用户名: 密码: 验证码:
水力旋流分离过程数值模拟与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力旋流器是利用离心力场实现分离的高效分离设备,具有结构简单、操作方便、分离效率高、生产能力大等优点,广泛应用于选矿、化工、生物等众多工业领域。旋流器结构简单,但内部流场却十分复杂,设计与操作精度要求高。分析旋流器内部多相流流场规律,掌握旋流器参数与流场分布之间的关系,是旋流器设计和应用的关键所在。
     本文通过计算流体力学(CFD)方法,对水力旋流器内气液和液固湍流流场进行数值模拟研究。在时均纳维斯托克斯(Navier-Stokes, N-S)方程之上建立旋流器流场的湍流描述,采用雷诺应力湍流(RSM)模型、自由表面多相流动(VOF)模型和斯托克斯拉格朗日(DPM)模型对经典75mm旋流器内气液和液固流场进行了数值计算,并将模拟结果与文献数据进行比较,发现计算结果和文献实验数据吻合良好。同时利用激光粒子测速仪(PIV),测量了旋流器内全流场瞬时的速度,并将实验结果与CFD计算结果进行对比,计算结果和实验结果相吻合,进一步确定CFD计算模型的准确性。
     利用所建立的数学模型,考察了旋流器流场形成和发展过程,得到了旋流器内速度场与压力场的分布规律,发现旋流器内不同部位空气柱非定常运动规律各不同:圆柱段与底流口附近的的空气柱,一旦形成后,其直径和形态就不再随时间而变化,属于稳态流场;而圆锥段的空气柱直径和形态随时间变化则十分剧烈。同时考察了入口速度对空气柱稳定性的影响,发现入口速度增加导致旋流器内流体切向速率增加,从而导致中心区域压力下降,空气柱直径增大,但空气柱的非定常流动规律不受入口速度变化的影响。
     结构参数是影响旋流器分离性能非常重要的因素,采用所建立的多相流数学模型,对旋流器几何结构参数进行了详细的分析,重点考察了旋流器(直径140mm)结构参数变化对旋流器内流场发展、压力降、分流比和分级效率的影响。结果表明:溢流口直径对流场的影响最大。整体来看,空气柱的直径大小随着溢流口的直径增大而急剧增大,当溢流口直径达到100mm时,整个旋流器内空气柱占据了大部分;随着溢流口直径增加,空气柱趋于稳态运动,当溢流口直径超过65mm时,空气柱在旋流器内一旦形成就不再变化;通过分离效率计算发现溢流口直径为50mm分离效率最高。研究还考察了进料管直径、溢流口直径、溢流口插入深度、底流口直径、柱段长度和锥角这些因素对旋流器性能影响。
     通过考察环境压力对旋流器分离性能影响,发现环境压力的变化会对旋流器的流场和性能产生重要影响。通过对旋流器流场的研究,发现环境压力的变化会影响旋流器内空气柱的结构和形态,继而影响空气柱内以及空气柱附近的流场,造成旋流器速度场的变化,从而导致分离效率的改变;同时通过不同大小旋流器研究对比,发现环境压力对大直径旋流器的影响大于小直径旋流器。
     基于实验室与模拟计算研究结果,设计了应用于高原低气压环境的旋流器组,旋流器组由两级旋流器构成,并成功应用于青海盐湖钾肥股份有限公司年产10万吨氯化钾生产线。工业运行数据表明,产品中硫酸钙得到有效脱除,精制后产品质量满足工业氯化钾产品要求。
Hydrocyclone is an efficient separation device, in which the multiphase separation can be performed by the centrifugal force field. Because of its high separation efficiency and capacity for the multiphase flow system, hydrocyclone has been applied widely in mineral processing, chemical industry and biological engineering, representing a broad application prospect. In spite of the simple geometry of the hydrocyclone, the dynamics and mechanisms of fluid flow are extremely complicated, and the design and operation for the hydrocyclone separation need to be controlled more precisely. To keep the hydrocyclone running at the best performance, the multiphase flow field in the hydrocyclone should be clarified, and the effects of the parameters on the flow field should be understood very well.
