane, Queensland, Australia
    [25]David Mason, Farouk Benaichaoui, Huw John,et al. Expandable Completion Liners:A Comparison Of Performance With Other Completion Types In The Reg and Teguentour Fields, Algeria [J]. SPE Drilling & Completion, June 2011,Volume 26, Number 2,pp.255-267
    [26]Reza Salehi-Moorkani, Amir Ghasemzadeh. Improvement of the Criteria for Expandable Sand Screen Well Candidate Selection. SPE European Formation Damage Conference,7-10 June 2011, Noordwijk, The Netherlands
    [27]马建民刘永红李夯等.可自适应膨胀防砂筛管结构设计及防砂机理研究[J]石油矿场机械2010,39(9):1-4.
    [28]Colin Jones, Ken Watson, Quentin Morgan. Formation Loading and Deformation of Expandable Sand Screens. SPE European Formation Damage Conference,7-10 June 2011, Noordwijk, The Netherlands
    [29]Fatemeh Deilami, Reza Salehi-Moorkani, Amir Ghasemzadeh, Successful Applications of Expandable Sand Screen in Persian Oil Fields, Part 2, SPE Asia Pacific Oil and Gas Conference and Exhibition,18-20 October 2010, Brisbane, Queensland, Australia
    [30]Giuseppe Ripa, Eddie G. Bowen, Antonio Conte, Years of Success With Premium Expandable Screen System Through Managed Applications and Installation, SPE Annual Technical Conference and Exhibition,19-22 September 2010, Florence, Italy
    [31]Hasan D. Al-Anazi, Adel A. Al-Qahtani, Zillur Rahim,etal Selecting Optimum Completion Strategy-Examples from Saudi Arabia's Unconsolidated Unayzah Reservoir,SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition,15-18 May 2011, Al-Khobar, Saudi Arabia
    [32]张建乔.可膨胀筛管外壳的结构设计及膨胀性能分析[D].中国科学院上海冶金研究所,2000
    [33]陈功剑,李春福,宋开红等.可膨胀管塑性膨胀过程摩擦问题研究[J]工程设计学报,2010,4
    [34]Juanita Cassidy and Chuck Butterfield.Electrochemical Investigation of Oilfield Fluid Corrosion on Expanded Casing[J]. CORROSION 2002, April,7-11,2002,Denver, Co,
    [35]Stephen Willson, Tony Crook & Jian Guo Yu. Assuring the Mechanical Integrity of Expandable Sand Screens[J]. OTC 14314,2002
    [36]张东海.膨胀管技术的现状及未来[J].新疆石油科技,2006,16(4):34-37
    [37]许瑞,刘洁,张玉新等.石油膨胀管材料的设计准则[J].石油机械,33(2005),11.28-31
    [38]李春福,宋开红,申文竹等.一种带有TRIP效应的大膨胀率膨胀管用HSLA铁素体复相钢及钢管制备方法,2012专利申请.
    [39]李广龙,姚圣杰,李文斌等.超细晶粒钢的生产工艺及发展概况[J].鞍钢技术,2012年01期
    [40]雷文.高强度高塑性超细晶低碳钢的制备及力学性能[D].燕山大学,2010
    [41]袁鹏斌,郭生武,吕拴录.低合金高强度油管应力导向氢致开裂腐蚀失效分析[J].腐蚀与防护,2010,31(05):407-410
    [42]贺睿,李雷,郭世敬等.亚温淬火温度对45钢组织性能的影响[J].热加工工艺.2010,39(2):142-143
    [43]付士军.亚温淬火对40Cr钢硬度的影响[J].热加工工艺,2010,39(22):149-150
    [44]王传雅.钢的亚温处理——临界区双相超细化强韧化理论及工艺[M].北京:中国铁道出版社,2003.
    [45]张永峰,王任甫,牛继承等.亚共析钢的亚温淬火及其强韧化[J].热加工工艺,2011,40(4):163-166
    [46]师昌绪.金属的脆性与断裂——晶体缺陷和金属强度(下)[M].北京:科学出版社,1960.
    [47]黄晓夏,张伟强,张世英等40CrNi2Mo钢中频淬火后组织和性能的研究[J].热加工工艺,2010,39(12):173-175
    [48]肖纪美.金属的韧性与韧化[M].上海:上海科学技术出版社,1983.
    [49]马跃新,周子年30CrMnSiA钢亚温淬火工艺研究[J].热加工工艺,2009,38(8):151-153.
    [50]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2003.
    [51]何肇基.金属的力学性质[M].北京:冶金工业出版社,1982.
    [52]王国顺,孙英时.低碳双相钢的二次淬火工艺研究[J].大连铁道学院学报,2001,22(2):75-78.
    [53]侯华兴,郝森,张涛等.低碳贝氏体钢亚温淬火组织与力学性能[A].2005年钢铁年会论文集[C].北京:冶金工业出版社,2005.
