用户名: 密码: 验证码:
基于主客体化学和大分子自组装的响应性功能材料和纳米组装结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大分子自组装是聚合物(或大分子包覆的前躯体)在弱相互作用力(范德华力、氢键、疏水作用、静电相互作用、电荷转移等)的诱导下自发地形成具有规整结构体系的过程。当前,大分子自组装已发展成为构筑新颖结构和新型功能高分子材料的重要途径。主客体相互作用是超分子化学的一种重要形式,是组装过程的主要驱动力。作为第二代主体分子的环糊精(Cyclodextrin)和第四代主体分子的葫芦脲(Cucurbituril)由于其自身独特的性质而备受关注。在水溶液中,环糊精和葫芦脲可以选择性地结合多种有机、无机以及生物分子形成主客体包结络合物。由于环糊精和葫芦脲与一些客体分子及其衍生物的包结络合与客体分子的匹配度(如β-环糊精与金刚烷的匹配度高于偶氮苯)、构象(如偶氮苯)、价态(二茂铁以及联吡啶盐和萘)等密切相关,因此可通过化学诱导、光控或者电化学来控制包结络合物的形成与解离。这些主客体体系在设计、制备刺激响应型功能材料以及超分子纳米器件中具有广阔的发展前景。本论文正由此展开,并主要包含以下四部分内容:
     I.具有双重响应性的超分子杂化水凝胶我们首先利用RAFT聚合方法合成了一端为偶氮苯基元、另外一端为温敏性的聚异丙基丙烯酰胺嵌段、中间为亲水的聚N’N-二甲基聚丙烯酰胺的响应性嵌段共聚物(AZO-(PDMA-b-PNIPAM))。在水溶液中,嵌段共聚物可与β-CD@QDs形成由包结络合驱动的“星状”杂化包结络合物(Hybrid inclusion complex,简称HIC),其结构为以纳米粒子为核、聚合物为壳以及最外端为温敏性的PNIPAM嵌段。并利用UV-Vis光谱、TGA、动态光散射以及TEM等表征证明了HIC的结构。当其溶液温度高于LCST时,由于最外端PNIPAM嵌段的疏水聚集,浓度高于7wt%的HIC溶液会形成凝胶。我们利用ARES流变仪系统地研究了凝胶的溶胶-凝胶过程以及凝胶的形成机理。我们得到的凝胶分别由两个独立的交联点来支撑:即AZO-(PDMA-b-PNIPAM)嵌段共聚物端基的偶氮苯与β-CD@QDs纳米粒子表面上环糊精的主客体相互作用和高于LCST时疏水聚集的PNIPAM嵌段。因此,当引入竞争性的主体分子α-环糊精或客体分子金刚烷时及或当体系的的温度降低到LCST对,就能实现凝胶-溶胶的转变,我们还利用流变定量地研究了这两种外界刺激下凝胶-溶胶的转变过程以及解离机理。同时我们还系统地研究了嵌段共聚物的聚合度、嵌段共聚物与纳米粒子的摩尔比等因素对凝胶形成的影响以及不同温度下HIC的荧光性质。
     Ⅱ.基于石墨烯的快速响应超分子杂化水凝胶我们以6-单氨基乙Z二胺基-β-环糊精和氧化石墨烯为原料,利用环氧开环反应制备了水溶性的表面p-环糊精修饰的石墨烯(CD-G)。CD-G可与端基含有偶氮苯基元的AZO-(PDMA-b-PNIPAM)嵌段共聚物形成主客体相互作用驱动的“刷状”的杂化石墨烯包结络合物(HGIC),其结构是以无机的片层石墨烯为核,嵌段共聚物为壳,最外端为温敏的PNIPAM嵌段。并利用TGA、UV-Vis光谱、X-光电子能谱,Raman光谱、TEM、AFM等手段对HGIC的结构进行了系统的表征。由于最外端的PNIPAM嵌段的温敏性质,浓度为10wt%的HGIC溶液会在接近溶液的LCST时由于PNIPAM的疏水聚集而迅速地形成超分子复合水凝胶,并利用动态流变以及粘度-温度变化定量地研究了溶胶-凝胶的形成过程以及凝胶的形成机理。同时我们基于一系列不同PDMA嵌段和PNIPAM嵌段的共聚物制备了7种不同的HGIC,考察了粘度-在LCST附近变化,结果表明,随着嵌段共聚物中PDMA与PNIPAM嵌段聚合度比率的增加,相对应的HGIC体系的凝胶点的温度以及粘度拐点的温度也在增加。同时我们发现由相同的嵌段共聚物构筑的HIC与HGIC,在相同的流变测试条件下,HGIC形成凝胶时的速率要远高于HIC,同时凝胶点的温度也远低于HIC,这可能是由于柔性以及超薄的石墨烯片层更有助于3维凝胶网络的形成,进而展示了快速的凝胶形成过程。
     Ⅲ.基于葫芦脲的双重包结络合能力的非共价连接胶束我们设计并合成了侧链含有双联吡啶盐基元的亲水性共聚物(P(Mv-co-DMA))(?)口端基含有萘基元的温敏性聚合物聚N-异丙基丙烯酰胺(Np-PNIPAM),当引入葫芦[8]脲后,由于该主体分子可同时包结联吡啶季铵盐和萘两种客体分子,两聚合物会形成由主体分子增强的电荷转移相互作用驱动的超分子接枝聚合物,并利用UV-Vis光谱和ITC证明了其结构的形成。当高于LCST时,由于PNIPAM的温敏性质,形成的接枝聚合物就会自组装形成主体增强的电荷转移相互作用驱动的非共价连接胶束。我们利用动态光散射监视的胶束的形成过程,TEM图像表明形成了直径在200-250nm的球状结构的胶束。在胶束中按照一定的摩尔比加入还原剂连二亚硫酸钠,体系的流体力学半径Rh显著的降低。此部分研究工作还在进行中。
     Ⅳ.基于葫芦脲的双重包结络合能力的聚合物水凝胶我们首先设计并合成了三种不同分子量,且侧链含有萘基元的亲水性聚合物(P(NP-co-DMA))以及双联吡啶二聚体,并初步探索了加入葫芦[8]脲后,由包结络合作用引发的超分子水凝胶的形成条件。
Macromolecular self-assembly is the process that polymers (or macromolecules capped precursors) form well-defined structure driven by various weak interactions (van der waal' force, hydrogen-bond, electrostatic interaction, hydrophobic interaction etc). Currently, Macromolecular self-assembly becomes an important approach to construct new structures and new functional materials. Host-guest chemistry is an core contents of supramolecular chemistry, as well as important driving force of self-assembly. As the respective second generation and fourth generation of host molecules, cyclodextrin and cucurbituril have attracted extensive attention due to their unique structure and properties. In aqueous solution, cyclodextrin and cucurbituril can selectively encapsulate different organic molecules, inorganic molecules and biomolecules to form host-guest complexes. Because inclusion complexation between host and guest is greatly dependent on their matching degree (e.g.β-Cyclodextrin is more favorable to form inclusion complexes with adamantane than azobenzene), configuration (e.g. azobenzene), valence state (e.g. ferrocene or viologen and naphthalene) of guest molecules, formation and dissociation of the inclusion complex can be controlled by chemical induction, photo-irradiation or electrochemistry. These inclusion complexation systems have great potentials in designing and preparing stimulated functional materials and supramolecular nano-devices. This thesis majorly starts from this background, and contains four parts as follows:
     I. Dual stimuli-responsive hybrid supramolecular hydrogel AZO-(PDMA-b-PNIPAM) block copolymers with azobenzene groups on one end, themo-sensitive PNIPAM block on the other end and hydrophilic PDMA block in the middle were prepared through RAFT polymerization. In aqueous solution, the block copolymer and β-CD@QDs can form novel star-shaped hybrid inclusion complexes (HIC) in which β-CD@QDs nanoparticles is the core and block copolymer is the shell with PNIPAM block as the out layer. The supramolecular structure was confirmed by a combination of techniques, including UV-Vis spectrum, TGA, DLS and TEM. When the solution temperature was heated above LCST, HIC solution with a concentration above7wt%would form hydrogel due to the hydrophobic aggregation of PNIPAM block at the out layer. The sol-gel transition and hydrogel formation mechanism was studied by rheology. The inclusion complexation between azobenzene groups of AZO-(PDMA-b-PNIPAM) block copolymers and cyclodextrin on the surface of β-CD@QDs nanoparticles as well as collapsed PNIPAM domains served as two different and independent crosslinks. Then, gel-sol transition occurred when competitive host or guest, i.e. α-cyclodextrin or adamantane was added or the solution temperature was cooled below LCST of PNIPAM. Furthermore, the mechanism of the gel-sol transition and dissociation mechanism of hydrogel following the two external stimuli were quantitatively studied by rheology. The effects of polymerization degree of block copolymers, molar ratio between block copolymer and β-CD@QDs nanoparticles on hydrogel formation as well as fluorescence properties of HIC at different temperature were also studied.
