用户名: 密码: 验证码:
油井井筒结蜡机理及清防蜡技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在原油生产过程中,结蜡可能发生在储集层、井筒和地面集输管线,油井井筒受到结蜡影响尤为突出。油井井筒结蜡会引起油流通道堵塞,严重影响油井的正常生产,导致油井产量下降。而一旦“蜡堵”,会造成有杆抽油系统蜡卡等生产性故障,直接导致油井停产。本文以油井井筒结蜡为研究对象,基于热力学、流体力学、模式识别和多属性决策理论,采用实验研究、理论计算、数值模拟和现场试验等相结合的方法,系统、深入地研究了油井井筒结蜡机理及相应的清防蜡技术。本文的主要研究成果和结论有:
     ①以石蜡基本性质分析为基础,综合考虑井筒热传导、对流和热辐射影响,建立了有杆泵抽油井井筒温度瞬态预测数学模型;通过有杆泵抽油井井筒温度瞬态预测,结合动态管流实验,处于析蜡点和凝点温度区域的井筒会出现较长井段的结蜡,这一预测的研究结论与现场实际相符;同时,研究表明,含水率、油温、流速和管壁温差等条件的变化会直接影响结蜡井段的改变,而产量、油管尺寸、导热系数、表面粗糙度和开井生产时间等则通过对井筒温度的影响间接影响结蜡井段的变化。
     ②针对采油系统截面突变部位严重结蜡问题,运用FLUENT软件对抽油杆接箍和抽油泵处的流场进行了仿真分析;由不同产量条件下抽油杆接箍和抽油泵处原油流动的速度矢量图和速度云图可知,抽油杆接箍处、固定阀和游动阀周围易出现严重结蜡,而且仅通过增加产量提高流动速度无法有效地解决结蜡问题;为此,应采取相应的清防蜡措施防止蜡沉积。
     ③以直井和定向井内抽油杆柱微元体的力学分析为基础,建立了有杆抽油系统故障诊断数学模型,并采用有限差分法或精细时域积分法对模型进行了精确求解;在此基础上,分别利用交叉验证(K-CV)、遗传算法(GA)、粒子群算法(POS)优化支持向量机(SVM)参数,实现了有杆抽油系统结蜡故障的智能诊断。
     ④通过熵理论、模糊层次分析法、正负理想点逼近法和灰色关联法等多属性决策方法集成,构建了基于多属性决策的油井清防蜡措施优选模型;该模型利用新相对贴近度代替欧式距离和灰色关联度,物理含义更加明确,体现了双基准特性;应用表明,基于多属性决策的油井清防蜡措施优选模型分析问题的客观性和全面性进一步提高,在一定程度上能够实现对原始数据内在规律的挖掘,具有一定的推广和应用价值。
     ⑤通过对清蜡剂、防蜡剂和互溶剂的筛选和互配,研制了由多种表面活性剂、有机溶剂、高分子材料和互溶剂等组成的新型油井用清防蜡剂TH-1;针对现场试验的需要,建立的基于可拓学的间歇加药周期确定方法,能够根据参数的变化准确判断工况,从而合理确定加药周期。室内评价实验和现场试验表明:新型油井用清防蜡剂TH-1能够有效地解决现场油井井筒结蜡问题。
The reservoirs, well bores and surface gathering lines all may be affected byparaffin deposition during the production process of crude oil. The paraffin depositionon the well bore leads to the conduit blockage of oil flow and further severely interfereswith the normal production of oil wells, resulting in the reduction of the oil wellproduction. However, once “paraffin blockage” takes shape, it results in severalproductive faults such as paraffin jam of sucker-rod pumping system, directly leading to
     off production of oil well. This thesis takes paraffin deposition of oil well bore asstudy object and researches into it and corresponding paraffin removal and controltechnology through the combination of experimental study, theoretical calculation,numerical simulation and field test on the basis of thermodynamics, fluid mechanics,pattern recognition and multiple attribute decision making method. And the mainresearch results and conclusions are as follows:
     ①Based on the analysis of paraffin basic features, this thesis comprehensivelyconsiders the effects from heat conduction, convection and heat radiation of well boreand establishes the specific mathematical model for transient temperature prediction ofthe pumping well bore equipped with sucker-rod pump; and it is found that the wellbores in the certain regions may have paraffin deposition for long well section throughthe transient temperature prediction above mentioned integrating test of flow behaviorin well bore when the relevant temperatures stay at the freezing point and paraffinprecipitation point, moreover, this research conclusion conforming to the field practice;meanwhile, the research indicates the changes of conditions including moisture content,oil temperature, flow rate and temperature difference of tubing wall etc. will directlyresult in the change of the targeted well section with paraffin deposition,while thechange of well section with paraffin deposition is affected by some factors such as oilproduction, tubing size, thermal conductivity, surface roughness and flowing productiontime which indirectly change well bore temperature.