     Based on the simulation of computational fluid dynamics (CFD), this paper presents a study for the gas-liquid and liquid-solid turbulent flow field in hydrocyclones. The RANS and the combined Reynolds Stress Model (RSM), the Volume of Fluid (VOF) model and Dispersed phase model (DPM) are used to describe the gas-liquid and liquid-solid flow field in a classic hydrocyclone with75mm diameter. By comparing the simulation results with the experimental data in the reference, the good qualitative agreements between the simulation results and experimental data can be found, that validates the reliability of the developed mathermetical model. The flow field in a hydrocyclone is measured using particle image velocimetry (PIV), good qualitative agreements between the simulated results and PIV data are presented. The developed model is deemed to be an adequate methodology for the investigation of the flow field in a hydrocyclone for the separation flow system.
     The formation and development of the flow field in the hydrocyclone are investigated by the simulation using the developed mathematical model, and the pressure distribution within the hydrocyclone is also reprensted. By analyzing the formation mechanism of air core in the hydrocyclone, it is found that the state of the air core is variational:The shape and diameter of air core, mainly on the cylinder section and spigot, are at a steady state, which do not vary with the time; But, at the same time, the high non-steady state is quarried from the part of the conical section, the shape and diameter of air core vary as soon as it forms. This paper also studies the effects of different inlet velocities on the state of air core. The simulated results show that the tangential velocity inside the hydrocyclone increases with the acceleration of inlet velocity, which results in the decrease of pressure at the central area and the increase of air core. But it has no influence on the air core's state.
     The dimensions of body construction are also important factors to affect the separartion performance in the hydrocyclone. Based on the simulated results done using the deveopled the multi-phase mathematical model, the analysis of each geometrical dimension is made. This paper focuses on the effects of structural parameters on the flow field inside the hydrocyclone with140mm diameter. The flow features are represented in terms of flow field, pressure drop, split ratio and separation efficiency. The simulated results show that the diameter of vortex finder is the most important factor on the flow field. As a whole, the diameter of air core will increase with the increase of the vortex finder diameter. When the diameter of vortex finder is more than100millimetres, the air core will take up most of the hydrocyclone; the steady state of air core will get better with the increase of the vortex finder diameter. When the diameter of vortex finder is more than65millimetres, the whole air core is at a steady state, which does not vary with the time. The best separation efficiency can be achieved when the diameter of vortex finder is50millimetres. The effects of the diameters of inlet, vortex finder and spigot; the lengths of cylindrical part and vortex finder; cone angle of the hydrocyclone on separation efficiency have also been investigated.
     By analyzing the effect of atmospheric pressure on separation performance, it is found that the atmospheric pressure has great influence on the flow field and separation performance of hydrocyclone. It is found that the atmospheric pressure has an impact on the shape of air core formed in hydrocyclone, which results in the change of the flow field inside and near the air core, and the variation of velocity field inside the hydrocyclone leads to the difference of separation efficiency. Comparing three kinds of hydrocyclones with different body size, the atmospheric pressure has greater impact on the hydrocyclones with bigger diameter.
     Based on the research achievements of experiment and simulation, the two-stage hydrocyclone unit is designed and optimized for the separation of calcium sulfate (CaSO4) crystal in100,000tons/year KCl production line setup by QingHai Salt Lake Potash limited company. The online experimental data obtained with the optimized operating conditionds, indicate that the content of calcium sulfate in the product is greatly reduced, and industrial potassium chloride can be produced with a higher quality.