     II. Supramolecular hybrid hydrogel from noncovalently functionalized graphene with block copolymer Water soluble (3-cyclodextrin surface-functionalized graphene was prepared via amine-epoxy reaction from ethylenediamino-(3-cyclodextrin and graphene oxide, which was further noncovalently functionalized with azobenzene-end functionalized AZO-(PDMA-b-PNIPAM) block copolymer to form brush-like hybrid graphene inclusion complexes (HGIC). HGICs have inorganic graphene nonosheets as the core, block copolymer as the shell and PNIPAM block at the out layer. The core and the shell were connected by inclusion complexation. Structure of resulted HGIC was fully characterized by a combination of techniques including TGA, UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, TEM and AFM. The HGIC of10wt%concentration can quickly form supramolecular hybrid hydrogel as a result of aggregation of PNIPAM at the out layer when the temperature was close to its LCST. The sol-gel transition and formation mechanism was investigated by dynamic rheology and viscosity-temperature measurement. Seven different HGICs was prepared through inclusion complexation between CD-G and seven block copolymers with different polymerization degree. Viscous/elastic modulus and viscosity of the HGICs with temperature variation was fully investigated by dynamic rheology and viscosity-temperature measurement. The results show that gel point Tgel and viscosity turning points Tη increased with the ratio of degree of polymerization of PDMA block to PNIPAM block of HGIC superstructure. It was also found the hydrogel formation of HGIC was more quickly than that of HIC and the gelation temperature of HGIC was much lower than that of the HIC when the same temperature increase rate, the same block copolymer (Rm) and the same concentration were used. This may be attributed that the flexible and ultrathin2D planar structure of graphene sheets were more favored in the three-dimensional gel network formation.
     III. Noncovalently connected Micelles driven by Host-stabilized charge transfer interaction Hydrophilic copolymer containing two violegen moieties at the side chain (P(Mv-co-DMA)) and naphthalene end functionalized PNIPAM (Np-PNIPAM) was prepared, respectively, which can form graft-like copolymers in the presence of Cucurbit[8]uril. The formation of the copolymer driven by host-stabilized charge transfer interaction was confirmed by UV-Vis spectrum. The resultant copolymers can further self-assemble into non-covalently connected micelles (NCCM) above LCST of PNIPAM chains. Formation of micelle was monitored by DLS and TEM image shows spherical structure with diameter of200-250nm. DLS results also showed that Rh decreased greatly after adding reduced agent. Part work of this chapter is still in process.
     IV. Supramolecular hydrogel driven by host-stabilized charge transfer interaction Three different copolymers with naphthalene as the side chain and viologen dimer were designed and prepared. A primary research was performed on the formation of supramolecular hydrogel driven by host-stabilized charge transfer interaction, when the CB[8] was added.
引文
[1]Lehn, J. M. Inclusion complexes of macropolycyclic receptor molecules. Pure and Applied Chemistry.1978,50:871-892.
    [2]Lehn, J. M. Supramolecular Chemistry:Concepts and Perspectives. Wiley-VCH, 1995.
    [3]Lehn, J. M.; Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D.; Eds. F. V. Comprehensive Supramolecular Chemistry. Oxford,1996.
    [4]Dodziuk, H. Introduction Supramolecular Chemistry. Kluwer Academic Publishers. 2002
    [5]Steed, J. W.; Turner, D. R.; Wallace, A. K. J. Core Concepts in Supramolecular Chemistry and Nanochemistry. John Wiley & Sons, Ltd,2007.
    [6]Martinez-Manez, K. R. R. The supramolecular chemistry of organic-inorganic hybrid materials. Wiley & Sons, Inc., Hoboken, New Jersey.2010.
    [7]Amabilino, D.; Stoddart, J. F. Molecules that build themselves. New Scientist. 1994,25-29
    [8]Lawrence, D.S.; Jiang, T.; levett, M. Self-assembling supramolecular complexes. Chemical Review.1995,95:2229-2260.
    [9]Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science.,2002, 295,2418-2421.
    [10]Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular selfassembly and nanochemistry:a chemical strategy for the synthesis of nanostructures. Science,1991, 254:1312-1319
    [11]Desiraju, E. G. R. The crystal as a supramolecular entity. Wiley, Chichester. UK. 1996.
    [12]Espinet, P.; Esteruelas, M. A.; Oro, L. A.; Serrano, J. L.; Sola, E. Transition metal liquid crystals:advanced materials within the reach of the coordination chemist. Coordination Chemistry Reviews.1992,117,215-274.
    [13]Collin, J. P.; Gavina, P.; Heitz, V.; Sauvage, J.P. Construction of one-dimensional multicomponent molecular arrays:Control of electronic and molecular. European Journal of Inorganic Chemistry.1998,1-14.
    [14]Jones, C.J. Transition metals as structural components in the construction of molecular containers. Chemical Society Review.1998,27,289-300.
    [15]Lindoy, L. F.; Atkinson, I. M. Self-assembly in supramolecular systems.Royal Society of Chemistry,2000.
    [16]Swiegers, G. F.; Malefetse, T. J. Multiple-interaction self-assembly in coordination chemistry. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2001,40:253-264.
    [17]Yan, Y.; Huang, J. Hierarchical assemblies of coordination supramolecules. Coordination Chemistry Reviews.2010,254:1072-1080.
    [18]Jonkheijm, P.; Schoot, P.; Schenning, A. P. H. J.; Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science,2006,313, 80-83.
    [19]Piepenbrock, M. O. M.; Lloyd, G. O.; Clarke, N.; Steed, J. W. Metal-and anion-binding supramolecular gels. Chemical Review.2010,110,1960-2004.
    [20]Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-assembly and mineralization of Petide-amphiphile nanofibers. Science,2001,294:1684-1688.
    [21]Nie, Z.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G. C; Rubinstein, M. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nature Materials,2007,6,609-614.
    [22]Gao, Y.; Tang, Z. Design and Application of Inorganic Nanoparticle Superstructures:Current Status and Future challenges. Small,2011,7,2133-2146.
    [23]Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D.; Frechet, J. M. J.; Alivisatos, A. P.; Xu, T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nature Materials,2009,8,979-985.
    [24]Olenyuk, B.; Whiteford, J. A.; Fechtenkotter, A.; Stang, P. J. Self-Assembly of Nanoscale Cuboctahedra by Coordination Chemistry, Nature.1999,398:796-799.
    [25]Self-assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals, B. Olenyuk, S. Leininger, P.J. Stang, Chemical Review.2000,100:853-907.
    [26]Seidel, S. R.; Stang, P. J. High Symmetry coordination cages via self-assembly, Accounts of Chemical Research.2002,35:972-983.
    [27]Li, S. S.; Northrop, B. H.; Yuan, Q. H.; Wan, L. J.; Stang, P. J. Surface confined metallosupramolecular architectures:formation and STM Characterization. Accounts of Chemical Research.2009,42:249-259.
    [28]Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular coordination: self-assembly of finite two-and three-dimensional ensembles. Chemical Review.2011, ASAP.
    [29]Turner, D. R.; Spencer, E. C.; Howard, J. A. K.; Tocher, D. A.; Steed, J. W. A modular, self-assembled, separated ion pair binding system. Chemical Communications.2004,1352-1353.
    [30]Applegarth, L.; Clark, N.; Richardson, A. C.; Parker, A. D. M.; Radosavljevic-Evans, I.; Goeta, A. E.; Howard, J. A. K.; Steed, J. W. Modular nanometer-scale structuring of gel fibres by sequential self-organization. Chemical Communications.2005,5423-5425.
    [31]Stanley, C. E.; Clarke, N.; Anderson, K. M; Lenthall, J. P.; Steed, J. W. Anion binding inhibition of the formation of a helical hydrogel.Chemical Communications. 2006,3199-3201.