     ②The author applied the FLUENT Software to perform the simulation analysison the flow fields of the sucker-rod collar and the subsurface pump for the severeparaffin deposition of the cross-section mutation part in the oil production system; it isfound through the velocity vector and nephogram of crude oil in the sucker-rod collarand the subsurface pump under various oil production that severe paraffin deposition generally occur at sucker-rod collar or around standing valve and traveling valve andthis problem cannot be effectively settled only by increasing yield and raising the flowrate; thus, the relevant measures for paraffin removal and control shall be taken toprevent paraffin deposition.
     ③Based on the mechanical analysis of sucker-rod micro unit in the vertical welland the directional well, this thesis established the mathematic model for fault diagnosisof the sucker-rod pumping system or accurately identifies the root causes and relevantsolution through finite difference method and precise integration; furthermore, on thebasis of the following procedures, the author realized the intelligent diagnosis on theparaffin deposition faults of sucker-rod pumping system respectively by use ofcross-validation (K-CV), genetic algorithm (GA), particle swarm optimization (POS)and parameters of support vector machine (SVM).
     ④This thesis established the optimization model for well paraffin removal&control on the basis of multiple attribute decision making method such as entropy theory,fuzzy analytic hierarchy process, technique for order preference by similarity to idealsolution (TOPSIS), and grey correlation method etc; and this model takes new relativecloseness coefficient instead of Euclidean distance and grey correlation and this modelfeatures clearer physical meanings and shows dual benchmarks; in addition, the applicationindicates that the above-mentioned model based on the multiple attribute decision makingmethod can further improve the objectiveness and comprehensiveness of problem analysis,and this model can realize the exploitation of inherent law in the original data to certainextent. Therefore, it presents certain value of promotion and application.
     ⑤The author developed paraffin remover and inhibitor TH-1for new oil wellswith the various components including surfactant, organic solvent, polymer materialsand mutual solvent etc; and aiming at the demands of field test, the author establishedthe method for determining the interval dosing cycle on the basis of the extension theory,accurately identifying the working conditions in accordance with the parameter changes,thereby, reasonably defining the dosing cycle. In addition, thelabassessment tests andfield tests indicate that the paraffin remover and inhibitor TH-1for new oil wells caneffectively solve the paraffin deposition of oil well bore at site.
引文
[1]王鸿勋,张琪,等.采油工艺原理[M].北京:石油工业出版社.1989:3l8-3l9.
    [2] Weingartea J S,Euehner J A.Methods for predicting wax precipitation and deposition[J].SPE15654,1986.
    [3] Keating J F,Wattenbarger R A.The simulation of paraffin deposition and removal inwellbores[J].SPE27871,1994.
    [4] Hasan A R,Kabir C S.Aspects of wdlbore heat transfer during two phase flow[J].SPEProduction&Facilities,1994(2):211-216.