    [54]徐金富,胡亚娥.U型钢亚温淬火强韧化工艺的影响因素[J].机械工程材料,2001,25(8):21-24.
    [55]Joshi A. Temper embrittlement of alloy steels[J].ASTM SIP,1952,499:59.
    [56]李小飞.亚温淬火对60Si2Mn钢组织性能的影响[D].河南理工大学,2009年
    [57]邹庆治.4Cr9Si2马氏体耐热钢的调质工艺和回火脆性研究[D].江苏:江苏大学,2003.
    [58]周子年,张肇一,王小俊,等.亚温淬火及其强韧化机理的探讨[J].金属热处理,1984,(7):59-64.
    [59]周子年,马跃新.各种原始组织对亚温淬火强韧性的影响[J].金属科学与工艺,1991,10(4):14-19.
    [60]王传雅,李一力.低碳钢亚温淬火[J].金属热处理,1983,(5):27-34.
    [61]符蓉,王国顺.不同原始组织对20SiMnTi钢亚温淬火力学性能的影响[J].热加工工艺,2002,(3):29-30.
    [62]吴章勤,赵平.二次淬火对15Cr钢组织与性能的影响[J].川汽科技,.999,(3):32-34.
    [63]王传雅.钢的亚温淬火[J].金属热处理,980,(2):1-15.
    [64]俞德刚.钢的组织强度学-组织与强韧性[M].上海:上海科学技术出版社,1983.
    [65]谢敏.回火温度对亚温淬火强韧化效果的影响[J].扬州工学院学报,1993,5(2):9-15.
    [66]李国明.9Ni钢的热处理工艺与组织、性能关系的研究[D].西安石油大学,2007.
    [67]张弗天,楼志飞.Ni9钢的显微组织在变形-断裂过程中的行为[J].金属学报,1994,30(6):240-241.
    [68]李国明,石凯,周勇等.西安焊接技术学会第二年会论文集[C].西安:西安焊接技术学会,2006.
    [69]王华,蔡庆伍,杨跃辉等.9Ni钢中逆转奥氏体及其稳定性的研究[J].热加工工艺,2009,38(4):17-19.
    [70]张永权5NiCrMoV钢强韧化热处理的研究[J].钢铁,1993,28(4):54-59.
    [71]杨跃辉,蔡庆伍,王华等.两相区热处理过程中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响[J].金属学报,2009,45(3):270-274.
    [72]李金许,褚武扬.环境断裂研究进展[J].失效分析与预防,2006,(02)
    [73]肖纪美,褚武扬.环境断裂机理及控制措施[J].腐蚀与防护,1999,(01)
    [74]褚武扬,高克玮.环境断裂微观机理研究[J].科学通报,1997,(23)
    [75]蒋兴钢,褚武扬,肖纪美.氢促进空洞形核的机理[J].中国科学A辑,1994,(06)
    [76]褚武扬,于广华,乔利杰等.钢的氢致沿晶断裂理论[J].中国科学E辑,1996,(05)
    [77]高克玮,褚武扬.环境断裂的位错层次研究[J].材料研究学报,1999,(04)
    [78]李密丹,张天成,吕宏等.氢促进位错发射和运动导致裂纹形核的研究[J].中国科学E辑,1997,(06)
    [79]褚武扬,谷飚,高克玮.应力腐蚀机理研究的新进展[J].腐蚀科学与防护技术,1995(02)
    [80]褚武扬,吕荣邦,乔利杰等.油井管钢氢致开裂门槛值研究[J].金属学报,1998(10)
    [81]H.Spahn, G.H.Wagner, U.Steinhoff. SCC and Hydrogen Embrittlement of Iron-base Alloys,1977:80-110
    [82]戴培良.工程力学中的有限元方法[D].南京航空航天大学,2003,10
    [83]欧阳宇,王菘等.有限元分析-ANSYS理论与应用,北京:电子工业出版社,2003年,第一版
    [84]龚曙光ANSYS基础应用及范例解析,北京:机械工业出版社,2004年
    [85]彭俊生.结构概念分析与SAP2000应用[M].西南交通大学出版社
    [86]邵蕴秋ANSYS8.0有限元分析实例导航,北京:中国铁道出版社,2004年,第一版
    [87]万秀琦,李毅,宋林松等.旋转防喷系统试验装置的研制[J].石油矿场机械,2005,34(3):71-73
    [88]刘忠怀,唐建平.旋转防喷器试验平台的研制[J].石油矿场机械,2007,36(12):71-73
    [89]李安铭,王向杰,黄丽娟.15CrMo钢亚温淬火工艺的研究[J].金属热处理,2007,32(10):56-58.
    [90]王传雅.钢的亚温处理[M].大连:大连铁道学院出版社,1990.
    [91]胡光立,谢希文.钢的热处理[M].西安:西北工业大学出版社,2004.
    [92]金麓,董建萍,王金统.27SiMn亚温淬火工艺研究[J].河北治金,2003,137(5):15-46.