    [32]Piepenbrock, M. O. M; Lloyd, G. O.; Clarke, N.; Steed, J. W. Metal-and anion-binding supramolecular gels. Chemical Review.2010,110,1960-2004.
    [33]Lloyd, G. O.; Steed, J. W. Anion-tuning of supramolecular gel properties. Nature chemistry,2009,437-442.
    [34]Sangeetha, N. M.; Maitra, U. Supramolecular gels:Functions and uses. Chemical Society Review.2005,34,821-836.
    [35]Kishimura, A.; Yamashita, T.; Aida, T. Phosphorescent organogels via "metallophilic" interactions for reversible RGB-color switching. Journal of American Chemical Society.2005,127:179-183.
    [36]江明;艾森伯格,A.;刘国军;张希.大分子自组装.科学出版社.2006.
    [37]Darling,S.B. Directing the self-assembly of block copolymers. Progress in Polymer Science.2007,32:1152-1204.
    [38]Smart, T.; Lomas, H.; Massignani, M.; Flores-Merino, M. V.; Perez, L. R.; Battaglia, G. Block copolymer nanostructures. Nanotoday,2008,3:38-46.
    [39]Yu, Y., Zhang, I., Eisenberg. A. Morphogenic Effect of solvent on Crew-cut aggregation of amphiphilic diblock copolymer. Macromolecules,1998,31: 1144-1154.
    [40]Zhang, L., Eisenberg, A. Multiple morphologies and characteristics of "Crew-Cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. Journal ofAmerican Chemical Society,1996,118:3168-3181.
    [41]Shen, H.; Zhang, L.; Eisenberg, A. Multiple pH-induced morphological changes in aggregates of polystyrene-block-poly(4-vinylpyridine)in DMF/H2O mixtures. Journal of American Chemical Society.1999,121(12):2728-2740.
    [42]Erhardt, R.; Zhang, M.; Boker, A.; Zettl, H.; Abetz, C.; Frederik, P.; Krausch, G.; Abetz, V.; Miiller, A. H. E. Amphiphilic janus micelles with polystyrene and poly(methacrylic acid) hemispheres. Journal of American Chemical Society.2003, 125:3260-3267
    [43]Liu, Y.; Abetz, V.; Miiller, A. H. E. Janus cylinders. Macromolecules.2003,36: 7894-7898.
    [44]Stoenescu, R.; Graff, A.; Meier, W. Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane proteins. Macromoleculae Bioscience.2004,4:930-935.
    [45]Li, Z. B.; Hillmyer, M.A.; Lodge, T. P. Laterally nanostrucrured vesicles, polygonal bilayer sheets, and segmented wormlike micelles. Nano Lett.2006,6: 1245-1249.
    [46]Yan, D.; Zhou, Y.; Hou, J. Supramolecular self-assembly of macroscopic tubes. Science,2004,303:65-67.
    [47]Jiang, M.; Li, M.; Xiang, M. L.; Zhou, H. Interpolymer complexation and miscibility enhancement by hydrogen bonding. Advances in Polymer Science.1999, 146:121-196.
    [48]Chen, D.; Jiang, M. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Account of Chemical Research.2005,38 (6):494-502.
    [49]Guo, M.; Jiang, M. Non-covalently connected micelles (NCCMs):the origins and development of a new concept. Soft Matter,2009,5,495-500.
    [50]Liu, S.; Jiang, M.; Liang, H.; Wu, C. Intermacromolecular complexes due to specific interactions.13. Formation of micelle-like structure from hydrogen-bonding graft-like complexes in selective solvents. Polymer,2000,41:8697-8702.
    [51]Liu, S.; Zhu, H.; Zhao, H.; Jiang, M.; Wu, C. Interpolymer hydrogen-bonding complexation induced micellization from polystyrene-h-poly(methyl methacrylate) and PS(OH) in toluene. Langmuir,2000,16:3712-3717.
    [52]Zhang, Y.; Jiang, M.; Zhao, J.; Zhou, J.; Chen, D. Hollow spheres from shell cross-linked, noncovalently connected micelles of carboxyl-terminated Polybutadiene and poly(vinyl alcohol) in Water. Macromolecules,2004,37,1537-1543
    [53]Wang, J.; Jiang, M. Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation. Journal of Americal Chemical Society.2006,128:3703-3708.
    [54]Zou, J.; Tao, F. G.; Jiang, M. Optical Switching of Self-Assembly and Disassembly of Noncovalently Connected Amphiphiles. Langmuir.2007,23; 12791-12794.
    [55]Moughton, A. O.; O'Reilly, R. K. Noncovalently Connected Micelles, Nanoparticles, and Metal-Functionalized Nanocages Using Supramolecular Self-Assembly. Journal of American Chemical Society,2008,130:8714-8725.
    [56]Moughton, A. O.; Stubenrauch, K.; O'Reilly, R.K. Hollow nanostructures from self-assembled supramolecular metallo-triblock copolymers. Soft Matter,2009,5: 2361-2370.
    [57]Moughton, A. O.; O'Reilly, R. K. Using Metallo-Supramolecular Block Copolymers for the Synthesis of Higher Order Nanostructured Assemblies. Macromolecular Rapid Communications,2010,31:37-52.
    [58]Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature.1960; 185:117-118.
    [59]Jindrich, K. Hydrogel biomaterials:A smart future? Biomaterials.2007,28, 5185-5192.
    [60]Tae, G.; Kornfeld, J. A.; Hubbell, J. A. Sustained release of human growth hormone from in situ forming hydrogels using self-assembly of fluoroalkyl-ended polyethylene glycol). Biomaterials.2005,26:5259-66.
    [61]Serero, Y.; Aznar, R.; Porte, G.; Berret, J. F.; Calvet, D.; Collet, A.; Viguier, M. Associating polymers:from flowers" to transient networks. Physical Review Letters. 1998,81:5584-5587.
    [62]Shen, W.; Kornfeld, J. A.; Tirrell, D. A. Structure and mechanical properties of artificial protein hydrogels assembled through aggregation of leucine zipper domains. Soft Matter.2007,3:99-107.
    [63]Yang, J.; Xu, C.; Wang, C.; Kopecek, J. Refolding hydrogels self assembled from N-(2-hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation. Biomacromolecules.2006,7:1187-1195
    [64]Reinicke, S.; Schmelz, J.; Lapp, A.; Karg, M.; Hellwegc, T.; Schmalz, H. Smart hydrogels based on double responsive triblock terpolymers. Soft Matter,2009,5: 2648-2657.
    [65]Vogt, A. P.; Sumerlin, B. S. Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization. Soft Matter,2009,5: 2347-2351.
    [66]Reinicke, S.; D€ohler, S.; Tea, S.; Krekhova, M.; Messing, R.; Schmidtb, A. M.; Schmalz, H. Magneto-responsive hydrogels based on maghemite/triblock terpolymer hybrid micelles. Soft Matter,2010,6:2760-2773.
    [67]Chen, Y.; Pang, X. H.; Dong, C. M. Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry. Advanced Functional Materials.2010,20:1-8.
    [68]刘育;张衡益;李莉;王浩.纳米超分子化学:从合成受体到功能组装体,化学工业出版社.2004.
    [69]Ogoshi, T.; Harada, A. Chemical sensors based on cyclodextrin derivatives. Sensor,2008,8:4961-4982.
    [70]Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chemical Review.1998,98,1743-1754.
    [71]Whitlock, B.J.; Whitlock, H. W. Effect of cavity size on supramolecular stability. Journal of American Chemical Society.1994,116,2301.
    [72]Nassimbeni, L. R. Physicochemical Aspects of Host-Guest Compounds. Account of Chemical Research.2003,36,631-637.
    [73]Steed, J. W.; Atwood J. L. Supramolecular Chemistry, John Wiley and Sons, Ltd, 2000.
    [74]Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y. Polymeric Rotaxanes. Chemical Review.2009,109,5974-6023
    [75]Saenger, W.; Jacob, J.; Gessler, K.; Steiner, T.; Hoffmann, D.; Sanbe, H.; Koizumi, K.; Smith, SM.; Takaha, T. Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chemical Review.1998,98:1787-1802.
    [76]Rekharsky, M.V.; Inoue, Y. Complexation thermodynamics of cyclodextrins. Chemical Review.1998,98:1875-1918.
    [77]Connors, K.A. The stability of cyclodextrin complexes in solution. Chemical Review.1997,97:1325-1358.