    [5]范云泽,陈玉霞,穆亚红.抽油机井清防蜡工艺优化[J].油气田地面工程,2002,21(3):41-43.
    [6]石岩,王茂盛.沥青-胶质-石蜡沉积物在采油系统不同工艺设备上的形成特点[J].国外油田工程,2009(6):23-46.
    [7] Hunt E B.Laboratory Study of Paraffin Deposition[J].Journal of Petroleum Technology,1962,14(11):1259-1269.
    [8] Jorda R M.Paraffin Deposition and Prevention in Oil Wells [J].Journal of PetroleumTechnology,1966,18(10):1605-1612.
    [9] Matlach W J,Newberry M E.Paraffin Deposition and Rheological Evaluation of High WaxContent Altamont Crude Oils[R].SPE11851,1983.
    [10] Hamouda A A, Ravnoy J M.Prediction of Wax Deposition in Pipelines and FieldExperience on the Influence of Wax on Drag-Reducer Performance [R].OTC7060,1992.
    [11] Hamouda A A,Viken B K.Wax Deposition Mechanism Under High Pressure and in Presenceof Light Hydrocarbons[R].SPE25189,1993.
    [12] Hamouda A A,Davidsen S.An Approach for Simulation of Paraffin Deposition in Pipelinesas a Function of Flow Characteristics with a Reference to Teesside Oil Pipeline[R].SPE28966,1995.
    [13] Hsu J J,Santamaria M M.Wax Deposition of Waxy live Crude Under Turbulent FlowConditions [R].SPE28480,1994.
    [14] Hsu J J.Wax Deposition Scale-Up Modeling for Waxy Crude Production Lines[R].OTC7778,1995.
    [15] Hsu J J,Lean S J.Validation of Wax Deposition Model by a Field Test[R].SPE48867,1998.
    [16] Mandar S Apte,Hong Quan Zhang,Michael Volk,etal.Investigation of Paraffin DepositionDuring Multiphase Flow in Pipelines and Wellbores-Part1:Experiments[J].Journal ofEnergy Resources Technology,2002,124(3):180-186.
    [17] Philip Manfield,William Nisbet,Jeff Balius,etal.Wax-On,Wax-Off: Understanding andMitigating Wax Deposition in a Deepwater Subsea Gas/Condensate Flowline[R].OTC18834,2007.
    [18]李汉勇,宫敬,于达,邓道明.石油管线蜡沉积试验研究进展[J].石油矿场机械,2010,39(6):5-11
    [19]黄启玉.含蜡原油管道蜡沉积模型的研究[D].北京:中国石油大学(北京),2000.
    [20] Won K.W,Daniel F.Thermodynamic model of liquid-solid equilibria for natural fats andoils[J].Fluid Phase Equilibr,1993,82:261-273.
    [21] Won K.W.Thermodynamic calculation of cloud point temperature and wax PhaseComposition of refined hydroearbon mixtures[J].Fluid Phase Equilibr,1989,53:377-396.
    [22] Burger E D,Perking T K,Striegler J H.Studies of wax deposition in the Trans A laskapipeline[J].JPT,June,1981,12(3):1075-1086.
    [23] Bern P A,Withers V R,Cairns R J R.Wax deposition in crude oil pipelines[J].EUR206,1980,16(4):3-5.
    [24]王玮,宫敬.石油多相管流蜡沉积研究进展[J].化工机械,2006,33(4):198-203.
    [25]黄启玉,李立.剪切弥散对含蜡原油蜡沉积的影响[J].油气储运,2002,21(12):30-33.
    [26]陈德春,刘均荣,吴晓东,李光.含蜡原油井筒结蜡剖面的预测模型[J].石油太学学报(自然科学版),1999,23(4):36-38,44.
    [27] Gibbs S G.Predicting the behavior of sucker rod pumping systems[J].Journal of PetroleumTechnology,1963,15(7):769-778.