引文
[1]D. Bradley. The Hydrocyclone [M]. London:Pergamon,1965
    [2]L. Svarovsky. Hydrocyclone [M]. Lancaster, PA:Technomic Publishing Inc.,1984
    [3]D.D. Patil, T.C. Rao. Technical Note Classification Evaluation of Water Injected Hydrocyclone [J]. Minerals Engineering.1999,12(12):1527-1532
    [4]M. Habibian, M. Pazouki, H. Ghanaie, et al. Application of hydrocyclone for removal of yeasts from alcohol fermentations broth [J]. Chemical Engineering Journal.2008,138: 30-34
    [5]K. Saengchan, A. Nopharatana, W. Songkasiri. Enhancement of tapioca starch separation with a hydrocyclone:effects of apex diameter, feed concentration, and pressure drop on tapioca starch separation with a hydrocyclone [J]. Chemical Engineering and Processing.2009,48:195-202
    [6]庞学诗.水力旋流器工艺计算[M].北京:中国石化出版社,1997
    [7]庞学诗.水力旋流器技术与应用[M].北京:中国石化出版社,2010
    [8]孙洪英.水力旋流器机组分离技术[J].塑料制造,2008,5:66-67
    [9]赵东.水力旋流器发展概况及趋势[J].矿业工程,2007,4:15-16
    [10]褚良银,陈文梅,戴光清等.水力旋流器[M].北京:化学工业出版社,1998
    [11]E. Bretney. Cyclone [P]. US453105,1891
    [12]C.A. Petty, S.M. Parks. Flow structures within miniature hydrocyclones [J]. Minerals Engineering.2004,17:615-624
    [13]袁惠新,姚宇婷,付成双.高粘度固液分离技术研究进展[J].过滤与分离,2011,21(2):43-46
    [14]J.C. Culliban, R.A.Williams, C.R. Cross. New Insight into Hydrocyclone Operation [J]. Part. Sci. Technol.2003,21:83-103
    [15]Z.S. Bai, H.L.Wang, S.T.Tu. Experimental study of flow patterns in deoiling hydrocyclone [J]. Miner. Eng.2009,22:319-323
    [16]周旭东,李宝元.水力旋流器在磨矿分级中的应用[J].中国化工贸易.2012,4(1):180-181
    [17]刘恒柏,周於成,朱江.新型旋流器在磨矿分级回路中的应用[J].有色金属:选矿部分.2011,4:56-57
    [18]刘曙,万选志,黄向阳.水力旋流器在程朝选厂一段磨矿分级系统的工业试验[J].现代矿业.2011,10:93-95
    [19]朱从杰.磷矿选别水介质旋流器的研制[J].矿产保护与利用.1997,6:34-38
    [20]朱从杰.磷矿选别水介质旋流器的研制[J].化工矿山技术.1997,26(6):56-58
    [21]郭风芳,郑川文.重介质旋流器选别一次粉矿的探讨[J].海南矿冶.1998,8(2):8-10
    [22]纪玉华,赵伟,陈传海等.高庄煤矿选煤厂煤泥分级浓缩技术改造[J].选煤技术.2008,5:43-46
    [23]张高峰,陈建中,沈丽娟等.分级浓缩浮选工艺探讨[J].煤炭加工与综合利用.2010,1:18-20
    [24]杨保东.母子旋流器在金矿氰化浸前浓缩中的应用[J].矿业快报(增刊).2006,10:79-82
    [25]王勇.国外液-液相水力旋流器分离技术[J].华北石油设计.1994,1:41-52
    [26]何童,王勇.水力旋流器在高含水期原油脱水中的应用[J].天然气与石油.1995,13(3):12-15
    [27]刘晓敏,赵立新.处理含油污水的水力旋流器配套工艺[J].大庆石油学院学报.2002,26(4):65-67
    [28]何睿,张继伟.液-液型水力旋流器在锦州25-1油田污水处理中的应用[J].长江大学学报:自然科学版.2011,8(7):46-48
    [29]张士瑞,薛敦松.分离超细催化剂颗粒的微型固液旋流器[J].石油化工.2007,36(12):1234-1238
    [30]夏福军,邓述波,张宝良.水力旋流器处理聚合物驱含油污水的研究[J].工业水处理.2002,2(22):14-16,62
    [31]李树君,高原.水力旋流器在食品工业中的应用[J].农业机械学报.2001,9:103-106
    [32]马祖达,姜祥勋.淀粉洗涤旋流器的研究与开发[J].包装与食品机械.2008,2:8-11
    [33]何迎春,卢晓江.水力旋流器分流比对纸浆纤维筛分的影响[J].造纸科学与技术.2005,4:47-48,55
    [34]夏正兵,袁惠新.旋流器管式厨房油烟净化技术的研究[J].化工装备技术.2008,2:8-11
    [35]S.K. Kawatra, A.K. Bakshi, M.T. Rusesky. Effect of Viscosity on the Cut (d50) Size of Hydrocyclone Classifiers [J]. Minerals Engineering.1996,9(8):881-891
    [36]N.A. Artamonov, M.S. Bakirov. Improvement of the operating efficiency of hydrocyclones [J]. Chemical and Petroleum Engineering.1986,22(3):93-94
    [37]L.Y. Chu, W.M. Chen, X.Z. Lee. Effect of structural modification on hydrocyclone performance [J]. Separation and Purification Technology.2000,21:71-86