    [78]Beharry, A. A.; Woolley, G. A. Azobenzene photoswitches for biomolecules. Chemical Society Review.2011,40:4422-4437.
    [79]Taura, D.; Li, S.; Hashidzume, A.; Harada, A. Formation of side-chain hetero-polypseudorotaxane composed of α-and β-cyclodextrins with a water-soluble polymer bearing two recognition sites. Macromolecules.2010,43:1706-1713.
    [80]Matsue, T.; Evans, D. H.; Osa, T.; Kobayashi, N. Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of.beta.-cyclodextrin. Journal of American Chemical Society.1985,107: 3411-3417.
    [81]Kaifer, A. E. Interplay between Molecular Recognition and Redox Chemistry. Account of Chemical Research.1999,32:62-71.
    [82]Hapiot, F.; Tilloy, S.; Monflier, E. Cyclodextrins as Supramolecular Hosts for Organometallic Complexes. Chemical Review.2006,106:767-781.
    [83]Harada, A. Cyclodextrin-Based Molecular Machines. Account of Chemical Research.2001,34:456-464.
    [84]Casas-Solvas, J. M.; Ortiz-Salmeron, E.; Fernandez, I.; Garcla-Fuentes, L. Santoyo-Gonzalez, F.; Vargas-Berenguel, A. Ferrocene-β-cyclodextrin conjugates: synthesis, supramolecular behavior, and use as electrochemical sensors. Chemistry-A European.2009,15:8146-8162.
    [85]Zou, J.; Guan, B.; Liao, X.; Jiang, M.; Tao, F. Dual reversible self-assembly of PNIPAM-based amphiphiles formed by inclusion complexation. Macromolecules. 2009,42:7465-7473.
    [86]Ren, S.; Chen, D.; Jiang, M. Noncovalently connected micelles based on a β-Cyclodextrin-Containing Polymer and Adamantane End-Capped Poly(ε-caprolactone). Journal of Polymer Science:Part A:Polymer Chemistry.2009, 47,4267-4278
    [87]Zhanga, J.; Ma, P. X. Host-guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications. Nano Today.2010,5:337-350.
    [88]Zhang, J.; Feng, K.; Cuddihy, M.; Kotovc, N, A.; Ma, P. X, Spontaneous formation of temperature-responsive assemblies by molecular recognition of a β-cyclodextrin-containing block copolymer and poly(N-isopropylacrylamide). Soft Matter,2010,6:610-617.
    [89]Zhang, J.; Ma, P. X. Polymeric core-shell assemblies mediated by host-guest interactions:versatile nanocarriers for drug delivery. Angewandte Chemie International Edition.2009,48:964-968.
    [90]Zhang, J.; Sun, H.; Ma, P. X. Host-guest interaction mediated polymeric assemblies:multifunctional nanoparticles for drug and gene delivery. ACS Nano.2010, 4:1049-1059.
    [91]Zhang, J.; Ellsworth, K.; Ma, P. X. Hydrophobic pharmaceuticals mediated self-assembly of beta-cyclodextrin containing hydrophilic copolymers:Novel chemical responsive nano-vehicles for drug delivery. Journal of Controlled Release. 2010,145:116-123.
    [92]Yan, Q.; Xin, Y.; Zhou, R.; Yina, Y.; Yuan, J. Light-controlled smart nanotubes based on the orthogonal assembly of two homopolymers. Chemical Communications. 2011,47:9594-9596
    [93]Yan, Q.; Yuan, J.; Cai, Z.; Xin, Y.; Kang, Y.; Yin, Y. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. Journal of American Chemical Society.2010,132:9268-9270.
    [94]窦红静,孙康.全亲水性嵌段共聚物及其超分子自组装.化学进展.2005,17:854-859.
    [95]Colfen, H. Double-hydrophilic block copolymers:synthesis and application as novel surfactants and crystal growth modifiers. Macromolecular Rapid Communications.2001,22:219-252.
    [96]Kamachi, M.; Kurihara, M.; Stille, J. K. Synthesis of block polymers for desalination membranes, preparation of block copolymers of 2-vinylpyridine and methacrylic acid or acrylic acid. Macromolecules,1972,5:161-167.
    [97]Liu, H.; Zhang, Y.; Hu, J.; Li, C.; Liu, S. Multi-responsive supramolecular double hydrophilic diblock copolymer driven by host-guest inclusion complexation between β-cyclodextrin and adamantyl moieties. Macromolecular Chemistry and Physics. 2009,210,2125-2137.
    [98]Stadermann, J.; Komber, H.; Erber, M.; D€abritz,F.; Ritter, H.; Voit, B. Diblock copolymer formation via self-assembly of cyclodextrin and adamantyl end-functionalized polymers. Macromolecules.2011,44:3250-3259.
    [99]Zeng, J.; Shi, K.; Zhang, Y.; Sun, X.; Zhang, B. Construction and micellization of a noncovalent double hydrophilic block copolymer. Chemical Communications.2008, 3753-3755.
    [100]Wang, J.; Pham, D. T.; Guo, X.; Li, L.; Lincoln, S. F.; Luo, Z.; Ke, H.; Zheng, L.; Prud' homme, R. K. Polymeric Networks Assembled by Adamantyl and-Cyclodextrin Substituted Poly(acrylate)s:Host-Guest Interactions, and the Effects of Ionic Strength and Extent of Substitution. Industrial & Engineering Chemistry Research.2010,49:609-612
    [101]Li, L.; Guo, X.; Wang, J.; Liu, P.; Prud'homme, R. K.; May, B. L.; Lincoln, S. F. Polymer networks assembled by host-guest inclusion between adamantyl and (3-cyclodextrin substituents on poly(acrylic acid) in aqueous solution. Macromolecules. 2008,41,8677-8681.
    [102]Guo, X.; Abdala, A. A.; May, B. L.; Lincoln, S. F.; Khan, S. A.; Prud'homme, R. K. Novel associative polymer networks based on cyclodextrin inclusion compounds. Macromolecules.2005,38:3037-3040.
    [103]Li, L.; Guo, X.; Fu, L.; Prud'homme, R. K.; Lincoln, S. F. Complexation behavior of α-,β-, and y-Cyclodextrin in modulating and constructing polymer networks. Langmuir.2008,24:8290-8296.
    [104]Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healing materials formed from host-guest polymers. Nature Communications, 2011,2,1-6.
    [105]Guo, X.; Wang, J.; Li, L.; Chen, Q.; Zheng, L. Tunable polymeric hydrogels assembled by competitive complexation between cyclodextrin dimers and adamantyl substituted poly(acrylate)s. AIChE Journal.2010,56:3021-3024.
    [106]Miyauchi, M.; Tomatsu, I.; Harada, A.; Ritter, H. Switchable hydrogels obtained by supramolecular cross-linking of adamantyl-containing LCST copolymers with cyclodextrin dimers. Angewandte Chemie International Edition.2006,45:4361-4365.
    [107]Yu, Y.; Chipot, C.; Cai, W.; Shao, X. Molecular dynamics study of the inclusion of cholesterol into cyclodextrins. The Journal of Physical Chemistry.2006,110, 6372-6378.
    [108]Manakker, F.; Vermonden, T.; Nostrum, C. F.; Hennink, W. E. Cyclodextrin-based polymeric materials:synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules.2009,10 (12):3157-3175
    [109]Manakker, F.; Kroon-Batenburg, L. M. J.; Vermonden, T.; van Nostrum, C. F. Hennink, W. E. Supramolecular hydrogels formed by β-cyclodextrin self-association and host-guest inclusion complexes. Soft Matter.2010,6,187-194.
    [110]Manakker, F.; Vermonden, T.; Morabit, N.; van Nostrum, C. F.; Hennink, W. E. Rheological behavior of self-assembling PEG-β-cyclodextrin/PEG-cholesterol hydrogels. Langmuir.2008,24:12559-12567.
    [111]Manakker, F.; Pot, M.; Vermonden, T.; van Nostrum, C. F.; Hennink, W. E. Self-assembling hydrogels based on (3-cyclodextrin/cholesterol inclusion complexes. Macromolecules.2008,41:1766-1773.
    [112]Manakker, F.; Braeckmans, K.; Morabit, N.; De Smedt, S. C.; van Nostrum, C. F.; Hennink, W. E. Protein-release behavior of self-assembled pEG-β-cyclodextrin/PEG-cholesterol hydrogels. Advanced Functional Materials. 2009,19:2992-3001.