    [28] Gibbs S G,Neely A B.Computer diagnosis of down hole conditions in sucker rod pumpingwells[J].Journal of Petroleum Technology,1966,18(1):91-98.
    [29]李子丰,李敬元,马兴瑞,等.油气井杆管柱动力学基本方程及应用[J].石油学报,1999,20(3):87-90.
    [30]梁若筠.定向井有杆抽油系统诊断力学模型[J].石油矿场机械,2001,30(5):19-21.
    [31]宋开利.液力反馈型空心杆采油工艺系统工况预测模型分析[J].石油大学学报(自然科学版),2003,27(5):88-91.
    [32] LIU Leiming,TONG Chaonan,QIANG Jianqin.A uniform and reduced mathematical modelfor sucker rod pumping[J].Computational Science ICCS2004,6:372-379.
    [33]王凯.定向井有杆抽油泵系统诊断模型的建立[J].中国石油大学学报(自然科学版),2010,34(2):130-135.
    [34] LIU Jing-cheng,WANG Hong-tu,LI Wen-hua,ZENG Shun-peng.Study of the method tointelligent fault diagnose sucker rod pumping system in directional well and it'sapplication[J].DISASTER ADVANCES,2010,3(4):462-466.
    [35]蔡道钢.有杆泵故障智能诊断方法[D].南充:西南石油大学石油工程学院,2006.
    [36]王昱.有杆泵抽油井工况远程监测与故障诊断系统研究[D].武汉:武汉理工大学自动化学院,2006.
    [37]刘清友,何玉发.有杆抽油系统诊断方法研究与应用[J].西南石油大学学报(自然科学版),2008,30(1):1-4.
    [38]潘志坚,葛家理.自适应神经网络示功图识别[J].石油学报,1996,17(3):104-109.
    [39] Nazi G M.Application of Artificial Network to Pump Card Diagnosis[C].SPE25420.
    [40]韩国庆,吴晓东,张庆生,等.示功图识别技术在有杆泵工况诊断中的应用[J].石油钻采工艺,2003,25(5):70-75.
    [41]徐芃,徐士进,尹宏伟.有杆抽油系统故障诊断的人工神经网络方法[J].石油学报,2006,27(2):107-110.
    [42]吴伟,陈国定,何焱.基于人工神经网络和灰度矩阵的泵功图诊断[J].西安石油大学学报(自然科学版),2007,22(3):119-121.
    [43]蒋琼,李训铭.优化的BP网络在抽油井故障诊断中的应用研究[J].计算机与现代化,2010,184(12):182-185.
    [44]张正辉,刘娟,张正刚.小波神经网络在抽油机井故障诊断中的应用[J].大庆石油学院学报,2004,28(5):43-45.
    [45]任伟建,段玉波,张正刚,董宏丽.基于紧框架小波神经网络的抽油机井故障诊断[J].控制与决策,2006,21(3):315-318.
    [46]爨莹.基于灰色理论的抽油井泵功图诊断技术研究[J].微电子学与计算机,2005,22(3):77-80.
    [47]黄翔.抽油机井故障诊断智能集成系统的研究[J].石油天然气学报(江汉石油学院学报),2007,29(3):156-158.
    [48]李卓,刘斌,刘铁男,任珍珍.基于支持向量机的抽油机故障诊断研究[J].微计算机信息,2006,22(3-1):209-211.
    [49] Newberry M.E.Formation damage prevention through the control of paraffin and asphaltenedeposition[C].SPE13796.
    [50]杜新媛,胡冬妮,兰利生.原油中蜡的沉积和影响沉积的因素及防蜡原理[J].新疆石油学院,1995,7(1):70-75.
    [51] Zhang J L,Wu C J,Li W,etal.Study in Performance Mechanism of Pour Point Depressionwith Differential Scanning Calorimeter and X-ray Differ Action Method[J].Nature GasOil,2003,(82):1419-1426.