    [38]L.Y. Chu, W.M. Chen, X.Z. Lee. Enhancement of hydrocyclone performance by controlling the inside turbulence structure [J]. Chemical Engineering Science.2002,57: 207-212
    [39]王立洋,郑之初,郭军等.液固旋流器分离效率的研究[J].力学与实践.2007,29(2):24-27
    [40]段文益,王振波,金有海.导叶式水力旋流器分离性能测试研究[J].石油机械.2009,37(2):1-4
    [41]徐会,肖美男.水力旋流器单相和两相流实验研究[J].辽宁科技大学学报.2009,32(3):252-255
    [42]郭广东,邓松圣,张福伦.操作参数对固-液-液三相水力旋流器分离效率的影响[J].石油矿场机械.2010,39(5):17-19
    [43]石晓敏,崔裕涛,韦鲁滨.水力旋流器主要参数对分离精度的影响[J].黑龙江科技学院学报.2011,21(3):210-214
    [44]蒋明虎,蒋巍,张国云.细颗粒分离水力旋流器的结构设计及试验[J].大庆石油学院学报.2005,29(1):58-60
    [45]刘永平,龚俊,刘晶.黄河水泥沙分离用水力旋流器的溢流颗粒中位径分析[J].排灌机械.2007,25(3):34-37
    [46]刘永平,龚俊,刘晶.黄河水泥沙分离用水力旋流器分离效率的研究[J].排灌机械.2006,24(5):33-35
    [47]王振波,陈志军,金有海.结构参数对旋流沉降组合油水分离器性能的影响[J].化工机械.2010,37(1):1-5,35
    [48]赵志峰,都丽红,李秋萍.电厂烟气脱硫脱水系统的研究[J].化工装备技术.2004,25(2):7-10
    [49]都丽红,李秋萍.电厂烟气脱硫中脱水系统的研究[A].2004年全国化工、石化装备国产化暨设备管理技术交流会会议论文集.82-85.
    [50]王用民.旋流除沙器的结构设计[J].华北石油设计.1998,(1):23-25
    [51]褚良银.固液分离用水力旋流器的设计[J].化工装备技术.1995,16(1):10-13
    [52]G. Pearse. Some manufactures of hydrocyclones [J]. Mining Magazine.1988, (2): 106-109
    [53]B.A. Wils. Factors affacting hydrocyclones performance [J]. Mining Magazine.1980,(2): 142-146
    [54]R.A. Arterburn. The sizing and selection of hydrocyclones [J]. Krebs Engineers, Merlo Park CA.1976,1-8
    [55]刘昌寅,黄斗忠.联邦德国的高岭土工业[J].矿产综合利用.1989,6:27-31
    [56]黄春源,程军,胡承凡.WDS水力旋流器在大冶铁矿选厂的应用[J].矿业快报.2008,12:82-84
    [57]T. Neesse, J. Dueck. Dynamic modelling of the hydrocyclone [J]. Minerals Engineering. 2007,20:380-386
    [58]W. Chen, N. Zydek, F. Parma. Evaluation of hydrocyclone models for practical applications [J]. Chemical Engineering Journal.2000,80:295-303
    [59]M.A.Z. Coelho, R.A. Medronho. A model for performance prediction of hydrocyclones [J]. Chemical Engineering Journal.2001,84:7-14
    [60]Q.G. Zhao, G.D. Xia. A theoretical model for calculating pressure drop in the cone area of light dispersion hydrocyclones [J]. Chemical Engineering Journal.2006,117: 231-238
    [61]J.G. Dueck, O.Ⅴ. Matvienko, T. Neesse. Modeling of Hydrodynamics and Separation in a Hydrocyclone [J]. Theoretical Foundations of Chemical Engineering.2000,34(5): 428-438
    [62]马艺,王振波,金有海.水力旋流器径向压力分布及能耗分析[J].流体机械.2009,37(12):27-30,4
    [63]褚良银,陈文梅,李晓钟等.水力旋流器湍流数值模拟及湍流结构[J].高校化学工程学报.1999,13(2):107-113
    [64]褚良银,陈文梅,李晓钟等.水力旋流器湍流结构控制与能耗降减[J].化工学报.1998,49(6):760-763
    [65]王升贵,王志斌,陈文梅等.旋流器分离过程随机特性的物理描述[J].化工装备技术.2005,25:16-21
    [66]王志斌,陈文梅,褚良银等.旋流分离器中固体颗粒随机轨道的数值模拟及分离特性分析[J].机械工程学报.2006,42(6):34-39
    [67]戴光清,李建明,陈文梅.水力旋流器湍流场数值模拟[J].化工学报.1997,48(1):123-125
    [68]L.A. Rovinsky. Application of Separation Theory to Hydrocyclone Design [J]. Journal of Food Engineering.1995,26:131-146
    [69]A.F. Nowakowski, W. Kraipech, R.A. Williams, et al. The hydrodynamics of a hydrocyclone based on a three-dimensional multi-continuum model [J]. Chemical Engineering Journal.2000,80:275-282
    [70]S.G. Wang, Z.B. Wang, W.M. Chen. A Physical Description on Stochastic Characteristics of the Separation Process in Hydrocyclones [J]. Chem. Equip. Technol. 2005,6(5):16-21