    [113]Manakker, F. Self-assembled hydrogels based on β-cyclodextrin/cholesterol inclusion complexes.2009. The Netherlands.
    [114]Takashima, Y.; Nakayama, T.; Miyauchi, M.; Kawaguchi, Y.; Yamaguchi, H.; Harada, A. Complex formation and gelation between copolymers containing pendant azobenzene groups and cyclodextrin polymers. Chemistry Letters.2004,33:890-891.
    [115]Tomatsu, I.; Hashidzume, A.; Harada, A. Contrast viscosity changes upon photoirradiation for mixtures of poly(acrylic acid)-based a-cyclodextrin and azobenzene polymers. Journal of American Chemical Society.2006,128:2226-2227.
    [116]Tamesue, S.; Takashima, Y.; Yamaguchi, H.; Shinkai, S.; Harada, A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angewandte Chemie International Edition.2010,49,7461-7464.
    [117]Inoue, Y.; Kuad, P.; Okumura, Y.; Takashima, Y.; Yamaguchi, H.; Harada, A. Thermal and photochemical switching of conformation of poly(ethylene glycol)-substituted cyclodextrin with an azobenzene group at the chain end. Journal of American Chemical Society.2007,129 (20):6396-6397.
    [118]Yamaguchil, H.; Kobayashi, Y.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Harada, A. Photoswitchable gel assembly based on molecular recognition. Nature Communications,2012,3,1-6.
    [119]Liao, X.; Chen, G.; Liu, X.; Chen, W.; Chen, F.; Jiang, M. Photoresponsive pseudopolyrotaxane hydrogels based on competition of host-guest Interactions. Angewandte Chemie International Edition.2010,49,4409-4413.
    [120]Peng, K.; Tomatsu, I.; Kros, A. Light controlled protein release from a supramolecular hydrogel. Chemical Communications.2010,46:4094-4096.
    [121]Lu, R.; Hao, J.; Wang, H.; Tong, L. Determination of association constants for cyclodextrin-surfactant inclusion complexes:a numerical method based on surface tension measurements. Journal of Colloid and Interface Science.1997,192:37-42.
    [122]Topchieva, I.; Karezin, K. Self-assembled supramolecular micellar structures based on non-ionic surfactants and cyclodextrins. Journal of Colloid and Interface Science.1999,213:29-35.
    [123]Valente, A. J. M.; Nilsson, M.; Soderman, O. Interactions between n-octyl and n-nonyl β-d-glucosides and α-and β-cyclodextrins as seen by self-diffusion NMR. Journal of Colloid and Interface Science.2005,281,218-224.
    [124]Harada, A.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nature Chemistry.2011,3: 34-37.
    [125]Yamaguchi, H.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Harada, A. Self-assembly of gels through molecular recognition of cyclodextrins:shape selectivity for linear and cyclic guest molecules. Macromolecules.2011,44, 2395-2399.
    [126]Zheng, Y.; Hashidzume, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. Macroscopic Observations of Molecular Recognition:Discrimination of the Substituted Position on the Naphthyl Group by Polyacrylamide Gel Modified with β-Cyclodextrin. Langmuir,2011,27,13790-13795.
    [127]Tomatsu, I.; Hashidzume, A.; Harada, A. Gel-to-Sol and Sol-to-Gel Transitions Utilizing the Interaction of α-Cyclodextrin with Dodecyl Side Chains Attached to a Poly(acrylic acid) Backbone. Macromolecular Rapid Communications.2005,26: 825-829.
    [128]Tomatsu, I.; Hashidzume, A.; Harada, A. Redox-responsive hydrogel system using the molecular recognition of β-Cyclodextrin. Macromolecular Rapid Communications.2006,27:238-241.
    [129]Tomatsu, I.; Hashidzume, A.; Harada, A. Photoresponsive hydrogel system using molecular recognition of a-Cyclodextrin. Macromolecules.2005,38: 5223-5227.
    [130]Guo, M.; Jiang, M.; Pispas, S.; Yu, W.; Zhou, C. Supramolecular hydrogels made of end-functionalized low-molecular-weight PEG and β-cyclodextrin and their hybridization with SiO2 nanoparticles through host-guest interaction. Macromolecules. 2008,41:9744-9749.
    [131]Liao, X.; Chen, G.; Jiang, M. Pseudopolyrotaxanes on Inorganic Nanoplatelets and their Supramolecular Hydrogels. Langmuir.2011,27 (20),12650-12656.
    [132]Shin, S. R.; Bae, H.; Cha, J. M.; Mun, J. Y.; Chen, Y. C.; Tekin, H.; Shin, H.; Farshchi, S.; Dokmeci, M. R.; Tang, S.; Khademhosseini, A. Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation. ACS Nano, 2012,6,362-372.
    [133]Ogoshi, T.; Takashima, Y.; Yamaguchi, H.; Harada, A. Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins. Journal American Chemical Society.2007,129:4878-4879.
    [134]Tamesue, S.; Takashima, Y.; Yamaguchi, H.; Shinkai, S.; Harada, A. Photochemically controlled supramolecular curdlan/single-walled carbon nanotube composite gel:preparation of molecular distaff by cyclodextrin modified curdlan and phase transition control. European Journal of Organic Chemistry.2011,2801-2806.
    [135]Sui, K.; Gao, S.; Wu, W.; Xia, Y. Injectable supramolecular hybrid hydrogels formed by MWNT-grafted-poly(ethylene glycol) and α-Cyclodextrin. Journal of Polymer Science:Part A:Polymer Chemistry.2010,48:3145-3151.
    [136]Klink, M.; Ritter, H. Supramolecular gels based on multi-walled carbon nanotubes bearing covalently attached cyclodextrin and water-soluble guest polymers. Macromolecular Rapid Communications.2008,29:1208-1211.
    [137]Li, D.; Kaner, R. B. Graphene-Based Materials. Science,2008,320:1170-1171.
    [138]Dikin, A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature,2007,448,457-460.
    [139]Zu, S. Z.; Han. B. H. Aqueous dispersion of graphene sheets stabilized by pluronic copolymers:formation of supramolecular hydrogel. The Journal of Physical Chemistry C.2009,113:13651-13657.
    [140]Ogoshi, T.; Ichihara, Y.; Yamagishi, T.; Nakamoto, Y. Supramolecular polymer networks from hybrid between graphene oxide and per-6-amino-β-cyclodextrin. Chemical Communications.2010,46:6087-6089.
    [141]Behrend, R.; Meyer, E.; Rusche, F. Condensation Products from Glycoluril and Formaldehyde. Justus Liebigs Annalen der Chemie.1905,339:1-37.
    [142]Freeman, W. A.; Mock, W. L.; Shih, N. Y. Cucurbituril. Journal American Chemical Society.1981,103:7367-7368.
    [143]Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.; Kang, J. K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. New Cucurbituril homologues:□ syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n= 5,7, and 8). Journal American Chemical Society.2000,122:540-541.
    [144]Day, A. I.; Arnold, A. P.; Blanch, R. J.; Snushall, B. Controlling factors in the synthesis of cucurbituril and its homologues. The Journal of Organic Chemistry.2001, 66:8094-8100.
    [145]Day, A. I.; Blanch, R. J.; Arnold, A. P.; Lorenzo, S.; Lewis, G. R.; Dance, I. A cucurbituril-based gyroscane:a new supramolecular form. Angewandte Chemie International Edition.2002,41:275-277.
    [146]Marquez, C.; Huang, F.; Nau, W. M. Cucurbiturils:molecular nanocapsules for time-resolved fluorescence-based assays. IEEE Trans. Nanobioscience.2004,3, 39-45.
    [147]Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. The Cucurbit[n]uril Family. Angewandte Chemie International Edition.2005,44:4844-4870
    [148]Isaacs, L. Cucurbit[n]urils:from mechanism to structure and function. Chemical Communications.2009,619-629
    [149]Jeon, Y. M; Kim, J.; Whang, D.; Kim, K. Molecular container assembly capable of controlling binding and release of its guest molecules:□ reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. Journal of American Chemical Society.1996,118:9790-9791.
    [150]Buschmann, H. J.; Jansen, K.; Meschke, C.; Schollmeyer, E. Thermodynamic data for complex formation between cucurbituril and alkali and alkaline earth cations in aqueous formic acid solution. Journal of Solution Chemistry.1998,27:135-140.