    [52]陈军.液哨式声波发生器在油田防垢防蜡方面的应用[J].油气地质与采收率,2004.11(3):68-70.
    [53]郭辽原,徐登霆,蒋炎,等.微生物单井防蜡技术与应用[J].江汉石油学院学报,2006,28(2):117-119.
    [54]武继辉,孙军,贺志刚,等.油井清、防蜡技术研究现状[J].油气田地面工程,2004,23(7):14-14.
    [55] Hwang C L,Yoon K.Multiple Attribute Decision Making:Methods and Applications[M].New York:Springer-Verlag,1981.
    [56] H.Nurmi,Approach to collective decision making with fuzzy preference relation[J].FuzzySets and systems,1981(6):249-259.
    [57]徐玖平,吴巍编.多属性决策的理论与方法[M].北京:清华大学出版社,2006.
    [58] H.S.Lee,Optimal consensus of fuzzy opinion under group decision making environment[J].Fuzzy Sets and systems,2002(132):303-315.
    [59] Li D F.Multi-attribute decision making models and methods using intuitionistic fuzzy sets[J].Journal of Computer and System Sciences,2005(1):73-85.
    [60] Saaty T L.The Analytic Hierarchy Process [M].New York:McGraw-Hill,1980.
    [61]蔡雷.模糊多属性决策理论与方法研究[D].成都:西南交通大学,2004.
    [62] Fishburn P.C.,Lexicographic Order, Utilities and Decision Rules:A Survey[J],ManagementScience,1974,20(11):1442-1471.
    [63] Huber G.P.,Methods for Qulifying Subjective Probabilities and Multiple-Attribute Utility[J],Decision Science,1974,5(3):430-458.
    [64] Zadeh H.Fuzzy sets[J].Information and Control,1965,8(3):338-356.
    [65] Aouam T,Chang S I,Lee E S.Fuzzy MADM:An out ranking method[J].European J ofOperational Research,2003,145(2):317-328.
    [66] Gau W L,Buehrer D J.Vague sets[J].IEEE Transactions on Systems,Man and Cybernetics,1993,23(2):610-614.
    [67] Bustince H,Burillo P.Vague sets are intuifionistic fuzzy sets[J].Fuzzy Sets and Systems,1996,79:403-405.
    [68]金良超,李为柱.多目标决策的优序法及其应用[J].系统工程理论与实践,1984,4(3):9-16.
    [69]李占明.多目标决策的效用函数方法[J].系统工程,1989,7(5):52-54.
    [70]郭耀煌,贾建民.综合评价与排序[J].系统工程理论与实践,1990,10(2):66-67
    [71]王应明.基于加权法和线性分配法的有限方案多目标决策新方法[J].控制与决策,1992,(4):259-264.
    [72]邓聚龙著.灰理论基础[M].武汉:华中科技大学出版社,2002,2.
    [73]唐琮沅,景保峰,基于可拓评价法的第三方逆向物流企业选择研究[J].生产力研究,2008(7).
    [74]费罗因德,等.石蜡产品的性质、生产及应用[M].北京:中国石化出版社,1988.
    [75]敬加强,杨莉,罗平亚,刘初明.含蜡原油结构的存在性研究[J].西南石油学院学报,2001.23(6):60-70.
    [76]陈大钧.油田应用化学[M].北京:石油工业出版社,2006.
    [77] A.R.Hasan, C.S.Kabir.Heat Transfer During Two-Phase Flow in Wellbores: Part Ⅱ:Wellbore Fluid Temperature[C].SPE22948,1991:695-708.
    [78] Ramey.Wellbore Heat Transmission[J].JPT, April1962:427-435.
    [79]何世明,何平,尹成,等.井下循环温度模型及敏感性分析[J].西南石油学院学报,2002,24(1):57-60.
    [80] Satter, A.Heat Losses During Flow of Steam Down a Wellbore[J].JPT,1965,7:845-850.