    [71]刘育嘉,刘仁桓,金有海.液-固水力旋流器两相流动数值模拟研究进展[J].化工装备技术.2010,31(4):13-15
    [72]S. Schuetz, G. Mayer, M. Bierdel, et al. Investigations on the flow and separation behaviour of hydrocyclone using computional fluid dynamics [J]. International Journal of Mineral Processing.2004,73:229-237
    [73]梁政,王进全,任连城等.固液分离水力旋流器流场理论研究[M].北京:石油工业出版社,2011
    [74]任连城,梁政,钟功祥等.基于CFD的水力旋流器流场模拟研究[J].石油机械.2005,33(11):15-17,46
    [75]J.C. Cullivan, R.A. Williams, C.R. Cross. Understanding the hydrocyclone separator though computational fluid dynamics [J]. Trans.IchemE.2003,81:455-466
    [76]曹卫,方莹.水力旋流器流场的CFD模拟研究[J].煤矿机械.2009,30(11):64-66
    [77]A.K. Sahu, P. Kumar, A.W. Patwardhan, et al. CFD modelling and mixing in stirred tanks [J]. Chemical Engineering Science.1999,54:2285-2293
    [78]M.D. Slack, S.D. Porte, M.S. Engelman. Designing automated computational fluid dynamics modelling tools for hydrocyclone design [J]. Minerals Engineering.2004,17: 705-711
    [79]J.C. Cullivan, R.A. Williams, T. Dyakowski, et al. New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics [J]. Minerals Engineering.2004,17:651-660
    [80]A.F. Nowakowski, J.C. Cullivan, R.A. Williams, et al. Application of CFD to modelling of the flow in hydrocyclones. Is this a realizable option or still a research challenge? [J]. Minerals Engineering.2004,17:661-669
    [81]刘刚,雒定明,景雪伟.水力旋流器分离性能的数值模拟[J].天然气与石油.2007,25(4):45-48
    [82]李慧,刘万福.固-液分离水力旋流器内速度场数值模拟研究[J].机械与设备.2010,36(35):337-338
    [83]李玉星,张劲松,冯叔初.CFD在液-液水力旋流器能耗及分离效率预测中的应用[J].流体机械.2001,29(10):20-24
    [84]李玉星,张劲松,冯叔初等.CFD在液液水力旋流器入口结构及尺寸优化中的应用[J].化工机械.2002,29(1):11-14
    [85]K.W. Chu, B. Wang, A.B. Yu, et al. CFD-DEM Modelling of Multiphase Flow in Dense Medium Cyclones [J]. Powder Technology,2009,193 (3):235-247
    [86]张攀峰邓松圣张福伦等.动态太旋流器内油水两相分离数值模拟[J].机床与液压.2012,40(9):116-118
    [87]王尊策张井龙徐艳等.不同操作参数下动态水力旋流器内部油水两相流动的数值模拟[J].化工机械.2012,39(2):194-197
    [88]琚选择,李自力,孙卓辉等.论液-液水力旋流器的CFD方法[J].石油矿场机械.2008,37(7):14-19
    [89]赖艳萍,赖维,卢晓江.圆柱形水力旋流器流场CFD软件的数值模拟[J].轻工机械.2007,3:20-22
    [90]李慧君,张斌.进料方式对水力旋流器径向流场影响的研究[J].华北电力大学学报.2009,36(4):42-46
    [91]袁惠新,姚宇婷,付双飞.锥段长度对微型旋流分离器内流场影响的数值模拟[J].化工机械.2011,38(3):341-344
    [92]盛磊祥,陈国明,张彦廷.基于CFD的动态水力旋流器正交试验分析[A].第三届中国CAE工程分析技术年会论文集.466-473
    [93]杨茉,朱佳奇,孙佳明.颗粒材料特性对水力旋流器分离效率的影响[A].中国工程热物理学会学术会议论文.649-654
    [94]赵立新,朱宝军.不同湍流模型在旋流器数值模拟中的应用[J].石油机械.2008,36(5):56-60
    [95]P. He, M. Salcudean, Ⅰ.S. Gartshore. A numerical simulation of hydrocyclone [J]. Institution of Chemical Engineers.1999,77:429-441
    [96]J.A. Delgadillo, R.K. Rajamani. A comparative study of three turbulence-closure models for the hydrocyclone problem [J]. Int. J. Miner. Process.2005,77:217-230
    [97]刘海生,贺会群,艾志久等.雷诺应力模型对旋流器内流场的数值模拟[J].计算机仿真.2006,23(9):243-245,271
    [98]K.U. Bhaskar, Y.R. Murthy, M.R. Raju, et al. CFD simulation and experimental validation studies on hydrocyclone [J]. Minerals Engineering.2007,20:60-71
    [99]T.J. Olson, R.V. Ommen. Optimizing hydrocyclone design using advanced CFD model [J]. Minerals Engineering.2004,17:713-720