    [151]Gerasko, O. A.; Sokolov, M. N. Fedin, V. P. Mono-and polynuclear aqua complexes and cucurbit[6]uril:Versatile building blocks for supramolecular chemistry. Pure and Applied Chemistry.2004,76:1633-1646.
    [152]Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; KIM, K. Cucurbituril Homologues and Derivatives:New Opportunities in Supramolecular Chemistry. Accounts of Chemical Research.2003,36:621-630.
    [153]黄晓玲.葫芦脲[6]与聚电解质的相互作用研究.山东大学博士学位论文.2008.
    [154]周会华.葫芦[7]脲对阳离子型表面活性剂分子自组装行为的影响.南昌大学研究生论文.2008.
    [155]Achikanath, C. Bhasikuttan, H. P.; Jyotirmayee, M. Cucurbit[n]uril based supramolecular assemblies:tunable physico-chemical properties and their prospects. Chemical Communications.2011,47:9959-9971.
    [156]Kim, H. J.; Heo, J.; Jeon, W. S.; Lee, E.; Kim, J.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Selective inclusion of a hetero-guest Pair in a molecular host:formation of stable charge-transfer complexes in cucurbit[8]uril. Angewandte Chemie International Edition.2001,40:1526-1529.
    [157]W. S. Jeon, A. Y. Ziganshina, J. W. Lee, Y. H. Ko, J.-K. Kang, C. Lee, K. Kim, A [2]pseudorotaxane-based molecular machine:reversible formation of a molecular loop driven by electrochemical and photochemical stimuli. Angewandte Chemie International Edition.2003,42:4097-4100.
    [158]Jeon, W. S.; Kim, E.; Ko, Y. H.; Hwang, I.; Lee, J. W.; Kim, S. Y.; Kim, H. J.; Kim, K. Molecular Loop Lock:A Redox-Driven Molecular Machine Based on a Host-Stabilized Charge-Transfer Complex. Angewandte Chemie International Edition. 2004,44:87-91.
    [159]Ko, Y. H.; Kim, E.; Hwang, I.; Kim, K. Supramolecular assemblies built with host-stabilized charge-transfer interactions. Chemical Communications,2007, 1305-1315.
    [160]Hwang, I.; Ziganshina, A. Y.; Ko, Y. H.; Yun, G.; Kim, K. A new three-way supramolecular switch based on redox-controlled interconversion of hetero-and homo-guest-pair inclusion inside a host molecule. Chemical Communications,2009, 416-418.
    [161]Ko, Y. H.; Kim, K.; Kang, J. K.; Chun, H.; Lee, J. W.; Sakamoto, S.; Yamaguchi, K.; Fettinger, J. C.; Kim, K. Designed self-assembly of molecular necklaces using host-stabilized charge-transfer interactions. Journal of American Chemical Society. 2004,126:1932-1933.
    [162]Liu, Y.; Yu, Y.; Gao, J.; Wang, Z.; Zhang, X. Water-soluble supramolecular polymerization driven by multiple host-stabilized charge-transfer interactions. Angewandte Chemie International Edition.2010,49:6576-6579.
    [163]Sindelar, V.; Cejas, M. A.; Raymo, F. M.; Chen, W.; Parker, S. E.; Kaifer, A. E. Supramolecular assembly of 2,7-dimethyldiazapyrenium and cucurbit[8]uril:a new fluorescent host for detection of catechol and dopamine. Chemistry Europen Journal. 2005,11:7054-7059.
    [164]Bush, M. E.; Bouley, N. D.; Urbach, A. R. Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host. Journal of American Chemical Society.2005,127,14511-14517.
    [165]Rauwald, U.; Scherman, O. A. Supramolecular block copolymers with cucurbit[8]uril in water. Angewandte Chemie International Edition.2008,47:3950-3953.
    [166]Biedermann, F.; Rauwald, U.; Zayed, J. M.; Scherman, O. A. A supramolecular route for reversible protein-polymer conjugation. Chemical Science.2011,279-286.
    [167]Coulston, R. J.; Jones, S. T.; Lee, T. C.; Appel, E. A.; Scherman, O. A. Supramolecular gold nanoparticle-polymer composites formed in water with cucurbit[8]uril. Chemical Communications.2011,47:164-166.
    [168]Tian, F.; Cziferszky, M.; Jiao, D.; Wahlstrom, K.; Geng, J.; Scherman, O. A. Peptide separation through a CB[8]-mediated supramolecular trap-and-release process. Langmuir,2011,27:1387-1390.
    [169]Geng. J.; Biedermann, F.; Zayed J. M.; Tian, F.; Scherman, O. A. Supramolecular glycopolymers in water:A reversible route toward multivalent carbohydrate-lectin conjugates using cucurbit[8]uril. Macromolecules.2011, 4276-4281.
    [170]Appel, E. A.; Biedermann, F.; Rauwald, U.; Jones, S. T.; Zayed, J. M.; Scherman, O. A. Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. Journal of American Chemical Society.2010,132:14251-14260.
    [1]Sangeetha, N. M.; Maitra, U. Supramolecular gels:Functions and uses [J]. Chemical Society Reviews,2005,34,821-836.
    [2]Tsitsilianis, C. Responsive reversible hydrogels from associative "smart" macromolecules [J]. Soft Matter,2010,6,2372-2388.
    [3]Ulijn, R. V.; Bibi, N.; Jayawarna, V.; Thornton, P.D.; Todd, S.J.; Mart, R.J.; Smith, A.M.; Gough, J. E. Bioresponsive hydrogels [J], Materialstoday,2007,10, 40-48.
    [4]Pasparakisa, G.; Vamvakaki, M. Multiresponsive polymers:nano-sized assemblies, stimuli-sensitive gels and smart surfaces [J]. Polymer chemistry,2011,2,1234-1248.
    [5]Reimann, S. M. Electronic structure of quantum dots [J]. Reviews of modern physics,2002,74,1283-1342.
    [6]Bera, D.; Qian, L.; Tseng, T. K.; Holloway, P. H. Quantum dots and their multimodal applications:A review [J], Materials,2010,3,2260-2345.
    [7]Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. Journal of American Chemical Society,1993,115,8706-8715.
    [8]Pathak, S.; Choi, S.-K.; Arnheim, N.; Thompson, M. E. Hydroxylated Quantum Dots as Luminescent Probes for in Situ Hybridization [J]. Journal of American Chemical Society,2001,123,4103-4104.
    [9]Lai, J. T.; Filla, D.; Shea, R.; Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents [J]. Macromolecules,2002,35, 6754-6756.
    [10]Convertine, A. J.; Lokitz, B. S.; Vasileva, Y.; Myrick, L. J.; Scales, C. W.; Lowe, A. B.; McCormick, C. L. Direct Synthesis of Thermally Responsive DMA/N1PAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT Polymerization [J]. Macromolecules,2006,39,1724-1730
    [11]Palaniappan, K.; Hackney, S. A.; Liu, J. Supramolecular control of complexation-induced fluorescence change of water-soluble, (3-cyclodextrin-modified CdS quantum dots [J]. Chemical communication,2004,2704-2705.
    [12]Schild, H. G. Poly(N-isopropylacrylamide):experiment, theory and application [J]. Progress in Polymer Science,1992,17,163-249.
    [13]Convertine, A. J.; Lokitz, B. S.; Vasileva, Y.; Myrick, L. J.; Scales, C. W.; Lowe, A. B.; McCormick, C. L. Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT Polymerization [J]. Macromolecules,2006,39,1724-1730.
    [14]Magenau, A. J. D.; Martinez-Castro, N.; Savin, D. A.; Storey, R. F. Site Transformation of Polyisobutylene Chain Ends to RAFT Polymerization:Synthesis of Poly(isobutylene-b-N-isopropylacrylamide) [J]. Macromolecules,2009,42, 8044-8051.
    [15]Szejtli, J. Pure. Past, present and futute of cyclodextrin research [J]. Pure and Applied Chemistry,2004,76,1825-1845.
    [16]Yang, J.; Sena, M. P.; Gao, X. Quantum Dot-Encoded Fluorescent Beads for Biodetection and Imaging [J]. In Reviews in Fluorescence,2009,2007,139-156.