    [93]吴玉萍,肖昌利.临界区淬火铁素体对钢性能的影响[J].三东矿业学院学报,1996,15(9):58-60.
    [94]陈锡栋,杨婕,赵晓栋等.有限元法的发展现状及应用[J].中国制造业信息化,2010,39(11):6-8
    [95]于亚婷,杜平安,王振伟.有限元法的应用现状研究[J].机械设计,2005,(03):6-8
    [96]刘英魁.有限元分析的发展趋势[J].中国新技术新产品,2009,(06):6
    [97]陈维荣,黄涛.国外套管钻井技术的发展和现状[J].石油钻探技术,2002,(01):16-18
    [98]王俊芳,曹鸿斌,孙朝林等.国外套管钻井技术综述[J].断块油气田,2001,(06):67-68
    [99]陈勇,练章华,易浩等.套管钻井中套管屈曲变形的有限元分析[A].2006年石油装备学术研讨会论文集[C],2006
    [100]张晓平,何琳,周炜.凯夫拉纤维增强弧形体挠性接管平衡性研究[J].振动与冲击,2012,31(8):70-73
    [101]陈功剑.膨胀筛管基管材料组织性能研究及有限元分析[D].成都:西南石油大学,2010.
    [102]申文竹.膨胀筛管316L基管井下膨胀过程组织性能及有限元分析[D].成都:西南石油大学,2010.
    [103]楮武阳.断裂力学基础[M].北京:科学出版社,1979.200.
    [104]Krafft J M, Irwin G R.ASTM STP 381,1965:114.
    [105]Kalthoff J F, et al. ASTM STP 627,1977:161.
    [106]Kobayashi A S, et al. Experimental Mechanics,1980,20(3):73-99.
    [107]Barker D B, Chona R, Fourney W L, Irwin G R. NUREG/CR-4996,(ORNL/SUb/79 7778/4),1988.
    [108]ASTM E1221 88, Annual Book of ASTM Standards.1988:832.
    [109]Irwin G R,Wells A A. Metallurgical Reviews,1965,10(38):223-270.
    [110]Crosley P B, Ripling R J.J. Basic Engineering, Trans. ASME, Series D,1969,91(2):525.
    [111]Crosley P B and Ripling E J, Nucl.Eng. Design,1971,17:32.
    [112]Hahn G T. Dynamic Crack Propagation, Sih G C Ed.Noordhoff,Leyden.The Netherlands,1973:649.
    [113]Kanninen M F,ASTM STP627,1977:19.
    [114]Eftis T and Krafft J M, J. Basic Engineering, Trans. ASME, Series D, 1965,87(1):257-263.
    [115]Ripling E J et al. Metall. Trans.A,1982; 13A(4):657-664.
    [116]Furukimi O, Nakano, Y, Ueda S. The Transport and storage of LPG and LNG and LNG Ⅱ,Royal Flemish Soc.Eng.1984:1.
    [117]Ohmori Y et al, Trans. ISIJ,1976,16(6):388-395.
    [118]Furukimi O et al, ibid,1987,27:460.
    [119]Stout R D,Pense A W,WRC Bulletin 278,1982.
    [120]Kanninen M F,Mills E,Hahn G T et al. SSC-265,1977.
    [121]M Jitsukawa, Y Hosoya NKK's State-of-the-arts Flat-rolled products Developed in the Last decade.NKK Technical Review,2003,88:16-57
    [122]Li H M, Cai X, Lv Z P, et al. Analysis of surface oxide films on stress corrosion cracking specimens of type 304 stainless steel in high temperature water containing boric acid and lithium ion. JMater Eng,2004(4):7
    [123]刘智勇,董超芳,李晓刚等35CrMo和00Cr13Ni5Mo硫化氢环境应力腐蚀开裂[J].化工学报,2008,(10)
    [124]Maoqiu Wang, Eiji Akiyama, Kaneaki Tsuzaki. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test[J]. Corrosion science,2007,4081-4096
    [125]Guan Yu-xin, LiYan, Dong Chao-fang, et al. Effect of temperature on stress corrosion cracking of 316L stainless steel in high-temperature water[J]. Journal of University of Science and Technology Beijing,2009,31 (9):1112-1126
    [126]Asakura Y, Karasawa H, et al. Relationships between corrosion behavior of AISI 304 stainless steel in high temperature pure water and its oxide film structures[J]. Corrosion,1989,45(2):119
    [127]Andresen P L. Effects of temperature on crack growth rate in sensitized type 304 stainless steel and Alloy 600[J].Corrosion,1993,49(9):714
    [128]张德康.不锈钢局部腐蚀.北京:科学出版社,1982:291
    [129]N. C. Eisinger, B. C. Puckett. Corrosion Resistance and Predicted Fitness for Use of Expandable Pipe Manufactured from Super-Austenitic Alloy 27-7MO. CORROSION 2005, April,2005, Houston, Tx

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700