    [100]B. Wang, K.W. Chu, A.B. Yu. Numerical Study of Particle-Fluid Flow in a Hydrocyclone [J]. Ind. End. Chem. Res.2007,46:4695-4705
    [101]M.S. Brennan, M. Narasimha, P.N. Holtham. Multiphase modelling of hydrocyclones-prediction of cut-size [J]. Minerals Engineering.2007,20:395-406
    [102]M. Narasimha, M. Brennan, P.N. Holtham. Large eddy simulation of hydrocyclone-prediction of air-core diameter and shape [J]. Int. J. Miner. Process.2006,80:1-14
    [103]J.A. Delgadillo, R.K. Rajamani. Exploration of hydrocyclone designs using computational fluid dynamics [J]. Int. J. Miner. Process.2007,84:252-261
    [104]D.F. Kelsall. A study of the motion of solid particle in a hydraulic cyclone [J]. Trans. I. Chem. E.1952,30:87
    [105]J. Bergstrom, H. Vomhoff. Experimental hydrocyclone flow field studies [J]. Separation and Purification Technology.2007,53:8-20
    [106]M.J. Doby, W. Kraipech, A.F. Nowakowski. Numerical prediction of outlet velocity patterns in solid-liquid separators [J]. Chemical Engineering Journal.2005,111:173-180
    [107]P. Bamrungsri, C. Puprasert, C. Guigui, et al. Development of a simple experimental method for the determination of the liquid field velocity in conical and cylindrical hydrocyclones [J]. Chemical Engineering Research and Design.2008,86:1263-1270
    [108]王志斌,杨宗伟,褚良银等.水力旋流器内空气核形成过程研究[J].石油机械.2009,37(12):5-8
    [109]J. Bergstrom, H. Vomhoff, D. Soderberg. Tangential velocity measurements in a conical hydrocyclone operated with a fibre suspension [J]. Minerals Engineering.2007,20: 407-413
    [110]D. Bradley, D.J. Pulling. Flow patterns in the hydraulic cyclone and their interpretation in terms of performance [J]. Trans. Ⅰ. Chem. E.1959,34:37
    [111]K.T. Hsieh, R.K. Rajamani. Mathematical Model of the Hydrocyclone Based on Physics of Fluid Flow [J].AIChE J.1991,37(5):735-746
    [112]G.Q. Dai, W. M. Chen, J. M. Li, et al. Experimental study of solid-liquid two-phase flow in a hydrocyclone [J]. Chemical Engineering Journal.1999,74:211-216
    [113]J. Collantes, F. Concha, B. Chine. Axial symmetric flow model for a flat bottom hydrocyclone [J]. Chemical Engineering Journal.2000,80:257-265
    [114]L.Y. Chu, W. Yu, G. J. Wang, et al. Enhancement of hydrocyclone separation performance by eliminating the air core [J]. Chemical Engineering and Processing. 2004,43:1441-1448
    [115]Q. Yang, H.L. Wang, J.G. Wang, et al. The coordinated relationship between vortex finder parameters and performance of hydrocyclones for separating light dispersed phase [J]. Separation and Purification Technology.2011,79:310-320
    [116]B. Chine, F. Concha. Flow patterns in conical and cylindrical hydrocyclones [J]. Chemical Engineering Journal.2000,80:267-273
    [117]M.J. Doby, A.F. Nowakowski, E. Nowak, et al. Numerical and experimental examination of swirl flow in a cylindrical container with rotating lids [J]. Minerals Engineering.2007,20:361-367
    [118]L.P.M. Marins, D.G. Duarte, J.B.R. Loureiro, et al. LDA and PIV characterization of the flow in a hydrocyclone without an air-core [J]. Journal of Petroleum Science and Engineering.2010,70:168-176