    [17]Li, J.; Hong, X.; Liu, Y.; Li, D.; Wang, Y. W.; Li, J. H.; Bai, Y. B.; Li, T. J. Highly Photoluminescent CdTe/PNIPAM Temperature Sensitive Gels [J]. Advanced Materials,2005,17,163-166.
    [18]Fu, H. K.; Kuo, S. W.; Huang, C. F.; Chang, F. C.; Lin, H. C. Preparation of the stimuli-responsive ZnS/PNIPAM hollow spheres [J]. Polymer,2009,50,1246-1250.
    [19]Liu, Z.; Jiang, M. Reversible aggregation of gold nanoparticles driven by inclusion complexation [J]. Journal of Materials Chemistry,2007,17,4249-4254.
    [1]Hoffman, A.S.; Stayton, P.S. Conjugates of stimuli-responsive polymers and proteins [J]. Progress in Polymer Science,2007,32,922-32.
    [2]Tripathi, B. P.; Shahi, V. K. Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications [J]. Progress in Polymer Science,2011,36, 945-979.
    [3]Algar, W. R.; Prasuhn, D. E.; Stewart, M. H.; Jennings, T. L.; Blanco-Canosa, J. B.; Dawson, P. E.; Medintz, I. L. The Controlled Display of Biomolecules on Nanoparticles:A Challenge Suited to Bioorthogonal Chemistry [J]. Bioconjugate Chemistry,2011,22,825-858.
    [4]Balazs, A. C.; Emrick, T.; Russell, T. P. Nanoparticle Polymer Composites:Where Two Small Worlds Meet [J]. Science,2006,314,1107-1110.
    [5]Sahooa, N. G.; Ranab, S.; Chob, J. W.; Li, L.; Chana, S. H. Polymer nanocomposites based on functionalized carbon nanotubes [J]. Progress in Polymer Science,2010,35,837-867.
    [6]Kiliaris, P.; Papaspyrides, C.D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy [J]. Progress in Polymer Science,2010,35, 902-958.
    [7]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films [J]. Seience,2004,306,666-669.
    [8]Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules absorbed on graphene [J]. Nature materials,2007,6,652-655.
    [9]Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials [J]. Nature,2006,442,282-286.
    [10]Potts, J. R., Dreyer, D. R.; Bielawski, C. W.; Suoff, R. S. Graphene-based polymer nanocomposites [J]. polymer,2011,52,5-25.
    [11]Kim, H.; Abdala, A. A.; Mecosko, C. W. Graphene/Polymer Nanocomposites [J]. Macromolecules,2010,43,6515-6530.
    [12]Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process [J].ACSNano,2010,4,4324-4330.
    [13]Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Layer-by-Layer Assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations [J]. Chemstry of Materials,1999,11,771-778
    [14]Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G. Non-covalent functionalization of graphene sheets by sulfonated polyaniline [J]. Chemical Communications,2009, 1667-1669.
    [15]Ohashi, H.; Hiraoka, Y.; Yamaguchi, T. An autonomous phase transition-complexation/decomplexation polymer system with a molecular recognition property [J]. Macromolecules,2006,39,2614-2620.
    [16]Guo, Y; Guo, S.; Ren, J.; Zhai, Y; Dong, S.; Wang, E. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: Synthesis and Host-Guest inclusion for enhanced electrochemical performance [J]. ACSNano,2010,4,4001-4007.
    [17]Ogoshi, T.; Ichihara, Y.; Yamagishi, T.; Nakamoto, Y. Supramolecular polymer networks from hybrid between graphene oxide and per-6-amino-b-cyclodextrin [J]. Chemical communications,2010,46,6087-6089.
    [18]Guo, M.; Jiang, M.; Pispas, S.; Yu, W.; Zhou, C. Supramolecular hydrogels made of end-functionalized low-molecular-weight PEG and α-cyclodextrin and Their hybridization with SiO2 nanoparticles through Host-Guest interaction [J]. Macromolecules,2008,41 (24),9744-974.
    [19]Wang, D.; Ye, G.; Wang, X.; Wang, X. Graphene Functionalized with Azo Polymer Brushes:Surface-Initiated Polymerization and Photoresponsive Properties [J]. Advanced Materials,2011,23,1122-1125.
    [20]Fang, M.; Wang, K. G.; Lu, H. B.; Yang, Y L.; Nutt, S. Covalent polymer functionalization of graphenenanosheets and mechanical properties of composites [J]. Journal of Materials chemistry,2009,19,7098-7105.
    [21]Huang, Y. J.; Qin, Y. W.; Zhou, Y.; Niu, H.; Yu, Z. Z.; Dong, J. Y. Polypropylene/Graphene Oxide Nanocomposites Prepared by In Situ Ziegler-Natta Polymerization [J]. Chemistry of Materials,2010,22,4096-4102.
    [22]Lee, S. H.; Dreyer, D. R.; An, J.; Velamakanni, A.; Piner, R. D.; Park, S.; Zhu, Y.; Kim, S. O.; Bielawski, C. W.; Ruoff, R. S.; Polymer brushes via controlled surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide [J]. Macromolecular Rapid Communications,2010,31,281-288.
    [23]Zhu, Y.; Higginbotham, A. L.; Tour, J. M. Covalent Functionalization of Surfactant-Wrapped Graphene Nanoribbons [J]. Chemistry of Materials,2009,21, 5284-5291.
    [24]Kudin, K. N.; Ozbas, B.; Schniepp, H. C; Prud'homme, R. K.; Aksay, I. A.; Car, R. Reversible Basal Plane Hydrogenation of Graphene [J]. Nano Letter,2008,8, 36-41.
    [25]Ferrari, A. C.; Robertson, J. Resinant raman spectroscopy of disordered, amorphous, and diamondlike carbon [J]. Physical review B,2001,64, (075414-1)-(075414-13).
    [26]Su, C. Y.; Xu, Y.; Zhang, W.; Zhao, J.; Tang, X.; Tsai, C. H.; Li, L. Electrical and spectroscopic characterization of ultra-large reduced graphene oxide monolayers [J]. Chemistry of Materials,2009,21,5674.
    [27]Heskinsa, M.; Guillet, J. E. Solution properties of PNIPAM. Journal of Macromolecular Science:Pure and Applied Chemistry.1968,2,1441-1445.
    [1]Lowe, A. B.; McCormick, C. L. Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science, 2007,32,283-351.
    [2]Rodriguez-Hernandez, J.; Checot, F.; Gnanou, Y.; Lecommandoux, S. Toward 'smart'nano-objects by self-assembly of block copolymers in solution. Progress in Polymer Science,2005,30,691-724.
    [3]Li, M. H.; Keller, P. Stimuli-responsive polymervesicles. Soft Matter,2009,5, 927-937.
    [4]Jones, M. C.; Gao, H.; Leroux, J. C. Reverse polymeric micelles for pharmaceutical applications. Journal of Controlled Release,2008,132,208-215.
    [5]Mourya, V.K.; Inamdar, N.; Nawale, R.B.; Kulthe, S.S. Polymeric Micelles: General Considerations and their Applications. Indian Journal of Pharmaceutical Education and Research,2011,45,128-138.
    [6]Leo, Y. T. Chou, Kevin, M.; Warren C. W. C. Strategies for the intracellular delivery of nanoparticles. Chemical Society Reviews,2011,40,233-245.
    [7]Chen, D.; Jiang, M. Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intermolecular Interactions. Accounts of Chemical Research,2005,38 (6),494-502.
    [8]Guo, M.; Jiang, M. Non-covalently connected micelles (NCCMs):the origins and development of a new concept. Soft Matter,2009,5,495-500.
    [9]Liu, S.; Jiang, M.; Liang, H.; Wu, C. Intermacromolecular complexes due to specific interactions.13. Formation of micelle-like structure from hydrogen-bonding graft-like complexes in selective solvents. Polymer,2000,41,8697-8702.
    [10]Liu, S.; Zhu, H.; Zhao, H.; Jiang, M.; Wu, C. Interpolymer Hydrogen-Bonding Complexation Induced Micellization from Polystyrene-b-poly(methyl methacrylate) and PS(OH) in Toluene. Langmuir,2000,16,3712-3717.
    [11]Wang, J.; Jiang, M. Polymeric Self-Assembly into Micelles and Hollow Spheres with Multiscale Cavities Driven by Inclusion Complexation. Journal of Amercian Chemical Society.2006,128,3703-3708.