    [81] Eiclcmeier, Ersoy.Wellbore Temperature and Hot Losses During Production or Injectionoperations[C].21st Annual Reah.Meeting of Petroleum Soeiety of CIM, Calgary,1970.
    [82] Keller,H.H.Temperature Distribution in Circulating Mud Columns[C].SPE3605,1973.
    [83] Kabir C.S,Koubar G.E.Determining Circulating Fluid Temperature in Drilling[C].Work overand Well Control Operations,SPE24581,1992.
    [84]单学军,张士诚,王文雄,等.稠油开采中井筒温度影响因素分析[J].石油勘探与开发,2004,31(3):136-139.
    [85] Hasan, A R., Kair, C.S., and Lin, D.Analytic Wellbore Temperature Model for TransientGas-Well Testing[C], SPE84288,2003.
    [86] Kocabas.An analytical model of temperature and stress fields during cold-water injectioninto an oil reservoir[C].SPE88762,2006:282-292.
    [87] A.R.Hasan.A robust steady-state model for flowing-fluid temperature in complexwells[C].SPE109765,2007.
    [88]陆金甫,顾丽珍,陈景良.偏微分方程差分方法[M].北京:高等教育出版社,1988.
    [89]高家锐.动量、热量、质量传输原理[M].重庆:重庆大学出版社,1987.
    [90] Gibbs.S.G.Predicting the behavior of sucker rod pumping system Sell Develentment[J].JPT,July,1963.
    [91] Gibbs.S.G.A General methods for predicting rod pumping system performance[C].SPE6850,1977.
    [92] Nolen D.J,Jennings J.W.An Investigation of Inalytical and Numerical Sucker Rod PumpingMathematical Models Text[C].SPE16919,1987.
    [93] John.G.S.An expert Rod Pumping System Perdictive Simulator.Theta Enterprise[J].JournalOf Microwave Power,1993,18(1):90-31.
    [94]董世民,李宝生.水平井有杆抽油系统设计[M].北京:石油工业出版社,1996.
    [95] Lukasiewicz.S.A.Dynamic Behavior of the suker rod string in the inclined well[C].SPE21665,1991.
    [96]余国安,邬亦炯,王国源,等.有杆泵抽油井的三维振动[J],石油学报,1989,10(2):76-82.
    [97] Gibbs.S.G.Design and Diagnosis Of Deviated Rod Pumping Wells[C].SPE22787,1991.
    [98] Zhong W X, Williams F W.A precise time step integration method, Proceedings of theInstitute of Mechanical Engineers, Part C[J].Journal of Mechanical Engineering Science,1994,28(6):427-430.
    [99]崔振华,余国安,安锦高,等.有杆抽油系统[M].北京:石油工业出版社,1994.
    [100]钟万勰.结构动力方程的精细时程积分[J].大连理工大学学报,1994,34(2):131-136.
    [101] Wang B J,Wang Y H.Pseudo random number generator based on back propagation neuralnetwork[J].Semiconductor Photonics and Technology.2007,13(2):165-167.
    [102]王金东,陈浩然.有杆抽油系统波动方程的精细逐步积分法[J].大连理工大学学报,2000,40(3):276-279.
    [103] Vapnik V N.An overview of statistical learning theory[J].IEEE Trans NeuralNetwork,1999,10(5):988-999.
    [104] V Vapnik.Nature of Statistical Learning Theory[M].New York:Springer Verlag,2001.
    [105]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2004.
    [106]许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484.
    [107] Hsu C-W,Lin C-J.A comparison of methods for multiclass support vector machine[J].IEEETransactions on Neural Networks,2002(13):415-425.
    [108] Chen Kuan-Yu.Forecasting systems reliability based on support vector regression withgenetic algorithms[J].Reliability Engineering&System Safety,2007,92(4):423-432.