    [119]X.L. Wu, M.X. Shi. Visualization of the Precessing Vortex Core in a Cyclone Separator by PIV [J]. Chinese J. Chem. Eng.2003,11(6):633-637
    [120]Z.L. Liu, J.Y. Jiao, Y. Zheng, et al. Investigation of Turbulence Characteristics in a Gas Cyclone by Stereoscopic PIV [J]. AIChE J.2006,52(12):4150-4160
    [121]Z.L. Liu, Y. Zheng, L.F. Jia, et al. Stereoscopic PIV studies on the swirling flow structure in a gas cyclone [J]. Chemical Engineering Science.2006,61:4252-4261
    [122]Z.L. Liu, J. Y. Jiao, Y. Zheng. Study of axial velocity in gas cyclones by 2D-PIV, 3D-PIV, and simulation [J]. China Particuology.2006,4(3-4):204-210
    [123]Z.B. Wang, L.Y. Chu, W.M. Chen, et al. Experimental investigation of the motion trajectory of solid particles inside the hydrocyclone by a Lagrange method [J]. Chemical Engineering Journal.2008,138:1-9
    [124]Y.F. Chang, C.G. Ilea,?.L. Aasen, et al. Particle flow in a hydrocyclone investigated by positron emission particle tracking [J]. Chemical Engineering Science.2011,66: 4203-4211
    [125]T. Neesse, J. Dueck. Air core formation in the hydrocyclone [J]. Minerals Engineering. 2007,20:349-354
    [126]M.A. Hararah, E. Endres, J. Dueck, et al. Flow conditions in the air core of the hydrocyclone [J]. Int. J. Miner. Process.2010,23:295-300
    [127]R. Sripriya, M.D. Kaulaskar, S. Chakraborty, et al. Studies on the performance of a hydrocyclone and modeling for flow characterization in presence and absence of air core [J]. Chemical Engineering Science.2007,62:6391-6402
    [128]苗青,袁惠新,王跃进.水力旋流器内空气柱的形成规律初探[J].江南大学学报(自然科学版).2002,1(4):380-383
    [129]V. Krishna, R. Sripriya, V. Kumar, et al. Identification and prediction of air core diameter in a hydrocyclone by a novel online sensor based on digital signal processing technique [J]. Chemical Engineering and Processing.2010,49:165-176
    [130]G.Q. Dai, J.M. Li, W.M. Chen. Numerical prediction of the liquid flow within a hydrocyclone[J]. Chemical Engineering Journal.1999,74:217-223
    [131]赵立新,将明湖,孙德智.水力旋流器流场分析与测试[J].化工机械.2005,32(3):139-142
    [132]O.V. Matvienko. Analysis of turbulence models and investigation of the structure of the flow in a hydrocyclone [J]. Journal of Engineering Physics and Thermophysics.2004, 77(2):316-323
    [133]J.A. Delgadillo. Modeling of 75-and 250-mm Hydrocyclones and Exploration of Novel Designs Using Computational Fluid Dynamics [D]. Salt Lake City, The University of Utah,2006
    [134]J.A. Delgadillo, R.K. Rajamani. Computational fluid dynamics prediction of the air core in hydrocyclones [J]. International Journal of Computational Fluid Dynamics.2009, 23(2):189-197
    [135]S.M. Mousavian, A.F. Najafi. Numerical simulations of gas-liquid-solid flows in a hydrocyclone separator [J]. Arch Appl Mech.2009,79:395-409
    [136]S.M. Mousavian, A.F. Najafi. Influence of geometry on separation efficiency in a hydrocyclone [J]. Arch Appl Mech.2009,79:1033-1050