    [12]Zou, J.; Guan, B.; Liao, X.; Jiang, M. Tao, F. Dual Reversible Self-Assembly of PNIPAM-Based Amphiphiles Formed by Inclusion Complexation. Macromolecules, 2009,42,7465-7473.
    [13]Moughton, A. O.; O'Reilly, R. K. Noncovalently Connected Micelles, Nanoparticles, and Metal-Functionalized Nanocages Using Supramolecular Self-Assembly. Journal of American Chemical Society,2008,130 (27),8714-8725.
    [14]Zou, J.; Tao, F.; Jiang, M. Optical Switching of Self-Assembly and Disassembly of Noncovalently Connected Amphiphiles. Langmuir,2007,23,12791-12794.
    [15]Yan, Q.; Xin, Y.; Zhou, R.; Yina, Y.; Yuan, J. Light-controlled smart nanotubes based on the orthogonal assembly of two homopolymers. Chemical Communications, 2011,47,9594-9596.
    [16]Yan, Q.; Yuan, J.; Cai, Z.; Xin, Y.; Kang, Y.; Yin, Y. Voltage-Responsive Vesicles Based on Orthogonal Assembly of Two Homopolymers. Journal of American Chemical Society,2010,132,9268-9270.
    [17]Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.; Kang, J. K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. "New Cucurbituril Homologues:Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n= 5,7, and 8)". Journal of American Chemical Society,2000,122,540-541.
    [18]Day, A.; Arnold, A. P.; Blanch, R. J.; Snushall, B. Controlling Factors in the Synthesis of Cucurbituril and Its Homologues. The Journal of Organic Chemistry, 2001,66(24),8094-8100.
    [19]Day, R. J.; Blanch, A. P.; Arnold, S. L.; Gareth R. L.; Ian D. A Cucurbituril-Based Gyroscane:A New Supramolecular Form Anthonyl. Angewandte Chemie International Edition,2002,41(2) 275-277.
    [20]Marquez, C.; Huang, F.; Nau, W. M. Cucurbiturils:molecular nanocapsules for time-resolved fluorescence-based assays. IEEE Trans Nanobio science,2004 3(1), 39-45.
    [21]Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Cucurbituril Homologues and Derivatives:New Opportunities in Supramolecular Chemistry. Accounts of Chemical Research,2003,36,621-630.
    [22]Ko, Y. H.; Kim, E.; Hwang, I.; Kim, K.; Supramolecular assemblies built with host-stabilized charge-transfer interactions. Chemical Communications,2007, 1305-1315
    [23]Ko, Y. H.; Kim, K.; Kang, J. K.; Chun, H.; Lee, J. W.; Sakamoto, S.; Yamaguchi, K.; Fettinger, J. C.; Kim, K. Designed Self-Assembly of Molecular Necklaces Using Host-Stabilized Charge-Transfer Interactions. Journal American Chemical Society,2004,126,1932-1933.
    [24]Liu, Y.; Yu, Y.; Gao, J.; Wang, Z.; Zhang, X. Water-Soluble Supramolecular Polymerization Driven by Multiple Host-Stabilized Charge-Transfer Interactions. Angewandte Chemie International Edition,2010,49,6576-6579.
    [25]Rauwald, U.; Scherman, O. A. Supramolecular Block Copolymers with Cucurbit[8]uril in Water. Angewandte Chemie International Edition,2008,47,3950-3953.
    [26]Appel, E. A.; Biedermann, F.; Rauwald, U.; Jones, S. T.; Zayed, J. M.; Scherman, O. A. Supramolecular Cross-Linked Networks via Host-Guest Complexation with Cucurbit[8]uril. Journal American Chemical Society,2010,132,14251-14260.
    [27]Moon, K.; Grindstaff, J.; Sobransingh, D.; Kaifer, A. E. Cucurbit[8]uril-Mediated Redox-Controlled Self-Assembly of Viologen-Containing Dendrimers. Angewandte Chemie International Edition,2004,43,5496-5499.
    [28]Trabolsi, A.; Hmadeh, M.; Khashab, N. M.; Friedman, D. C.; Belowich, M. E.; Humbert, N.; Elhabiri, M.; Khatib, H. A.; Albrecht-Gary, A. M.; Stoddart, J. F. Redox-driven switching in pseudorotaxanes. New Journal of Chemistry,2009,33, 254-263.
    [29]Jeon, W. S.; Kim, E.; Ko, Y. H.; Hwang, I.;Lee, J. W.; Kim, S. Y.; Kim, H. J.; Kim, K. Molecular Loop Lock:A Redox-Driven Molecular Machine Based on a Host-Stabilized Charge-Transfer Complex. Angewandte Chemie International Edition, 2005,44,87-91.
    [30]Schild, H.G. Poly(N-isopropylacrylamide):experiment, theory and application. Progress in Polymer Science,1992,17,163-249.
    [1]Krieg, E.; Rybtchinski, B. Noncovalent Water-Based Materials:Robust yet Adaptive. Chemistry-A European Journal,2011,17,9016-9026.
    [2]Rybtchinski, B. Adaptive Supramolecular Nanomaterials Based on Strong Noncovalent Interactions. ACS Nano,2011,5(9),6791-6818.
    [3]Wang, Y. P.; Xu, H. P.; Zhang, X. Tuning the Amphiphilicity of Building Blocks: Controlled Self-Assembly and Disassembly for Functional Supramolecular Materials. Advanced Materials,2009,21,2849-2864.
    [4]Fenske, T.; Korth, H. G.; Mohr, A.; Schmuck, C. Advances in Switchable Supramolecular Nanoassemblies. Chemisry-A European Journal,2012,18,738-755.
    [5]Rurack, K.; Ramon MartInez-Manez. The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials.2010, John Wiley & Sons, Inc., Hoboken, New Jersey.
    [6]Lin, H. C.; J, B. Y. Charge-Transfer Interactions in Organic Functional Materials. Materials,2010,3,4214-4251.
    [7]Choi, B. G.; Hong, W. H.; Jung, Y. M.; Park, H. S. Charge transfer interactions between conjugated block copolymers and reduced graphene oxides. Chemical Communications,2011,47,10293-10295
    [8]Liu, K.; Wang, C.; Li, Z. B.; Zhang, X. Superamphiphiles Based on Directional Charge-Transfer Interactions:From Supramolecular Engineering to Well-Defined Nanostructures. Angewandte Chemie International Edition,2011,50,4952-4956.
    [9]Wang, C.; Yin, S. C.; Chen, S. L.; Xu, H. P.; Wang, Z. Q.; Zhang, X. Controlled Self-Assembly Manipulated by Charge-Transfer Interactions:From Tubes to Vesicles. Angewandte Chemie International Edition,2008,47,9049-9052.
    [10]Zhang, X.; Wang, C. Supramolecular amphiphiles. Chemical Society Review, 2011,40,94-101.
    [11]Jeon, W. S.; Kim, E.; Ko, Y. H.; Hwang, I.; Lee, J. W.; Kim, S. Y.; Kim, H. J.; Kim, K. Molecular Loop Lock:A Redox-Driven Molecular Machine Based on a Host-Stabilized Charge-Transfer Complex. Angewandte Chemie International Edition, 2005,44,87-91.
    [12]Lee, J. W.; SAMAL, S.; SELVAPALAM, N.; Kim, H. J.; Kim, K. Cucurbituril Homologues and Derivatives:New Opportunities in Supramolecular Chemistry. Accounts of Chemical Research,2003,36,621-630.
    [13]Ko, Y. H.; Kim, E.; Hwang, I.; Kim, K. Supramolecular assemblies built with host-stabilized charge-transfer interactions. Chemical Communications,2007, 1305-315,
    [14]Rauwald, U.; Scherman, O. A. Supramolecular Block Copolymers with Cucurbit[8]uril in Water. Angewandte Chemie International Edition,2008,47, 3950-3953.
    [15]Sindelar, V.; Cejas, M. A.; Raymo, F. M.; Chen, W.; Parker, S. E.; Kaifer, A. E. Supramolecular Assembly of 2,7-Dimethyldiazapyrenium and Cucurbit[8]uril:A New Fluorescent Host for Detection of Catechol and Dopamine. Chemistry-A European Journal,2005,11,7054-7059.
    [16]Bush, M.E.; Bouley, N. D. Urbach, A. R. Charge-Mediated Recognition of N-Terminal Tryptophan in Aqueous Solution by a Synthetic Host. Journal of American Chemical Society,2005,127,14511-14517.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700