    [109] EBERHART R,KENNEDY J.A new optimizer using particle swarm theory[C].Proc.6thInt.Symposium on Micro Machine and Human Science,1995.
    [110] KENNE DY J,EBERH ART R C.Particle Swarm Optimization[C].Proceedings of IEEEInternational Conferencev on Neural Networks.Perth:IEEE Neural Networks Society,1995:1942-1948.
    [111]段晓东,王存睿,刘向东.粒子群算法及其应用[M].沈阳:辽宁大学出版社,2007.
    [112]许树柏.实用决策方法——层次分析法原理[M].天津:天津大学出版社,1988.
    [113]李荣平,李剑玲.多指标统计综合评价方法研究[J].河北科技大学学报,2004,25(1):85-87
    [114] Ma J,Fan Z P,Huang L H.A subjective and objective integrated approach to determineattributes weights[J].European J o f Operational Research,1999,112(2):397-404.
    [115]于洋,李一军.基于多策略评价的绩效指标权重确定方法研究[J].系统工程理论与实践,2003,(8):8-15.
    [116]陈雷,王延章.基于熵权系数与TOPSIS集成评价决策方法的研究[J].控制与决策,2003,18(4):456-459.
    [117] C.T.Chen.Extensions of the TOPSIS for group decision making under environment[J].FuzzySets and systems,2000,(114):1-9.
    [118] Hepu Deng,Chung-Hsing Yeh.Inter-company comparison using modified TOPSIS withobjective weights[J].Computers and Operations Research,2000,27(10):963-973.
    [119] Ta-Chung,Chul.Facility location selection using fuzzy TOPSIS under groupdecisions[J].International Journal of Uncertainty,Fuzziness and Know ledge-BasedSystems,2002,10(6):687-701.
    [120] Serafim Opricovic,Gwo-Hshiung Tzeng.Compromise solution by MCDM methods: Acomparative analysis of VIKOR and TOPSIS[J].European Journal of OperationalResearch,2004,(156):445-455.
    [121] D.L.OLSON.Comparison of Weights in TOPSIS Models [J].Mathematical and ComputerModeling,2004,40:721-727.
    [122] Ma Y L,Wang J Y.Comprehensive evaluation of gray correlation analysis based on idealplans[J].Systems Engineering and Electronics,2002,24(7):51-54.
    [123]宋久鹏,董大伟,高国安.基于层次分析法和灰色关联度的方案决策模型研究[J].西南交通大学学报,2002,37(4):463-466.
    [124]孙晓东,焦玥,胡劲松.基于灰色关联度和理想解法的决策方法研究[J].中国管理科学,2005,13(4):63-68.
    [125]张启根.塔河油田胶质沥青质抑制及清除研究[D].成都:西南石油大学化学化工学院,2008.
    [126]范振中,王丙奎,刘庆旺.油基清防蜡剂FLO的研究与应用[J].精细石油化工展.2003.4(11):5-9.
    [127]李明忠,赵国景,张贵才,葛际江等.油基清蜡剂性能研究[J].石油大学学报,2004,28(2):61-63.
    [128]陈伟君,韩双,刘凤英.油井清防蜡剂、原油降粘剂、地层解堵剂的研究与现场应用[J].石油工程建设,2005(5):6-9.
    [129] Hemandez O C,Hensley H,Brill J P,etal.Improvements in Single-Phase Paraffin DepositionModeling[J].SPE84502,2004:236-239.
    [130] Changfeng Zhu,Qingrong Wang.Application of Matter-element and Information Entropy inDistribution Analysis of Railway Stations Dealing with Refrigeration Containers[J].Journalof Sysytems Science and Information,2009,7(2):141-146.
    [131]王洪利.基于可拓数据挖掘的智能决策支持系统[J].统计与决策,2008,6:57-59.
    [132]李航,赵桂红.机场安全可拓预警模型研究[J].计算机工程与应用,2009,45(14):238-240,244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700