    [137]B. Wang, A.B. Yu. Numerical Study of the Gas-Liquid-Solid Flow in Hydrocyclones with Different Configuration of Vortex Finder [J]. Chem. Eng. J.2008,135:33-42
    [138]B. Wang, A.B. Yu. Numerical Study of Particle-Fluid Flow in Hydrocyclones with Different Body Dimensions [J]. Miner. Eng.2006,19:1022-1033
    [139]K.W. Chua, S.B. Kuanga, A.B. Yu, et al. Particle scale modelling of the multiphase flow in a dense medium cyclone:Effect of fluctuation of solids flowrate [J]. Miner. Eng. 2012,33:34-45
    [140]B. Wang, A.B. Yu. Computational Investigation of the Mechanisms of Particle Separation and "Fish-Hook" Phenomenon in Hydrocyclones [J]. AIChE J.2010,57: 1703-1715
    [141]L.Y. Wang, Z.C. Zheng, Y.X. Wu, et al. Numerical and Experimental Study on Liquid-Solid Flow in a Hydrocyclone [J]. Journal of Hydrodynamics.2009,21(3): 408-414
    [142]张丹,陈晔.锥角对固-液水力旋流器流场及其分离性能的影响[J].流体机械.2009,37(8):11-16
    [143]夏泰淳.工程流体力学[M].上海:上海交通大学出版社.2006
    [144]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社.2006
    [145]K.T. Hsieh. Phenomenological Model of the Hydrocyclone [D]. Salt Lake City:The University of Utah,1988.
    [146]琚选择,李自力,孙卓辉.液-液水力旋流器三维网格生成技术研究[J].石油机械,2008,36(8):43-46,66
    [147]G Tarjan. On the Theory and Use of the Hydrocyclone[J].Mineral Processing,1981, (1): 532,563
    [148]R. Gupta, M.D. Kaulaskar, V.Kumar, et al. Studies on the understanding mechanism of air core and vortex formation in hydrocyclone [J]. Chem. Eng. J.2008,144:153-166
    [149]T. Dyakowski, R.A. Williams. Prediction of air-core size and shape in a hydrocyclone [J]. Int. J. Miner. Process.1995,43:1-14
    [150]J. Romero, R. Sampaio. A numerical model for prediction of the air-core shape of hydrocyclone [J]. Mechanics Research Communications,1999,26 (3):379-384
    [151]M.R. Davidson. An adaptive method of prediction the air core diameter for numerical models of hydrocyclone flow [J]. Int. J. Miner. Process.1995,43:167-177
    [152]F. Concha, A. Barrientos, J. Montero, et al. Air core and roping in hydrocyclones [J]. Int. J. Miner. Process.1996,44-45:743-749
    [153]R.A. Williams, O.M. Ilyas, T. Dyakowski, et al. Air core imaging in cyclonic separators: implications for separator design and modeling [J]. Chem. Eng. J.1995,56:135-141
    [154]戴干策,陈敏恒.化工流体力学[M].北京:化学工业出版社,第二版.2005
    [155]宋彭生.盐湖及相关资源开发利用进展(续一)[J].盐湖研究,2000,8(2):33-58
    [156]宋彭生.盐湖及相关资源开发利用进展(续二)[J].盐湖研究,2000,8(3):44-61
    [157]王石军.关于我国钾肥工业的发展现状与对策[J].现代化工,1999,19(2):7-10
    [158]宋彭生.盐湖及相关资源开发利用进展(续完)[J].盐湖研究,2000,8(4):50-69
    [159]程芳琴,成怀刚,崔香梅.中国盐湖资源的开发历程及现状[J].无机盐工业,2011,42(7):1-12
    [160]钱晓杨,马国华,党国民.反浮选—冷结晶法生产氯化钾的几个工艺问题[J].化肥设计,1999,(5):51-52
    [161]汪贵元.反浮选—冷结晶生产氯化钾工艺控制的探讨[J].海湖盐与化工,2002,31(3):27-29
    [162]王石军.盐田滩晒光卤石矿生产氯化钾工艺综述[J].无机盐工业,1999,31(3):23-25
    [163]X.F. Song, M.H. Zhang, J. Wang, et al. Optimization Design for DTB Industrial Crystallizer of Potassium Chloride [J]. Ind. Eng. Chem. Res.2010,49:10297-10302
    [164]张婉萍,王相田,宋兴福.盐湖粗光卤石中晶体的分布[J].化工学报,2005,56(6):1124-1129
    [165]张婉萍.光卤石多盐体系颗粒赋存状态及多相分离过程[J].上海:华东理工大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700